Added basic structure to add_test_cycles to characterize multiple ports and its helper functions to allow for ports to be selected for characterization

This commit is contained in:
Hunter Nichols 2018-08-27 15:56:42 -07:00
parent 6dc72f5b1e
commit 350823d434
3 changed files with 129 additions and 97 deletions

View File

@ -556,7 +556,10 @@ class delay():
char_data = {}
self.set_probe(probe_address, probe_data)
#A helper functions to set port names for the characterizer.
self.gen_port_names()
# This is for debugging a full simulation
# debug.info(0,"Debug simulation running...")
# target_period=50.0
@ -611,47 +614,54 @@ class delay():
def add_data(self, data):
def add_data(self, data, port):
""" Add the array of data values """
debug.check(len(data)==self.word_size, "Invalid data word size.")
index = 0
for c in data:
if c=="0":
self.data_values[index].append(0)
self.data_values[port][index].append(0)
elif c=="1":
self.data_values[index].append(1)
self.data_values[port][index].append(1)
else:
debug.error("Non-binary data string",1)
index += 1
def add_address(self, address):
def add_address(self, address, port):
""" Add the array of address values """
debug.check(len(address)==self.addr_size, "Invalid address size.")
index = 0
for c in address:
if c=="0":
self.addr_values[index].append(0)
self.addr_values[port][index].append(0)
elif c=="1":
self.addr_values[index].append(1)
self.addr_values[port][index].append(1)
else:
debug.error("Non-binary address string",1)
index += 1
def add_noop(self, comment, address, data):
""" Add the control values for a read cycle. """
def add_noop(self, address, data, port):
""" Add the control values for a noop to a single port. """
#This is to be used as a helper function for the other add functions. Cycle and comments are omitted.
self.web_values[port].append(1)
self.csb_values[port].append(1)
self.add_data(data, port)
self.add_address(address, port)
def add_noop_all_ports(self, comment, address, data):
""" Add the control values for a noop to all ports. """
self.cycle_comments.append("Cycle {0:2d}\t{1:5.2f}ns:\t{2}".format(len(self.cycle_times),
self.t_current,
comment))
self.cycle_times.append(self.t_current)
self.t_current += self.period
self.web_values.append(1)
self.csb_values.append(1)
self.add_data(data)
self.add_address(address)
for readwrite_port in self.readwrite_ports:
self.add_noop(address, data, readwrite_port)
def add_read(self, comment, address, data):
def add_read(self, comment, address, data, port):
""" Add the control values for a read cycle. """
self.cycle_comments.append("Cycle {0:2d}\t{1:5.2f}ns:\t{2}".format(len(self.cycle_comments),
self.t_current,
@ -659,27 +669,36 @@ class delay():
self.cycle_times.append(self.t_current)
self.t_current += self.period
self.web_values.append(1)
self.csb_values.append(0)
self.web_values[port].append(1)
self.csb_values[port].append(0)
self.add_data(data)
self.add_address(address)
self.add_data(data, port)
self.add_address(address, port)
#Add noops to all other ports.
for readwrite_port in self.readwrite_ports:
if readwrite_port != port:
self.add_noop(address, data, readwrite_port)
def add_write(self, comment, address, data):
""" Add the control values for a read cycle. """
def add_write(self, comment, address, data, port):
""" Add the control values for a write cycle. """
self.cycle_comments.append("Cycle {0:2d}\t{1:5.2f}ns:\t{2}".format(len(self.cycle_comments),
self.t_current,
comment))
self.cycle_times.append(self.t_current)
self.t_current += self.period
self.web_values.append(0)
self.csb_values.append(0)
self.web_values[port].append(0)
self.csb_values[port].append(0)
self.add_data(data)
self.add_address(address)
self.add_data(data,port)
self.add_address(address,port)
#Add noops to all other ports.
for readwrite_port in self.readwrite_ports:
if readwrite_port != port:
self.add_noop(address, data, readwrite_port)
def create_test_cycles(self):
"""Returns a list of key time-points [ns] of the waveform (each rising edge)
@ -693,17 +712,17 @@ class delay():
self.cycle_comments = []
self.cycle_times = []
# Control logic signals each cycle
self.web_values = []
self.csb_values = []
# Readwrite port Control logic signals each cycle
self.web_values = {readwrite_port:[] for readwrite_port in self.readwrite_ports}
self.csb_values = {readwrite_port:[] for readwrite_port in self.readwrite_ports}
# Address and data values for each address/data bit
self.data_values=[]
for i in range(self.word_size):
self.data_values.append([])
self.addr_values=[]
for i in range(self.addr_size):
self.addr_values.append([])
# Address and data values for each address/data bit. A dict of 2d lists of size #ports x bits x cycles.
self.data_values={readwrite_port:[[] for i in range(self.word_size)] for readwrite_port in self.readwrite_ports}
#for i in range(self.word_size):
# self.data_values.append([])
self.addr_values={readwrite_port:[[] for i in range(self.addr_size)] for readwrite_port in self.readwrite_ports}
#for i in range(self.addr_size):
# self.addr_values.append([])
# Create the inverse address for a scratch address
inverse_address = ""
@ -719,45 +738,47 @@ class delay():
data_ones = "1"*self.word_size
data_zeros = "0"*self.word_size
self.add_noop("Idle cycle (no positive clock edge)",
self.add_noop_all_ports("Idle cycle (no positive clock edge)",
inverse_address, data_zeros)
self.add_write("W data 1 address 0..00",
inverse_address,data_ones)
self.add_write("W data 0 address 11..11 to write value",
self.probe_address,data_zeros)
self.write0_cycle=len(self.cycle_times)-1 # Remember for power measure
# This also ensures we will have a H->L transition on the next read
self.add_read("R data 1 address 00..00 to set DOUT caps",
inverse_address,data_zeros)
#Temporary logic. Loop through all ports with characterize logic.
for readwrite_port in self.readwrite_ports:
self.add_write("W data 1 address 0..00",
inverse_address,data_ones,readwrite_port)
self.add_read("R data 0 address 11..11 to check W0 worked",
self.probe_address,data_zeros)
self.read0_cycle=len(self.cycle_times)-1 # Remember for power measure
self.add_noop("Idle cycle (if read takes >1 cycle)",
inverse_address,data_zeros)
self.idle_cycle=len(self.cycle_times)-1 # Remember for power measure
self.add_write("W data 0 address 11..11 to write value",
self.probe_address,data_zeros,readwrite_port)
self.write0_cycle=len(self.cycle_times)-1 # Remember for power measure
# This also ensures we will have a H->L transition on the next read
self.add_read("R data 1 address 00..00 to set DOUT caps",
inverse_address,data_zeros,readwrite_port)
self.add_write("W data 1 address 11..11 to write value",
self.probe_address,data_ones)
self.write1_cycle=len(self.cycle_times)-1 # Remember for power measure
self.add_read("R data 0 address 11..11 to check W0 worked",
self.probe_address,data_zeros,readwrite_port)
self.read0_cycle=len(self.cycle_times)-1 # Remember for power measure
self.add_noop_all_ports("Idle cycle (if read takes >1 cycle)",
inverse_address,data_zeros)
self.idle_cycle=len(self.cycle_times)-1 # Remember for power measure
self.add_write("W data 0 address 00..00 to clear DIN caps",
inverse_address,data_zeros)
self.add_write("W data 1 address 11..11 to write value",
self.probe_address,data_ones,readwrite_port)
self.write1_cycle=len(self.cycle_times)-1 # Remember for power measure
# This also ensures we will have a L->H transition on the next read
self.add_read("R data 0 address 00..00 to clear DOUT caps",
inverse_address,data_zeros)
self.add_read("R data 1 address 11..11 to check W1 worked",
self.probe_address,data_zeros)
self.read1_cycle=len(self.cycle_times)-1 # Remember for power measure
self.add_write("W data 0 address 00..00 to clear DIN caps",
inverse_address,data_zeros,readwrite_port)
self.add_noop("Idle cycle (if read takes >1 cycle))",
self.probe_address,data_zeros)
# This also ensures we will have a L->H transition on the next read
self.add_read("R data 0 address 00..00 to clear DOUT caps",
inverse_address,data_zeros,readwrite_port)
self.add_read("R data 1 address 11..11 to check W1 worked",
self.probe_address,data_zeros,readwrite_port)
self.read1_cycle=len(self.cycle_times)-1 # Remember for power measure
self.add_noop_all_ports("Idle cycle (if read takes >1 cycle))",
self.probe_address,data_zeros)
@ -800,43 +821,54 @@ class delay():
def gen_data(self):
""" Generates the PWL data inputs for a simulation timing test. """
for readwrite_input in range(OPTS.rw_ports):
for readwrite_input in self.readwrite_ports:
for i in range(self.word_size):
sig_name="DIN_RWP{0}[{1}] ".format(readwrite_input, i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.data_values[i], self.period, self.slew, 0.05)
for write_port in range(OPTS.w_ports):
for i in range(self.word_size):
sig_name="DIN_WP{0}[{1}] ".format(write_port, i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.data_values[i], self.period, self.slew, 0.05)
sig_name="DIN_{0}[{1}] ".format(readwrite_input, i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.data_values[readwrite_input][i], self.period, self.slew, 0.05)
# for write_port in range(OPTS.w_ports):
# for i in range(self.word_size):
# sig_name="DIN_WP{0}[{1}] ".format(write_port, i)
# self.stim.gen_pwl(sig_name, self.cycle_times, self.data_values[i], self.period, self.slew, 0.05)
def gen_addr(self):
"""
Generates the address inputs for a simulation timing test.
This alternates between all 1's and all 0's for the address.
"""
for readwrite_addr in range(OPTS.rw_ports):
for readwrite_addr in self.readwrite_ports:
for i in range(self.addr_size):
sig_name = "A_RWP{0}[{1}]".format(readwrite_addr,i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[i], self.period, self.slew, 0.05)
for write_addr in range(OPTS.w_ports):
for i in range(self.addr_size):
sig_name = "A_WP{0}[{1}]".format(write_addr,i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[i], self.period, self.slew, 0.05)
for read_addr in range(OPTS.r_ports):
for i in range(self.addr_size):
sig_name = "A_RP{0}[{1}]".format(read_addr,i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[i], self.period, self.slew, 0.05)
sig_name = "A_{0}[{1}]".format(readwrite_addr,i)
self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[readwrite_addr][i], self.period, self.slew, 0.05)
# for write_addr in range(OPTS.w_ports):
# for i in range(self.addr_size):
# sig_name = "A_WP{0}[{1}]".format(write_addr,i)
# self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[i], self.period, self.slew, 0.05)
# for read_addr in range(OPTS.r_ports):
# for i in range(self.addr_size):
# sig_name = "A_RP{0}[{1}]".format(read_addr,i)
# self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[i], self.period, self.slew, 0.05)
def gen_control(self):
""" Generates the control signals """
#Multiport changes to control signals. This will most likely be changed at some point when control signals are better determined.
for readwrite_port in range(OPTS.rw_ports):
self.stim.gen_pwl("csb{0}".format(readwrite_port), self.cycle_times, self.csb_values, self.period, self.slew, 0.05)
self.stim.gen_pwl("web{0}".format(readwrite_port), self.cycle_times, self.web_values, self.period, self.slew, 0.05)
for read_port in range(OPTS.r_ports):
self.stim.gen_pwl("RPENB{0}".format(read_port), self.cycle_times, self.csb_values, self.period, self.slew, 0.05)
for write_port in range(OPTS.w_ports):
self.stim.gen_pwl("WPENB{0}".format(write_port), self.cycle_times, self.csb_values, self.period, self.slew, 0.05)
for readwrite_port in self.readwrite_ports:
self.stim.gen_pwl("CSB_{0}".format(readwrite_port), self.cycle_times, self.csb_values[readwrite_port], self.period, self.slew, 0.05)
self.stim.gen_pwl("WEB_{0}".format(readwrite_port), self.cycle_times, self.web_values[readwrite_port], self.period, self.slew, 0.05)
# for read_port in range(OPTS.r_ports):
# self.stim.gen_pwl("RPENB{0}".format(read_port), self.cycle_times, self.csb_values, self.period, self.slew, 0.05)
# for write_port in range(OPTS.w_ports):
# self.stim.gen_pwl("WPENB{0}".format(write_port), self.cycle_times, self.csb_values, self.period, self.slew, 0.05)
def gen_port_names(self):
"""Generates the port names to be used in characterization"""
self.readwrite_ports = []
self.write_ports = []
self.read_ports = []
for readwrite_port in range(OPTS.rw_ports):
self.readwrite_ports.append("RWP{0}".format(readwrite_port))
for write_port in range(OPTS.w_ports):
self.write_ports.append("WP{0}".format(write_port))
for read_port in range(OPTS.r_ports):
self.read_ports.append("RP{0}".format(read_port))

View File

@ -55,7 +55,7 @@ class stimuli():
#control signals. Not sure if this is correct, consider a temporary change until control signals for multiport are finalizd.
for readwrite_port in range(OPTS.rw_ports):
for i in tech.spice["control_signals"]:
self.sf.write("{0}{1} ".format(i,readwrite_port))
self.sf.write("{0}_RWP{1} ".format(i,readwrite_port))
#Write control signals related to multiport. I do not know these entirely, so consider the signals temporary for now.
for read_port in range(OPTS.r_ports):

View File

@ -14,6 +14,6 @@ output_name = "sram_2_16_1_freepdk45"
#bitcell = "pbitcell"
# These are the configuration parameters
rw_ports = 2
r_ports = 2
w_ports = 2
#rw_ports = 2
#r_ports = 2
#w_ports = 2