merge in dev

This commit is contained in:
jcirimel 2020-10-07 11:54:07 -07:00
commit 4a1a7e637e
43 changed files with 1135 additions and 156 deletions

View File

@ -37,6 +37,7 @@ class layout():
self.height = None
self.bounding_box = None
self.insts = [] # Holds module/cell layout instances
self.inst_names = set() # Set of names to check for duplicates
self.objs = [] # Holds all other objects (labels, geometries, etc)
self.pin_map = {} # Holds name->pin_layout map for all pins
self.visited = [] # List of modules we have already visited
@ -214,9 +215,9 @@ class layout():
# Contacts are not really instances, so skip them
if "contact" not in mod.name:
# Check that the instance name is unique
for inst in self.insts:
debug.check(name != inst.name, "Duplicate named instance in {0}: {1}".format(self.name, name))
debug.check(name not in self.inst_names, "Duplicate named instance in {0}: {1}".format(self.name, name))
self.inst_names.add(name)
self.insts.append(geometry.instance(name, mod, offset, mirror, rotate))
debug.info(3, "adding instance {}".format(self.insts[-1]))
# This is commented out for runtime reasons

View File

@ -319,7 +319,7 @@ class stimuli():
# ngspice 27+ supports threading with "set num_threads=4" in the stimulus file or a .spiceinit
# Measurements can't be made with a raw file set in ngspice
# -r {2}timing.raw
ng_cfg = open("{}.spinit".format(OPTS.openram_temp), "w")
ng_cfg = open("{}.spiceinit".format(OPTS.openram_temp), "w")
ng_cfg.write("set num_threads={}\n".format(OPTS.num_threads))
ng_cfg.close()

View File

@ -122,7 +122,7 @@ class and4_dec(design.design):
width=pin.width(),
height=pin.height())
for pin_name in ["A", "B", "C"]:
for pin_name in ["A", "B", "C", "D"]:
pin = self.nand_inst.get_pin(pin_name)
self.add_layout_pin_rect_center(text=pin_name,
layer=pin.layer,

View File

@ -0,0 +1,26 @@
word_size = 32
num_words = 2048
write_size = 8
local_array_size = 32
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "freepdk45"
nominal_corners_only = True
route_supplies = False
check_lvsdrc = False
perimeter_pins = False
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,26 @@
word_size = 32
num_words = 4096
write_size = 8
local_array_size = 32
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "scn4m_subm"
nominal_corners_only = True
route_supplies = False
check_lvsdrc = False
perimeter_pins = False
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,24 @@
word_size = 32
num_words = 256
write_size = 8
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "scn4m_subm"
nominal_corners_only = True
route_supplies = True
check_lvsdrc = True
perimeter_pins = True
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,24 @@
word_size = 32
num_words = 512
write_size = 8
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "scn4m_subm"
nominal_corners_only = True
route_supplies = True
check_lvsdrc = True
perimeter_pins = True
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,26 @@
word_size = 32
num_words = 8192
write_size = 8
local_array_size = 32
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "scn4m_subm"
nominal_corners_only = True
route_supplies = False
check_lvsdrc = False
perimeter_pins = False
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,24 @@
word_size = 32
num_words = 1024
write_size = 8
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "scn4m_subm"
nominal_corners_only = True
route_supplies = True
check_lvsdrc = True
perimeter_pins = True
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,26 @@
word_size = 32
num_words = 2048
write_size = 8
local_array_size = 32
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "scn4m_subm"
nominal_corners_only = True
route_supplies = False
check_lvsdrc = False
perimeter_pins = False
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,26 @@
word_size = 32
num_words = 256
write_size = 8
local_array_size = 16
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "sky130"
nominal_corners_only = True
route_supplies = True
check_lvsdrc = True
perimeter_pins = True
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,26 @@
word_size = 32
num_words = 512
write_size = 8
local_array_size = 16
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "sky130"
nominal_corners_only = True
route_supplies = True
check_lvsdrc = True
perimeter_pins = True
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -0,0 +1,26 @@
word_size = 32
num_words = 1024
write_size = 8
local_array_size = 16
num_rw_ports = 1
num_r_ports = 1
num_w_ports = 0
tech_name = "sky130"
nominal_corners_only = True
route_supplies = True
check_lvsdrc = True
perimeter_pins = True
#netlist_only = True
#analytical_delay = False
output_path = "macros/sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)
output_name = "sram_1rw1r_{0}_{1}_{2}_{3}".format(word_size,
num_words,
write_size,
tech_name)

View File

@ -55,6 +55,11 @@ def parse_args():
action="store_false",
help="Disable all LVS/DRC checks",
dest="check_lvsdrc"),
optparse.make_option("-j", "--threads",
action="store",
type="int",
help="Specify the number of threads (default: 2)",
dest="num_threads"),
optparse.make_option("-v",
"--verbose",
action="count",

View File

@ -533,6 +533,9 @@ class bank(design.design):
elif self.col_addr_size == 3:
self.column_decoder = factory.create(module_type="hierarchical_predecode3x8",
height=self.dff.height)
elif self.col_addr_size == 4:
self.column_decoder = factory.create(module_type="hierarchical_predecode4x16",
height=self.dff.height)
else:
# No error checking before?
debug.error("Invalid column decoder?", -1)

View File

@ -14,7 +14,7 @@ from globals import OPTS
from tech import cell_properties
class single_level_column_mux_array(design.design):
class column_mux_array(design.design):
"""
Dynamically generated column mux array.
Array of column mux to read the bitlines through the 6T.
@ -89,7 +89,7 @@ class single_level_column_mux_array(design.design):
self.add_pin("gnd")
def add_modules(self):
self.mux = factory.create(module_type="single_level_column_mux",
self.mux = factory.create(module_type="column_mux",
bitcell_bl=self.bitcell_bl,
bitcell_br=self.bitcell_br)
self.add_mod(self.mux)

View File

@ -24,13 +24,14 @@ class hierarchical_decoder(design.design):
self.pre2x4_inst = []
self.pre3x8_inst = []
self.pre4x16_inst = []
b = factory.create(module_type="bitcell")
self.cell_height = b.height
self.num_outputs = num_outputs
self.num_inputs = math.ceil(math.log(self.num_outputs, 2))
(self.no_of_pre2x4, self.no_of_pre3x8)=self.determine_predecodes(self.num_inputs)
(self.no_of_pre2x4, self.no_of_pre3x8, self.no_of_pre4x16)=self.determine_predecodes(self.num_inputs)
self.create_netlist()
if not OPTS.netlist_only:
@ -86,25 +87,37 @@ class hierarchical_decoder(design.design):
height=self.cell_height)
self.add_mod(self.pre3_8)
self.pre4_16 = factory.create(module_type="hierarchical_predecode4x16",
height=self.cell_height)
self.add_mod(self.pre4_16)
def determine_predecodes(self, num_inputs):
""" Determines the number of 2:4 pre-decoder and 3:8 pre-decoder
needed based on the number of inputs """
"""
Determines the number of 2:4, 3:8 and 4:16 pre-decoders
needed based on the number of inputs
"""
if (num_inputs == 2):
return (1, 0)
return (1, 0, 0)
elif (num_inputs == 3):
return(0, 1)
return(0, 1, 0)
elif (num_inputs == 4):
return(2, 0)
return(2, 0, 0)
elif (num_inputs == 5):
return(1, 1)
return(1, 1, 0)
elif (num_inputs == 6):
return(3, 0)
return(3, 0, 0)
elif (num_inputs == 7):
return(2, 1)
return(2, 1, 0)
elif (num_inputs == 8):
return(1, 2)
return(1, 2, 0)
elif (num_inputs == 9):
return(0, 3)
return(0, 3, 0)
elif (num_inputs == 10):
return(0, 2, 1)
elif (num_inputs == 11):
return(0, 1, 2)
elif (num_inputs == 12):
return(0, 0, 3)
else:
debug.error("Invalid number of inputs for hierarchical decoder", -1)
@ -131,12 +144,19 @@ class hierarchical_decoder(design.design):
index = index + 1
self.predec_groups.append(lines)
for i in range(self.no_of_pre4x16):
lines = []
for j in range(16):
lines.append(index)
index = index + 1
self.predec_groups.append(lines)
def setup_layout_constants(self):
""" Calculate the overall dimensions of the hierarchical decoder """
# If we have 4 or fewer rows, the predecoder is the decoder itself
if self.num_inputs>=4:
self.total_number_of_predecoder_outputs = 4 * self.no_of_pre2x4 + 8 * self.no_of_pre3x8
self.total_number_of_predecoder_outputs = 4 * self.no_of_pre2x4 + 8 * self.no_of_pre3x8 + 16 * self.no_of_pre4x16
else:
self.total_number_of_predecoder_outputs = 0
debug.error("Not enough rows ({}) for a hierarchical decoder. Non-hierarchical not supported yet.".format(self.num_inputs),
@ -144,17 +164,20 @@ class hierarchical_decoder(design.design):
# Calculates height and width of pre-decoder,
# FIXME: Update with 4x16
if self.no_of_pre3x8 > 0 and self.no_of_pre2x4 > 0:
self.predecoder_width = max(self.pre3_8.width, self.pre2_4.width)
elif self.no_of_pre3x8 > 0:
self.predecoder_width = self.pre3_8.width
else:
self.predecoder_width = self.pre2_4.width
self.predecoder_width = 0
if self.no_of_pre2x4 > 0:
self.predecoder_width = max(self.predecoder_width, self.pre2_4.width)
if self.no_of_pre3x8 > 0:
self.predecoder_width = max(self.predecoder_width, self.pre3_8.width)
if self.no_of_pre4x16 > 0:
self.predecoder_width = max(self.predecoder_width, self.pre4_16.width)
# How much space between each predecoder
self.predecoder_spacing = 2 * self.and2.height
self.predecoder_height = self.pre2_4.height * self.no_of_pre2x4 + self.pre3_8.height * self.no_of_pre3x8 \
+ (self.no_of_pre2x4 + self.no_of_pre3x8 - 1) * self.predecoder_spacing
self.predecoder_height = self.pre2_4.height * self.no_of_pre2x4 \
+ self.pre3_8.height * self.no_of_pre3x8 \
+ self.pre4_16.height * self.no_of_pre4x16 \
+ (self.no_of_pre2x4 + self.no_of_pre3x8 + self.no_of_pre4x16 - 1) * self.predecoder_spacing
# Inputs to cells are on input layer
# Outputs from cells are on output layer
@ -192,6 +215,8 @@ class hierarchical_decoder(design.design):
min_x = min(min_x, self.pre2x4_inst[0].lx())
if self.no_of_pre3x8 > 0:
min_x = min(min_x, self.pre3x8_inst[0].lx())
if self.no_of_pre4x16 > 0:
min_x = min(min_x, self.pre4x16_inst[0].lx())
input_offset=vector(min_x - self.input_routing_width, 0)
input_bus_names = ["addr_{0}".format(i) for i in range(self.num_inputs)]
@ -232,6 +257,20 @@ class hierarchical_decoder(design.design):
self.route_input_bus(decoder_offset, input_offset)
for pre_num in range(self.no_of_pre4x16):
for i in range(4):
index = pre_num * 4 + i + self.no_of_pre3x8 * 3 + self.no_of_pre2x4 * 2
input_pos = self.input_bus["addr_{}".format(index)].center()
in_name = "in_{}".format(i)
decoder_pin = self.pre4x16_inst[pre_num].get_pin(in_name)
decoder_offset = decoder_pin.center()
input_offset = input_pos.scale(1, 0) + decoder_offset.scale(0, 1)
self.route_input_bus(decoder_offset, input_offset)
def route_input_bus(self, input_offset, output_offset):
"""
Route a vertical M2 coordinate to another
@ -267,6 +306,9 @@ class hierarchical_decoder(design.design):
for i in range(self.no_of_pre3x8):
self.create_pre3x8(i)
for i in range(self.no_of_pre4x16):
self.create_pre4x16(i)
def create_pre2x4(self, num):
""" Add a 2x4 predecoder to the left of the origin """
@ -305,6 +347,24 @@ class hierarchical_decoder(design.design):
mod=self.pre3_8))
self.connect_inst(pins)
def create_pre4x16(self, num):
""" Add 4x16 predecoder to the left of the origin and above any 3x8 decoders """
# If we had 2x4 predecodes, those are used as the lower
# decode output bits
in_index_offset = num * 4 + self.no_of_pre3x8 * 3 + self.no_of_pre2x4 * 2
out_index_offset = num * 16 + self.no_of_pre3x8 * 8 + self.no_of_pre2x4 * 4
pins = []
for input_index in range(4):
pins.append("addr_{0}".format(input_index + in_index_offset))
for output_index in range(16):
pins.append("out_{0}".format(output_index + out_index_offset))
pins.extend(["vdd", "gnd"])
self.pre4x16_inst.append(self.add_inst(name="pre4x16_{0}".format(num),
mod=self.pre4_16))
self.connect_inst(pins)
def place_pre_decoder(self):
""" Creates pre-decoder and places labels input address [A] """
@ -314,11 +374,16 @@ class hierarchical_decoder(design.design):
for i in range(self.no_of_pre3x8):
self.place_pre3x8(i)
for i in range(self.no_of_pre4x16):
self.place_pre4x16(i)
self.predecode_height = 0
if self.no_of_pre2x4 > 0:
self.predecode_height = self.pre2x4_inst[-1].uy()
if self.no_of_pre3x8 > 0:
self.predecode_height = self.pre3x8_inst[-1].uy()
if self.no_of_pre4x16 > 0:
self.predecode_height = self.pre4x16_inst[-1].uy()
def place_pre2x4(self, num):
""" Place 2x4 predecoder to the left of the origin """
@ -333,6 +398,14 @@ class hierarchical_decoder(design.design):
offset = vector(-self.pre3_8.width, height)
self.pre3x8_inst[num].place(offset)
def place_pre4x16(self, num):
""" Place 3x8 predecoder to the left of the origin and above any 2x4 decoders """
height = self.no_of_pre2x4 * (self.pre2_4.height + self.predecoder_spacing) \
+ self.no_of_pre3x8 * (self.pre3_8.height + self.predecoder_spacing) \
+ num * (self.pre4_16.height + self.predecoder_spacing)
offset = vector(-self.pre4_16.width, height)
self.pre4x16_inst[num].place(offset)
def create_row_decoder(self):
""" Create the row-decoder by placing AND2/AND3 and Inverters
and add the primary decoder output pins. """
@ -468,7 +541,17 @@ class hierarchical_decoder(design.design):
x_offset = self.pre3x8_inst[pre_num].rx() + self.output_layer_pitch
y_offset = self.pre3x8_inst[pre_num].by() + i * self.cell_height
self.route_predecode_bus_inputs(predecode_name, pin, x_offset, y_offset)
# FIXME: convert to connect_bus
for pre_num in range(self.no_of_pre4x16):
for i in range(16):
predecode_name = "predecode_{}".format(pre_num * 16 + i + self.no_of_pre3x8 * 8 + self.no_of_pre2x4 * 4)
out_name = "out_{}".format(i)
pin = self.pre4x16_inst[pre_num].get_pin(out_name)
x_offset = self.pre4x16_inst[pre_num].rx() + self.output_layer_pitch
y_offset = self.pre4x16_inst[pre_num].by() + i * self.cell_height
self.route_predecode_bus_inputs(predecode_name, pin, x_offset, y_offset)
def route_bus_to_decoder(self):
"""
Use the self.predec_groups to determine the connections to the decoder AND gates.
@ -559,7 +642,7 @@ class hierarchical_decoder(design.design):
start_layer=supply_pin.layer)
# Copy the pins from the predecoders
for pre in self.pre2x4_inst + self.pre3x8_inst:
for pre in self.pre2x4_inst + self.pre3x8_inst + self.pre4x16_inst:
for pin_name in ["vdd", "gnd"]:
self.copy_layout_pin(pre, pin_name)

View File

@ -45,7 +45,7 @@ class hierarchical_predecode(design.design):
def add_modules(self):
""" Add the INV and AND gate modules """
debug.check(self.number_of_inputs < 4,
debug.check(self.number_of_inputs <= 4,
"Invalid number of predecode inputs: {}".format(self.number_of_inputs))
if self.column_decoder:
@ -204,6 +204,7 @@ class hierarchical_predecode(design.design):
pin = top_and_gate.get_pin("D")
else:
debug.error("Too many inputs for predecoder.", -1)
y_offset = pin.cy()
in_pin = "in_{}".format(num)
a_pin = "A_{}".format(num)
@ -288,10 +289,14 @@ class hierarchical_predecode(design.design):
if self.number_of_inputs == 2:
gate_lst = ["A", "B"]
else:
elif self.number_of_inputs == 3:
gate_lst = ["A", "B", "C"]
elif self.number_of_inputs == 4:
gate_lst = ["A", "B", "C", "D"]
else:
debug.error("Invalid number of nand inputs for decode", -1)
# this will connect pins A,B or A,B,C
# this will connect pins A,B or A,B,C or A,B,C,D
for rail_pin, gate_pin in zip(index_lst, gate_lst):
pin = self.and_inst[k].get_pin(gate_pin)
pin_pos = pin.center()

View File

@ -32,14 +32,14 @@ class hierarchical_predecode4x16(hierarchical_predecode):
["in_0", "inbar_1", "in_2", "inbar_3", "out_5", "vdd", "gnd"],
["inbar_0", "in_1", "in_2", "inbar_3", "out_6", "vdd", "gnd"],
["in_0", "in_1", "in_2", "inbar_3", "out_7", "vdd", "gnd"],
["inbar_0", "inbar_1", "inbar_2", "in_3", "out_0", "vdd", "gnd"],
["in_0", "inbar_1", "inbar_2", "in_3", "out_1", "vdd", "gnd"],
["inbar_0", "in_1", "inbar_2", "in_3", "out_2", "vdd", "gnd"],
["in_0", "in_1", "inbar_2", "in_3", "out_3", "vdd", "gnd"],
["inbar_0", "inbar_1", "in_2", "in_3", "out_4", "vdd", "gnd"],
["in_0", "inbar_1", "in_2", "in_3", "out_5", "vdd", "gnd"],
["inbar_0", "in_1", "in_2", "in_3", "out_6", "vdd", "gnd"],
["in_0", "in_1", "in_2", "in_3", "out_7", "vdd", "gnd"] ]
["inbar_0", "inbar_1", "inbar_2", "in_3", "out_8", "vdd", "gnd"],
["in_0", "inbar_1", "inbar_2", "in_3", "out_9", "vdd", "gnd"],
["inbar_0", "in_1", "inbar_2", "in_3", "out_10", "vdd", "gnd"],
["in_0", "in_1", "inbar_2", "in_3", "out_11", "vdd", "gnd"],
["inbar_0", "inbar_1", "in_2", "in_3", "out_12", "vdd", "gnd"],
["in_0", "inbar_1", "in_2", "in_3", "out_13", "vdd", "gnd"],
["inbar_0", "in_1", "in_2", "in_3", "out_14", "vdd", "gnd"],
["in_0", "in_1", "in_2", "in_3", "out_15", "vdd", "gnd"] ]
self.create_and_array(connections)

View File

@ -79,9 +79,12 @@ class port_address(design.design):
self.copy_power_pins(inst, "vdd")
self.copy_power_pins(inst, "gnd")
rbl_vdd_pin = self.rbl_driver_inst.get_pin("vdd")
self.add_power_pin("vdd", rbl_vdd_pin.lc())
for rbl_vdd_pin in self.rbl_driver_inst.get_pins("vdd"):
if OPTS.tech_name == "sky130":
self.add_power_pin("vdd", rbl_vdd_pin.center())
else:
self.add_power_pin("vdd", rbl_vdd_pin.lc())
def route_pins(self):
for row in range(self.addr_size):
decoder_name = "addr_{}".format(row)

View File

@ -290,8 +290,10 @@ class replica_column(bitcell_base_array):
bitcell_pins = []
for port in self.all_ports:
bitcell_pins.extend([x for x in self.get_bitline_names(port) if x.endswith("_{0}".format(col))])
bitcell_pins.append("vdd")
bitcell_pins.append("gnd")
if len(self.edge_cell.get_pins("vdd")) > 0:
bitcell_pins.append("vdd")
if len(self.edge_cell.get_pins("gnd")) > 0:
bitcell_pins.append("gnd")
return bitcell_pins

View File

@ -9,6 +9,7 @@ import optparse
import getpass
import os
class options(optparse.Values):
"""
Class for holding all of the OpenRAM options. All
@ -146,7 +147,7 @@ class options(optparse.Values):
bitcell_array = "bitcell_array"
bitcell = "bitcell"
buf_dec = "pbuf"
column_mux_array = "single_level_column_mux_array"
column_mux_array = "column_mux_array"
control_logic = "control_logic"
decoder = "hierarchical_decoder"
delay_chain = "delay_chain"
@ -155,7 +156,7 @@ class options(optparse.Values):
inv_dec = "pinv"
nand2_dec = "pnand2"
nand3_dec = "pnand3"
nand4_dec = "pnand4" # Not available right now
nand4_dec = "pnand4"
precharge_array = "precharge_array"
ptx = "ptx"
replica_bitline = "replica_bitline"

View File

@ -10,14 +10,13 @@ import debug
from tech import drc, layer
from vector import vector
from sram_factory import factory
import logical_effort
from globals import OPTS
class single_level_column_mux(pgate.pgate):
class column_mux(pgate.pgate):
"""
This module implements the columnmux bitline cell used in the design.
Creates a single columnmux cell with the given integer size relative
Creates a single column mux cell with the given integer size relative
to minimum size. Default is 8x. Per Samira and Hodges-Jackson book:
Column-mux transistors driven by the decoder must be sized
for optimal speed

165
compiler/pgates/pand4.py Normal file
View File

@ -0,0 +1,165 @@
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import debug
from vector import vector
import pgate
from sram_factory import factory
class pand4(pgate.pgate):
"""
This is a simple buffer used for driving loads.
"""
def __init__(self, name, size=1, height=None, vertical=False, add_wells=True):
debug.info(1, "Creating pand4 {}".format(name))
self.add_comment("size: {}".format(size))
self.vertical = vertical
self.size = size
# Creates the netlist and layout
super().__init__(name, height, add_wells)
def create_netlist(self):
self.add_pins()
self.create_modules()
self.create_insts()
def create_modules(self):
# Shield the cap, but have at least a stage effort of 4
self.nand = factory.create(module_type="pnand4",
height=self.height,
add_wells=self.vertical)
# Add the well tap to the inverter because when stacked
# vertically it is sometimes narrower
self.inv = factory.create(module_type="pdriver",
size_list=[self.size],
height=self.height,
add_wells=self.add_wells)
self.add_mod(self.nand)
self.add_mod(self.inv)
def create_layout(self):
if self.vertical:
self.height = 2 * self.nand.height
self.width = max(self.nand.width, self.inv.width)
else:
self.width = self.nand.width + self.inv.width
self.place_insts()
self.add_wires()
self.add_layout_pins()
self.route_supply_rails()
self.add_boundary()
self.DRC_LVS()
def add_pins(self):
self.add_pin("A", "INPUT")
self.add_pin("B", "INPUT")
self.add_pin("C", "INPUT")
self.add_pin("D", "INPUT")
self.add_pin("Z", "OUTPUT")
self.add_pin("vdd", "POWER")
self.add_pin("gnd", "GROUND")
def create_insts(self):
self.nand_inst = self.add_inst(name="pand4_nand",
mod=self.nand)
self.connect_inst(["A", "B", "C", "D", "zb_int", "vdd", "gnd"])
self.inv_inst = self.add_inst(name="pand4_inv",
mod=self.inv)
self.connect_inst(["zb_int", "Z", "vdd", "gnd"])
def place_insts(self):
# Add NAND to the right
self.nand_inst.place(offset=vector(0, 0))
if self.vertical:
# Add INV above
self.inv_inst.place(offset=vector(self.inv.width,
2 * self.nand.height),
mirror="XY")
else:
# Add INV to the right
self.inv_inst.place(offset=vector(self.nand_inst.rx(), 0))
def route_supply_rails(self):
""" Add vdd/gnd rails to the top, (middle), and bottom. """
self.add_layout_pin_rect_center(text="gnd",
layer=self.route_layer,
offset=vector(0.5 * self.width, 0),
width=self.width)
# Second gnd of the inverter gate
if self.vertical:
self.add_layout_pin_rect_center(text="gnd",
layer=self.route_layer,
offset=vector(0.5 * self.width, self.height),
width=self.width)
if self.vertical:
# Shared between two gates
y_offset = 0.5 * self.height
else:
y_offset = self.height
self.add_layout_pin_rect_center(text="vdd",
layer=self.route_layer,
offset=vector(0.5 * self.width, y_offset),
width=self.width)
def add_wires(self):
# nand Z to inv A
z1_pin = self.nand_inst.get_pin("Z")
a2_pin = self.inv_inst.get_pin("A")
if self.vertical:
route_layer = "m2"
self.add_via_stack_center(offset=z1_pin.center(),
from_layer=z1_pin.layer,
to_layer=route_layer)
self.add_zjog(route_layer,
z1_pin.uc(),
a2_pin.bc(),
"V")
self.add_via_stack_center(offset=a2_pin.center(),
from_layer=a2_pin.layer,
to_layer=route_layer)
else:
route_layer = self.route_layer
mid1_point = vector(z1_pin.cx(), a2_pin.cy())
self.add_path(route_layer,
[z1_pin.center(), mid1_point, a2_pin.center()])
def add_layout_pins(self):
pin = self.inv_inst.get_pin("Z")
self.add_layout_pin_rect_center(text="Z",
layer=pin.layer,
offset=pin.center(),
width=pin.width(),
height=pin.height())
for pin_name in ["A", "B", "C", "D"]:
pin = self.nand_inst.get_pin(pin_name)
self.add_layout_pin_rect_center(text=pin_name,
layer=pin.layer,
offset=pin.center(),
width=pin.width(),
height=pin.height())
def analytical_delay(self, corner, slew, load=0.0):
""" Calculate the analytical delay of DFF-> INV -> INV """
nand_delay = self.nand.analytical_delay(corner,
slew=slew,
load=self.inv.input_load())
inv_delay = self.inv.analytical_delay(corner,
slew=nand_delay.slew,
load=load)
return nand_delay + inv_delay

View File

@ -133,7 +133,6 @@ class pnand3(pgate.pgate):
# This is the extra space needed to ensure DRC rules
# to the active contacts
nmos = factory.create(module_type="ptx", tx_type="nmos")
extra_contact_space = max(-nmos.get_pin("D").by(), 0)
def create_ptx(self):
"""

371
compiler/pgates/pnand4.py Normal file
View File

@ -0,0 +1,371 @@
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import pgate
import debug
from tech import drc, parameter, spice
from vector import vector
import logical_effort
from sram_factory import factory
from globals import OPTS
import contact
class pnand4(pgate.pgate):
"""
This module generates gds of a parametrically sized 4-input nand.
This model use ptx to generate a 4-input nand within a cetrain height.
"""
def __init__(self, name, size=1, height=None, add_wells=True):
""" Creates a cell for a simple 3 input nand """
debug.info(2,
"creating pnand4 structure {0} with size of {1}".format(name,
size))
self.add_comment("size: {}".format(size))
# We have trouble pitch matching a 3x sizes to the bitcell...
# If we relax this, we could size this better.
self.size = size
self.nmos_size = 2 * size
self.pmos_size = parameter["beta"] * size
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
# FIXME: Allow these to be sized
debug.check(size == 1,
"Size 1 pnand4 is only supported now.")
self.tx_mults = 1
if OPTS.tech_name == "sky130":
self.nmos_width = self.nearest_bin("nmos", self.nmos_width)
self.pmos_width = self.nearest_bin("pmos", self.pmos_width)
# Creates the netlist and layout
super().__init__(name, height, add_wells)
def add_pins(self):
""" Adds pins for spice netlist """
pin_list = ["A", "B", "C", "D", "Z", "vdd", "gnd"]
dir_list = ["INPUT", "INPUT", "INPUT", "INPUT", "OUTPUT", "POWER", "GROUND"]
self.add_pin_list(pin_list, dir_list)
def create_netlist(self):
self.add_pins()
self.add_ptx()
self.create_ptx()
def create_layout(self):
""" Calls all functions related to the generation of the layout """
self.setup_layout_constants()
self.place_ptx()
if self.add_wells:
self.add_well_contacts()
self.route_inputs()
self.route_output()
self.determine_width()
self.route_supply_rails()
self.connect_rails()
self.extend_wells()
self.add_boundary()
def add_ptx(self):
""" Create the PMOS and NMOS transistors. """
self.nmos_center = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact="active",
add_drain_contact="active")
self.add_mod(self.nmos_center)
self.nmos_right = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact="active",
add_drain_contact=self.route_layer)
self.add_mod(self.nmos_right)
self.nmos_left = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact=self.route_layer,
add_drain_contact="active")
self.add_mod(self.nmos_left)
self.pmos_left = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer)
self.add_mod(self.pmos_left)
self.pmos_center = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer)
self.add_mod(self.pmos_center)
self.pmos_right = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer)
self.add_mod(self.pmos_right)
def setup_layout_constants(self):
""" Pre-compute some handy layout parameters. """
# Compute the overlap of the source and drain pins
self.ptx_offset = self.pmos_left.get_pin("D").center() - self.pmos_left.get_pin("S").center()
# This is the extra space needed to ensure DRC rules
# to the active contacts
nmos = factory.create(module_type="ptx", tx_type="nmos")
def create_ptx(self):
"""
Create the PMOS and NMOS in the netlist.
"""
self.pmos1_inst = self.add_inst(name="pnand4_pmos1",
mod=self.pmos_left)
self.connect_inst(["vdd", "A", "Z", "vdd"])
self.pmos2_inst = self.add_inst(name="pnand4_pmos2",
mod=self.pmos_center)
self.connect_inst(["Z", "B", "vdd", "vdd"])
self.pmos3_inst = self.add_inst(name="pnand4_pmos3",
mod=self.pmos_center)
self.connect_inst(["Z", "C", "vdd", "vdd"])
self.pmos4_inst = self.add_inst(name="pnand4_pmos4",
mod=self.pmos_right)
self.connect_inst(["Z", "D", "vdd", "vdd"])
self.nmos1_inst = self.add_inst(name="pnand4_nmos1",
mod=self.nmos_left)
self.connect_inst(["Z", "D", "net1", "gnd"])
self.nmos2_inst = self.add_inst(name="pnand4_nmos2",
mod=self.nmos_center)
self.connect_inst(["net1", "C", "net2", "gnd"])
self.nmos3_inst = self.add_inst(name="pnand4_nmos3",
mod=self.nmos_center)
self.connect_inst(["net2", "B", "net3", "gnd"])
self.nmos4_inst = self.add_inst(name="pnand4_nmos4",
mod=self.nmos_right)
self.connect_inst(["net3", "A", "gnd", "gnd"])
def place_ptx(self):
"""
Place the PMOS and NMOS in the layout at the upper-most
and lowest position to provide maximum routing in channel
"""
pmos1_pos = vector(self.pmos_left.active_offset.x,
self.height - self.pmos_left.active_height - self.top_bottom_space)
self.pmos1_inst.place(pmos1_pos)
pmos2_pos = pmos1_pos + self.ptx_offset
self.pmos2_inst.place(pmos2_pos)
pmos3_pos = pmos2_pos + self.ptx_offset
self.pmos3_inst.place(pmos3_pos)
self.pmos4_pos = pmos3_pos + self.ptx_offset
self.pmos4_inst.place(self.pmos4_pos)
nmos1_pos = vector(self.pmos_left.active_offset.x,
self.top_bottom_space)
self.nmos1_inst.place(nmos1_pos)
nmos2_pos = nmos1_pos + self.ptx_offset
self.nmos2_inst.place(nmos2_pos)
nmos3_pos = nmos2_pos + self.ptx_offset
self.nmos3_inst.place(nmos3_pos)
self.nmos4_pos = nmos3_pos + self.ptx_offset
self.nmos4_inst.place(self.nmos4_pos)
def add_well_contacts(self):
""" Add n/p well taps to the layout and connect to supplies """
self.add_nwell_contact(self.pmos_right,
self.pmos4_pos + vector(self.m1_pitch, 0))
self.add_pwell_contact(self.nmos_right,
self.nmos4_pos + vector(self.m1_pitch, 0))
def connect_rails(self):
""" Connect the nmos and pmos to its respective power rails """
self.connect_pin_to_rail(self.nmos1_inst, "S", "gnd")
self.connect_pin_to_rail(self.pmos1_inst, "S", "vdd")
self.connect_pin_to_rail(self.pmos2_inst, "D", "vdd")
self.connect_pin_to_rail(self.pmos4_inst, "D", "vdd")
def route_inputs(self):
""" Route the A and B and C inputs """
# We can use this pitch because the contacts and overlap won't be adjacent
pmos_drain_bottom = self.pmos1_inst.get_pin("D").by()
self.output_yoffset = pmos_drain_bottom - 0.5 * self.route_layer_width - self.route_layer_space
bottom_pin = self.nmos1_inst.get_pin("D")
# active contact metal to poly contact metal spacing
active_contact_to_poly_contact = bottom_pin.uy() + self.m1_space + 0.5 * contact.poly_contact.second_layer_height
# active diffusion to poly contact spacing
# doesn't use nmos uy because that is calculated using offset + poly height
active_top = self.nmos1_inst.by() + self.nmos1_inst.mod.active_height
active_to_poly_contact = active_top + self.poly_to_active + 0.5 * contact.poly_contact.first_layer_height
active_to_poly_contact2 = active_top + self.poly_contact_to_gate + 0.5 * self.route_layer_width
self.inputA_yoffset = max(active_contact_to_poly_contact,
active_to_poly_contact,
active_to_poly_contact2)
apin = self.route_input_gate(self.pmos1_inst,
self.nmos1_inst,
self.inputA_yoffset,
"A",
position="left")
self.inputB_yoffset = self.inputA_yoffset + self.m1_pitch
bpin = self.route_input_gate(self.pmos2_inst,
self.nmos2_inst,
self.inputB_yoffset,
"B",
position="center")
self.inputC_yoffset = self.inputB_yoffset + self.m1_pitch
cpin = self.route_input_gate(self.pmos3_inst,
self.nmos3_inst,
self.inputC_yoffset,
"C",
position="right")
self.inputD_yoffset = self.inputC_yoffset + self.m1_pitch
dpin = self.route_input_gate(self.pmos4_inst,
self.nmos4_inst,
self.inputD_yoffset,
"D",
position="right")
if OPTS.tech_name == "sky130":
self.add_enclosure([apin, bpin, cpin, dpin], "npc", drc("npc_enclose_poly"))
def route_output(self):
""" Route the Z output """
# PMOS1 drain
pmos1_pin = self.pmos1_inst.get_pin("D")
# PMOS3 drain
pmos3_pin = self.pmos3_inst.get_pin("D")
# NMOS3 drain
nmos4_pin = self.nmos4_inst.get_pin("D")
out_offset = vector(nmos4_pin.cx() + self.route_layer_pitch,
self.output_yoffset)
# Go up to metal2 for ease on all output pins
# self.add_via_center(layers=self.m1_stack,
# offset=pmos1_pin.center(),
# directions=("V", "V"))
# self.add_via_center(layers=self.m1_stack,
# offset=pmos3_pin.center(),
# directions=("V", "V"))
# self.add_via_center(layers=self.m1_stack,
# offset=nmos3_pin.center(),
# directions=("V", "V"))
# # Route in the A input track (top track)
# mid_offset = vector(nmos3_pin.center().x, self.inputA_yoffset)
# self.add_path("m1", [pmos1_pin.center(), mid_offset, nmos3_pin.uc()])
# This extends the output to the edge of the cell
# self.add_via_center(layers=self.m1_stack,
# offset=mid_offset)
top_left_pin_offset = pmos1_pin.center()
top_right_pin_offset = pmos3_pin.center()
bottom_pin_offset = nmos4_pin.center()
# PMOS1 to output
self.add_path(self.route_layer, [top_left_pin_offset,
vector(top_left_pin_offset.x, out_offset.y),
out_offset])
# PMOS4 to output
self.add_path(self.route_layer, [top_right_pin_offset,
vector(top_right_pin_offset.x, out_offset.y),
out_offset])
# NMOS4 to output
mid2_offset = vector(out_offset.x, bottom_pin_offset.y)
self.add_path(self.route_layer,
[bottom_pin_offset, mid2_offset],
width=nmos4_pin.height())
mid3_offset = vector(out_offset.x, nmos4_pin.by())
self.add_path(self.route_layer, [mid3_offset, out_offset])
self.add_layout_pin_rect_center(text="Z",
layer=self.route_layer,
offset=out_offset)
def analytical_power(self, corner, load):
"""Returns dynamic and leakage power. Results in nW"""
c_eff = self.calculate_effective_capacitance(load)
freq = spice["default_event_frequency"]
power_dyn = self.calc_dynamic_power(corner, c_eff, freq)
power_leak = spice["nand4_leakage"]
total_power = self.return_power(power_dyn, power_leak)
return total_power
def calculate_effective_capacitance(self, load):
"""Computes effective capacitance. Results in fF"""
c_load = load
# In fF
c_para = spice["min_tx_drain_c"] * (self.nmos_size / parameter["min_tx_size"])
transition_prob = 0.1094
return transition_prob * (c_load + c_para)
def input_load(self):
"""Return the relative input capacitance of a single input"""
return self.nmos_size + self.pmos_size
def get_stage_effort(self, cout, inp_is_rise=True):
"""
Returns an object representing the parameters for delay in tau units.
Optional is_rise refers to the input direction rise/fall.
Input inverted by this stage.
"""
parasitic_delay = 3
return logical_effort.logical_effort(self.name,
self.size,
self.input_load(),
cout,
parasitic_delay,
not inp_is_rise)
def build_graph(self, graph, inst_name, port_nets):
"""
Adds edges based on inputs/outputs.
Overrides base class function.
"""
self.add_graph_edges(graph, port_nets)

View File

@ -79,13 +79,6 @@ class sram():
""" Save all the output files while reporting time to do it as well. """
if not OPTS.netlist_only:
# Create a LEF physical model
start_time = datetime.datetime.now()
lefname = OPTS.output_path + self.s.name + ".lef"
debug.print_raw("LEF: Writing to {0}".format(lefname))
self.lef_write(lefname)
print_time("LEF", datetime.datetime.now(), start_time)
# Write the layout
start_time = datetime.datetime.now()
gdsname = OPTS.output_path + self.s.name + ".gds"
@ -93,6 +86,13 @@ class sram():
self.gds_write(gdsname)
print_time("GDS", datetime.datetime.now(), start_time)
# Create a LEF physical model
start_time = datetime.datetime.now()
lefname = OPTS.output_path + self.s.name + ".lef"
debug.print_raw("LEF: Writing to {0}".format(lefname))
self.lef_write(lefname)
print_time("LEF", datetime.datetime.now(), start_time)
# Save the spice file
start_time = datetime.datetime.now()
spname = OPTS.output_path + self.s.name + ".sp"

View File

@ -6,15 +6,15 @@
# All rights reserved.
#
import debug
from math import log,sqrt,ceil
from importlib import reload
from math import log, sqrt, ceil
from globals import OPTS
from sram_factory import factory
class sram_config:
""" This is a structure that is used to hold the SRAM configuration options. """
def __init__(self, word_size, num_words, write_size = None, num_banks=1, words_per_row=None, num_spare_rows=0, num_spare_cols=0):
def __init__(self, word_size, num_words, write_size=None, num_banks=1, words_per_row=None, num_spare_rows=0, num_spare_cols=0):
self.word_size = word_size
self.num_words = num_words
self.write_size = write_size
@ -25,7 +25,7 @@ class sram_config:
# This will get over-written when we determine the organization
self.words_per_row = words_per_row
self.compute_sizes()
self.compute_sizes()
def set_local_config(self, module):
""" Copy all of the member variables to the given module for convenience """
@ -34,31 +34,31 @@ class sram_config:
# Copy all the variables to the local module
for member in members:
setattr(module,member,getattr(self,member))
setattr(module, member, getattr(self, member))
def compute_sizes(self):
""" Computes the organization of the memory using bitcell size by trying to make it square."""
bitcell = factory.create(module_type="bitcell")
debug.check(self.num_banks in [1,2,4], "Valid number of banks are 1 , 2 and 4.")
debug.check(self.num_banks in [1, 2, 4],
"Valid number of banks are 1 , 2 and 4.")
self.num_words_per_bank = self.num_words/self.num_banks
self.num_bits_per_bank = self.word_size*self.num_words_per_bank
self.num_words_per_bank = self.num_words / self.num_banks
self.num_bits_per_bank = self.word_size * self.num_words_per_bank
# If this was hard coded, don't dynamically compute it!
if not self.words_per_row:
# Compute the area of the bitcells and estimate a square bank (excluding auxiliary circuitry)
self.bank_area = bitcell.width*bitcell.height*self.num_bits_per_bank
self.bank_area = bitcell.width * bitcell.height * self.num_bits_per_bank
self.bank_side_length = sqrt(self.bank_area)
# Estimate the words per row given the height of the bitcell and the square side length
self.tentative_num_cols = int(self.bank_side_length/bitcell.width)
self.tentative_num_cols = int(self.bank_side_length / bitcell.width)
self.words_per_row = self.estimate_words_per_row(self.tentative_num_cols, self.word_size)
# Estimate the number of rows given the tentative words per row
self.tentative_num_rows = self.num_bits_per_bank / (self.words_per_row*self.word_size)
self.tentative_num_rows = self.num_bits_per_bank / (self.words_per_row * self.word_size)
self.words_per_row = self.amend_words_per_row(self.tentative_num_rows, self.words_per_row)
self.recompute_sizes()
@ -70,57 +70,57 @@ class sram_config:
SRAM for testing.
"""
debug.info(1,"Recomputing with words per row: {}".format(self.words_per_row))
debug.info(1, "Recomputing with words per row: {}".format(self.words_per_row))
# If the banks changed
self.num_words_per_bank = self.num_words/self.num_banks
self.num_bits_per_bank = self.word_size*self.num_words_per_bank
self.num_words_per_bank = self.num_words / self.num_banks
self.num_bits_per_bank = self.word_size * self.num_words_per_bank
# Fix the number of columns and rows
self.num_cols = int(self.words_per_row*self.word_size)
self.num_rows_temp = int(self.num_words_per_bank/self.words_per_row)
self.num_cols = int(self.words_per_row * self.word_size)
self.num_rows_temp = int(self.num_words_per_bank / self.words_per_row)
self.num_rows = self.num_rows_temp + self.num_spare_rows
debug.info(1,"Rows: {} Cols: {}".format(self.num_rows_temp,self.num_cols))
debug.info(1, "Rows: {} Cols: {}".format(self.num_rows_temp, self.num_cols))
# Compute the address and bank sizes
self.row_addr_size = ceil(log(self.num_rows, 2))
self.col_addr_size = int(log(self.words_per_row, 2))
self.bank_addr_size = self.col_addr_size + self.row_addr_size
self.addr_size = self.bank_addr_size + int(log(self.num_banks, 2))
debug.info(1,"Row addr size: {}".format(self.row_addr_size)
debug.info(1, "Row addr size: {}".format(self.row_addr_size)
+ " Col addr size: {}".format(self.col_addr_size)
+ " Bank addr size: {}".format(self.bank_addr_size))
def estimate_words_per_row(self,tentative_num_cols, word_size):
def estimate_words_per_row(self, tentative_num_cols, word_size):
"""
This provides a heuristic rounded estimate for the number of words
per row.
"""
tentative_column_ways = tentative_num_cols / word_size
column_mux_sizes = [1, 2, 4, 8, 16]
# If we are double, we may want a larger column mux
if tentative_column_ways > 2 * column_mux_sizes[-1]:
debug.warning("Extremely large number of columns for 16-way maximum column mux.")
if tentative_num_cols < 1.5*word_size:
return 1
elif tentative_num_cols < 3*word_size:
return 2
elif tentative_num_cols < 6*word_size:
return 4
else:
if tentative_num_cols > 16*word_size:
debug.warning("Reaching column mux size limit. Consider increasing above 8-way.")
return 8
closest_way = min(column_mux_sizes, key=lambda x: abs(x - tentative_column_ways))
def amend_words_per_row(self,tentative_num_rows, words_per_row):
return closest_way
def amend_words_per_row(self, tentative_num_rows, words_per_row):
"""
This picks the number of words per row more accurately by limiting
it to a minimum and maximum.
"""
# Recompute the words per row given a hard max
if(not OPTS.is_unit_test and tentative_num_rows > 512):
debug.check(tentative_num_rows*words_per_row <= 2048, "Number of words exceeds 2048")
return int(words_per_row*tentative_num_rows/512)
debug.check(tentative_num_rows * words_per_row <= 4096,
"Number of words exceeds 2048")
return int(words_per_row * tentative_num_rows / 512)
# Recompute the words per row given a hard min
if(not OPTS.is_unit_test and tentative_num_rows < 16):
debug.check(tentative_num_rows*words_per_row >= 16, "Minimum number of rows is 16, but given {0}".format(tentative_num_rows))
return int(words_per_row*tentative_num_rows/16)
if (not OPTS.is_unit_test and tentative_num_rows < 16):
debug.check(tentative_num_rows * words_per_row >= 16,
"Minimum number of rows is 16, but given {0}".format(tentative_num_rows))
return int(words_per_row * tentative_num_rows / 16)
return words_per_row

View File

@ -8,7 +8,7 @@
#
import unittest
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
@ -16,7 +16,7 @@ from sram_factory import factory
import debug
@unittest.skip("SKIPPING 04_and4_dec_test")
# @unittest.skip("SKIPPING 04_and4_dec_test")
class and4_dec_test(openram_test):
def runTest(self):

View File

@ -8,7 +8,7 @@
#
import unittest
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
@ -16,7 +16,7 @@ from sram_factory import factory
import debug
class single_level_column_mux_1rw_1r_test(openram_test):
class column_mux_1rw_1r_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
@ -28,11 +28,11 @@ class single_level_column_mux_1rw_1r_test(openram_test):
globals.setup_bitcell()
debug.info(2, "Checking column mux port 0")
tx = factory.create(module_type="single_level_column_mux", tx_size=8, bitcell_bl="bl0", bitcell_br="br0")
tx = factory.create(module_type="column_mux", tx_size=8, bitcell_bl="bl0", bitcell_br="br0")
self.local_check(tx)
debug.info(2, "Checking column mux port 1")
tx = factory.create(module_type="single_level_column_mux", tx_size=8, bitcell_bl="bl1", bitcell_br="br1")
tx = factory.create(module_type="column_mux", tx_size=8, bitcell_bl="bl1", bitcell_br="br1")
self.local_check(tx)
globals.end_openram()

View File

@ -8,16 +8,15 @@
#
import unittest
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
#@unittest.skip("SKIPPING 04_driver_test")
class single_level_column_mux_pbitcell_test(openram_test):
class column_mux_pbitcell_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
@ -31,12 +30,12 @@ class single_level_column_mux_pbitcell_test(openram_test):
factory.reset()
debug.info(2, "Checking column mux for pbitcell (innermost connections)")
tx = factory.create(module_type="single_level_column_mux", tx_size=8, bitcell_bl="bl0", bitcell_br="br0")
tx = factory.create(module_type="column_mux", tx_size=8, bitcell_bl="bl0", bitcell_br="br0")
self.local_check(tx)
factory.reset()
debug.info(2, "Checking column mux for pbitcell (outermost connections)")
tx = factory.create(module_type="single_level_column_mux",tx_size=8, bitcell_bl="bl2", bitcell_br="br2")
tx = factory.create(module_type="column_mux",tx_size=8, bitcell_bl="bl2", bitcell_br="br2")
self.local_check(tx)
globals.end_openram()

View File

@ -8,7 +8,7 @@
#
import unittest
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
@ -16,7 +16,7 @@ from sram_factory import factory
import debug
class single_level_column_mux_test(openram_test):
class column_mux_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
@ -24,7 +24,7 @@ class single_level_column_mux_test(openram_test):
# check single level column mux in single port
debug.info(2, "Checking column mux")
tx = factory.create(module_type="single_level_column_mux", tx_size=8)
tx = factory.create(module_type="column_mux", tx_size=8)
self.local_check(tx)
globals.end_openram()

View File

@ -8,13 +8,13 @@
#
import unittest
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
class pand2_test(openram_test):
def runTest(self):

View File

@ -8,13 +8,13 @@
#
import unittest
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
class pand3_test(openram_test):
def runTest(self):

39
compiler/tests/04_pand4_test.py Executable file
View File

@ -0,0 +1,39 @@
#!/usr/bin/env python3
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import unittest
from testutils import *
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
import debug
class pand4_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
globals.init_openram(config_file)
global verify
import verify
import pand4
debug.info(2, "Testing pand4 gate 4x")
a = pand4.pand4(name="pand4x4", size=4)
self.local_check(a)
globals.end_openram()
# instantiate a copdsay of the class to actually run the test
if __name__ == "__main__":
(OPTS, args) = globals.parse_args()
del sys.argv[1:]
header(__file__, OPTS.tech_name)
unittest.main(testRunner=debugTestRunner())

View File

@ -0,0 +1,37 @@
#!/usr/bin/env python3
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import unittest
from testutils import *
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
class pnand4_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
globals.init_openram(config_file)
debug.info(2, "Checking 4-input nand gate")
tx = factory.create(module_type="pnand4", size=1)
self.local_check(tx)
globals.end_openram()
# run the test from the command line
if __name__ == "__main__":
(OPTS, args) = globals.parse_args()
del sys.argv[1:]
header(__file__, OPTS.tech_name)
unittest.main(testRunner=debugTestRunner())

View File

@ -8,33 +8,40 @@
#
import unittest
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
class hierarchical_decoder_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
globals.init_openram(config_file)
# Use the 2 port cell since it is usually bigger/easier
OPTS.bitcell = "bitcell_1rw_1r"
OPTS.num_rw_ports = 1
OPTS.num_r_ports = 1
OPTS.num_w_ports = 0
# Checks 2x4 and 2-input NAND decoder
#debug.info(1, "Testing 16 row sample for hierarchical_decoder")
#a = factory.create(module_type="hierarchical_decoder", num_outputs=16)
#self.local_check(a)
debug.info(1, "Testing 16 row sample for hierarchical_decoder")
a = factory.create(module_type="hierarchical_decoder", num_outputs=16)
self.local_check(a)
# Checks 2x4 and 2-input NAND decoder with non-power-of-two
#debug.info(1, "Testing 17 row sample for hierarchical_decoder")
#a = factory.create(module_type="hierarchical_decoder", num_outputs=17)
#self.local_check(a)
debug.info(1, "Testing 17 row sample for hierarchical_decoder")
a = factory.create(module_type="hierarchical_decoder", num_outputs=17)
self.local_check(a)
# Checks 2x4 with 3x8 and 2-input NAND decoder
#debug.info(1, "Testing 32 row sample for hierarchical_decoder")
#a = factory.create(module_type="hierarchical_decoder", num_outputs=32)
#self.local_check(a)
debug.info(1, "Testing 32 row sample for hierarchical_decoder")
a = factory.create(module_type="hierarchical_decoder", num_outputs=32)
self.local_check(a)
# Checks 3 x 2x4 and 3-input NAND decoder
debug.info(1, "Testing 64 row sample for hierarchical_decoder")
@ -42,18 +49,20 @@ class hierarchical_decoder_test(openram_test):
self.local_check(a)
# Checks 2x4 and 2 x 3x8 and 3-input NAND with non-power-of-two
#debug.info(1, "Testing 132 row sample for hierarchical_decoder")
#a = factory.create(module_type="hierarchical_decoder", num_outputs=132)
#self.local_check(a)
# Checks 3 x 3x8 and 3-input NAND decoder
#debug.info(1, "Testing 512 row sample for hierarchical_decoder")
#a = factory.create(module_type="hierarchical_decoder", num_outputs=512)
#self.local_check(a)
debug.info(1, "Testing 132 row sample for hierarchical_decoder")
a = factory.create(module_type="hierarchical_decoder", num_outputs=132)
self.local_check(a)
# Checks 3 x 3x8 and 3-input NAND decoder
debug.info(1, "Testing 512 row sample for hierarchical_decoder")
a = factory.create(module_type="hierarchical_decoder", num_outputs=512)
self.local_check(a)
# Checks 3 x 4x16 and 4-input NAND decoder
debug.info(1, "Testing 4096 row sample for hierarchical_decoder")
a = factory.create(module_type="hierarchical_decoder", num_outputs=4096)
self.local_check(a)
globals.end_openram()
# run the test from the command line

View File

@ -8,14 +8,15 @@
#
import unittest
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
@unittest.skip("SKIPPING hierarchical_predecode4x16_test")
# @unittest.skip("SKIPPING hierarchical_predecode4x16_test")
class hierarchical_predecode4x16_test(openram_test):
def runTest(self):

View File

@ -14,7 +14,8 @@ from globals import OPTS
from sram_factory import factory
import debug
class single_level_column_mux_test(openram_test):
class column_mux_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
@ -26,27 +27,27 @@ class single_level_column_mux_test(openram_test):
globals.setup_bitcell()
debug.info(1, "Testing sample for 2-way column_mux_array port 0")
a = factory.create(module_type="single_level_column_mux_array", columns=8, word_size=4, bitcell_bl="bl0", bitcell_br="br0")
a = factory.create(module_type="column_mux_array", columns=8, word_size=4, bitcell_bl="bl0", bitcell_br="br0")
self.local_check(a)
debug.info(1, "Testing sample for 2-way column_mux_array port 1")
a = factory.create(module_type="single_level_column_mux_array", columns=8, word_size=4, bitcell_bl="bl1", bitcell_br="br1")
a = factory.create(module_type="column_mux_array", columns=8, word_size=4, bitcell_bl="bl1", bitcell_br="br1")
self.local_check(a)
debug.info(1, "Testing sample for 4-way column_mux_array port 0")
a = factory.create(module_type="single_level_column_mux_array", columns=8, word_size=2, bitcell_bl="bl0", bitcell_br="br0")
a = factory.create(module_type="column_mux_array", columns=8, word_size=2, bitcell_bl="bl0", bitcell_br="br0")
self.local_check(a)
debug.info(1, "Testing sample for 4-way column_mux_array port 1")
a = factory.create(module_type="single_level_column_mux_array", columns=8, word_size=2, bitcell_bl="bl1", bitcell_br="br1")
a = factory.create(module_type="column_mux_array", columns=8, word_size=2, bitcell_bl="bl1", bitcell_br="br1")
self.local_check(a)
debug.info(1, "Testing sample for 8-way column_mux_array port 0")
a = factory.create(module_type="single_level_column_mux_array", columns=16, word_size=2, bitcell_bl="bl0", bitcell_br="br0")
a = factory.create(module_type="column_mux_array", columns=16, word_size=2, bitcell_bl="bl0", bitcell_br="br0")
self.local_check(a)
debug.info(1, "Testing sample for 8-way column_mux_array port 1")
a = factory.create(module_type="single_level_column_mux_array", columns=16, word_size=2, bitcell_bl="bl1", bitcell_br="br1")
a = factory.create(module_type="column_mux_array", columns=16, word_size=2, bitcell_bl="bl1", bitcell_br="br1")
self.local_check(a)
globals.end_openram()

View File

@ -7,19 +7,19 @@
# All rights reserved.
#
from testutils import *
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
class single_level_column_mux_pbitcell_test(openram_test):
class column_mux_pbitcell_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
globals.init_openram(config_file)
import single_level_column_mux_array
# check single level column mux array in multi-port
OPTS.bitcell = "pbitcell"
@ -29,19 +29,19 @@ class single_level_column_mux_pbitcell_test(openram_test):
factory.reset()
debug.info(1, "Testing sample for 2-way column_mux_array in multi-port")
a = factory.create(module_type="single_level_column_mux_array", columns=16, word_size=8, bitcell_bl="bl0", bitcell_br="br0")
a = factory.create(module_type="column_mux_array", columns=16, word_size=8, bitcell_bl="bl0", bitcell_br="br0")
self.local_check(a)
debug.info(1, "Testing sample for 4-way column_mux_array in multi-port")
a = factory.create(module_type="single_level_column_mux_array", columns=16, word_size=4, bitcell_bl="bl0", bitcell_br="br0")
a = factory.create(module_type="column_mux_array", columns=16, word_size=4, bitcell_bl="bl0", bitcell_br="br0")
self.local_check(a)
debug.info(1, "Testing sample for 8-way column_mux_array in multi-port (innermost connections)")
a = factory.create(module_type="single_level_column_mux_array", columns=32, word_size=4, bitcell_bl="bl0", bitcell_br="br0")
a = factory.create(module_type="column_mux_array", columns=32, word_size=4, bitcell_bl="bl0", bitcell_br="br0")
self.local_check(a)
debug.info(1, "Testing sample for 8-way column_mux_array in multi-port (outermost connections)")
a = factory.create(module_type="single_level_column_mux_array", columns=32, word_size=4, bitcell_bl="bl2", bitcell_br="br2", column_offset=3)
a = factory.create(module_type="column_mux_array", columns=32, word_size=4, bitcell_bl="bl2", bitcell_br="br2", column_offset=3)
self.local_check(a)
globals.end_openram()

View File

@ -14,22 +14,23 @@ from globals import OPTS
from sram_factory import factory
import debug
class single_level_column_mux_test(openram_test):
class column_mux_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
globals.init_openram(config_file)
debug.info(1, "Testing sample for 2-way column_mux_array")
a = factory.create(module_type="single_level_column_mux_array", columns=16, word_size=8)
a = factory.create(module_type="column_mux_array", columns=16, word_size=8)
self.local_check(a)
debug.info(1, "Testing sample for 4-way column_mux_array")
a = factory.create(module_type="single_level_column_mux_array", columns=16, word_size=4)
a = factory.create(module_type="column_mux_array", columns=16, word_size=4)
self.local_check(a)
debug.info(1, "Testing sample for 8-way column_mux_array")
a = factory.create(module_type="single_level_column_mux_array", columns=32, word_size=4)
a = factory.create(module_type="column_mux_array", columns=32, word_size=4)
self.local_check(a)
globals.end_openram()

View File

@ -16,6 +16,7 @@ from sram_factory import factory
import debug
@unittest.skip("SKIPPING 26_sram_pex_test")
class sram_pex_test(openram_test):
def runTest(self):

View File

@ -9,7 +9,7 @@
import re
import unittest
import sys,os
import sys, os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
@ -47,12 +47,12 @@ suite = unittest.TestSuite()
load = unittest.defaultTestLoader.loadTestsFromModule
suite.addTests(map(load, modules))
test_runner = unittest.TextTestRunner(verbosity=2,stream=sys.stderr)
test_runner = unittest.TextTestRunner(verbosity=2, stream=sys.stderr)
test_result = test_runner.run(suite)
import verify
verify.print_drc_stats()
verify.print_lvs_stats()
verify.print_pex_stats()
verify.print_pex_stats()
sys.exit(not test_result.wasSuccessful())