mirror of https://github.com/VLSIDA/OpenRAM.git
Fixed input scaling bugs delay prediction model
This commit is contained in:
parent
77d7e3b1cf
commit
8a75b83889
|
|
@ -585,11 +585,14 @@ class lib:
|
|||
def compute_delay(self):
|
||||
"""Compute SRAM delays for current corner"""
|
||||
if self.use_model:
|
||||
import math
|
||||
#FIXME: ML models only designed for delay. Cannot produce all values for Lib
|
||||
d = linear_regression()
|
||||
model_inputs = [OPTS.num_words,
|
||||
temp_wpr = 2.0 #OPTS not working right now
|
||||
log_num_words = math.log(OPTS.num_words, 2)
|
||||
model_inputs = [log_num_words,
|
||||
OPTS.word_size,
|
||||
OPTS.words_per_row,
|
||||
temp_wpr,
|
||||
self.sram.width * self.sram.height]
|
||||
char_results = d.get_prediction(model_inputs)
|
||||
|
||||
|
|
|
|||
|
|
@ -22,17 +22,14 @@ class linear_regression():
|
|||
def __init__(self):
|
||||
self.model = None
|
||||
|
||||
def get_prediction(self, model_inputs):
|
||||
|
||||
train_sets = []
|
||||
test_sets = []
|
||||
def get_prediction(self, model_inputs):
|
||||
|
||||
file_path = data_dir +'/'+data_filename
|
||||
scaled_inputs = np.asarray(scale_input_datapoint(model_inputs, data_dir))
|
||||
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_dir)])
|
||||
|
||||
features, labels = get_scaled_data(file_path, data_dir)
|
||||
self.train_model(features, labels)
|
||||
scaled_pred = model_prediction(model_inputs)
|
||||
scaled_pred = self.model_prediction(scaled_inputs)
|
||||
pred = unscale_data(scaled_pred.tolist(), data_dir)
|
||||
debug.info(1,"Unscaled Prediction = {}".format(pred))
|
||||
return pred
|
||||
|
|
|
|||
Loading…
Reference in New Issue