Improved on some hard coded values which determine the measurements.

This commit is contained in:
Hunter Nichols 2018-09-14 18:55:37 -07:00
parent cfe15d48a4
commit 346b188372
1 changed files with 111 additions and 114 deletions

View File

@ -48,8 +48,8 @@ class delay():
self.set_corner(corner)
self.create_port_names()
#Create global measure names. May be an input at some point. Altering the name here will not affect functionality.
#Removing names will cause program to crash. TODO: This caused me to hardcode indices, fix this to be more dynamic/readable.
#Create global measure names. May be an input at some point.
#Altering the names will crash the characterizer. TODO: object orientated approach to the measurements.
self.delay_meas_names = ["delay_lh", "delay_hl", "slew_lh", "slew_hl"]
self.power_meas_names = ["read0_power", "read1_power", "write0_power", "write1_power"]
@ -209,81 +209,91 @@ class delay():
"""
# Trigger on the clk of the appropriate cycle
trig_name = "clk"
trig_clk_name = trig_name = "clk"
#Target name should be an input to the function or a member variable. That way, the ports can be singled out for testing
targ_name = "{0}".format("DOUT{0}[{1}]".format(port,self.probe_data))
trig_val = targ_val = 0.5 * self.vdd_voltage
trig_delay_val = targ_delay_val = 0.5 * self.vdd_voltage
trig_slew_low = 0.1 * self.vdd_voltage
targ_slew_high = 0.9 * self.vdd_voltage
trig_dir = "FALL"
targ_dir = "RISE"
trig_td = targ_td = 0
parse_error = False
# Delay the target to measure after the negative edge
self.stim.gen_meas_delay(meas_name="{0}{1}".format(self.delay_meas_names[1], port),
trig_name=trig_name,
targ_name=targ_name,
trig_val=trig_val,
targ_val=targ_val,
trig_dir="RISE",
targ_dir="FALL",
trig_td=self.cycle_times[self.measure_cycles["read0_{0}".format(port)]],
targ_td=self.cycle_times[self.measure_cycles["read0_{0}".format(port)]])
self.stim.gen_meas_delay(meas_name="{0}{1}".format(self.delay_meas_names[0], port),
trig_name=trig_name,
targ_name=targ_name,
trig_val=trig_val,
targ_val=targ_val,
trig_dir="RISE",
targ_dir="RISE",
trig_td=self.cycle_times[self.measure_cycles["read1_{0}".format(port)]],
targ_td=self.cycle_times[self.measure_cycles["read1_{0}".format(port)]])
self.stim.gen_meas_delay(meas_name="{0}{1}".format(self.delay_meas_names[3], port),
trig_name=targ_name,
targ_name=targ_name,
trig_val=0.9*self.vdd_voltage,
targ_val=0.1*self.vdd_voltage,
trig_dir="FALL",
targ_dir="FALL",
trig_td=self.cycle_times[self.measure_cycles["read0_{0}".format(port)]],
targ_td=self.cycle_times[self.measure_cycles["read0_{0}".format(port)]])
self.stim.gen_meas_delay(meas_name="{0}{1}".format(self.delay_meas_names[2], port),
trig_name=targ_name,
targ_name=targ_name,
trig_val=0.1*self.vdd_voltage,
targ_val=0.9*self.vdd_voltage,
trig_dir="RISE",
targ_dir="RISE",
trig_td=self.cycle_times[self.measure_cycles["read1_{0}".format(port)]],
targ_td=self.cycle_times[self.measure_cycles["read1_{0}".format(port)]])
for dname in self.delay_meas_names:
if 'delay' in dname:
trig_dir="RISE"
trig_val = trig_delay_val
targ_val = targ_val
trig_name = trig_clk_name
if 'lh' in dname:
targ_dir="RISE"
else:
targ_dir="FALL"
elif 'slew' in dname:
trig_name = targ_name
if 'lh' in dname:
trig_val = trig_slew_low
targ_val = targ_slew_high
targ_dir = trig_dir = "RISE"
else:
trig_val = targ_slew_high
targ_val = trig_slew_low
targ_dir = trig_dir = "FALL"
else:
debug.error(1, "Measure command {0} not recognized".format(dname))
if 'lh' in dname:
trig_td = targ_td = self.cycle_times[self.measure_cycles["read1_{0}".format(port)]]
elif 'hl' in dname:
trig_td = targ_td = self.cycle_times[self.measure_cycles["read0_{0}".format(port)]]
else:
debug.error(1, "Measure command {0} does not contain direction (lh/hl)".format(dname))
self.stim.gen_meas_delay(meas_name="{0}{1}".format(dname, port),
trig_name=trig_name,
targ_name=targ_name,
trig_val=trig_val,
targ_val=targ_val,
trig_dir=trig_dir,
targ_dir=targ_dir,
trig_td=trig_td,
targ_td=targ_td)
# add measure statements for power
t_initial = self.cycle_times[self.measure_cycles["read0_{0}".format(port)]]
t_final = self.cycle_times[self.measure_cycles["read0_{0}".format(port)]+1]
self.stim.gen_meas_power(meas_name="{0}{1}".format(self.power_meas_names[0], port),
t_initial=t_initial,
t_final=t_final)
t_initial = self.cycle_times[self.measure_cycles["read1_{0}".format(port)]]
t_final = self.cycle_times[self.measure_cycles["read1_{0}".format(port)]+1]
self.stim.gen_meas_power(meas_name="{0}{1}".format(self.power_meas_names[1], port),
t_initial=t_initial,
t_final=t_final)
for pname in self.power_meas_names:
if "read" not in pname:
continue
t_initial = self.cycle_times[self.measure_cycles["read0_{0}".format(port)]]
t_final = self.cycle_times[self.measure_cycles["read0_{0}".format(port)]+1]
if '1' in pname:
t_initial = self.cycle_times[self.measure_cycles["read1_{0}".format(port)]]
t_final = self.cycle_times[self.measure_cycles["read1_{0}".format(port)]+1]
self.stim.gen_meas_power(meas_name="{0}{1}".format(pname, port),
t_initial=t_initial,
t_final=t_final)
def write_delay_measures_write_port(self, port):
"""
Write the measure statements to quantify the power results for a write port.
"""
# add measure statements for power
t_initial = self.cycle_times[self.measure_cycles["write0_{0}".format(port)]]
t_final = self.cycle_times[self.measure_cycles["write0_{0}".format(port)]+1]
self.stim.gen_meas_power(meas_name="{0}{1}".format(self.power_meas_names[2], port),
t_initial=t_initial,
t_final=t_final)
t_initial = self.cycle_times[self.measure_cycles["write1_{0}".format(port)]]
t_final = self.cycle_times[self.measure_cycles["write1_{0}".format(port)]+1]
self.stim.gen_meas_power(meas_name="{0}{1}".format(self.power_meas_names[3], port),
t_initial=t_initial,
t_final=t_final)
for pname in self.power_meas_names:
if "write" not in pname:
continue
t_initial = self.cycle_times[self.measure_cycles["write0_{0}".format(port)]]
t_final = self.cycle_times[self.measure_cycles["write0_{0}".format(port)]+1]
if '1' in pname:
t_initial = self.cycle_times[self.measure_cycles["write1_{0}".format(port)]]
t_final = self.cycle_times[self.measure_cycles["write1_{0}".format(port)]+1]
self.stim.gen_meas_power(meas_name="{0}{1}".format(pname, port),
t_initial=t_initial,
t_final=t_final)
def write_delay_measures(self):
"""
@ -351,10 +361,10 @@ class delay():
break
#Positions of measurements currently hardcoded. First 2 are delays, next 2 are slews
feasible_delay_measures = [results["{0}{1}".format(mname,port)] for mname in self.delay_meas_names]
delay_str = "feasible_delay {0:.4f}ns/{1:.4f}ns".format(feasible_delay_measures[0], feasible_delay_measures[1])
slew_str = "slew {0:.4f}ns/{1:.4f}ns".format(feasible_delay_measures[2], feasible_delay_measures[3])
feasible_delays = [results["{0}{1}".format(mname,port)] for mname in self.delay_meas_names if "delay" in mname]
feasible_slews = [results["{0}{1}".format(mname,port)] for mname in self.delay_meas_names if "slew" in mname]
delay_str = "feasible_delay {0:.4f}ns/{1:.4f}ns".format(*feasible_delays)
slew_str = "slew {0:.4f}ns/{1:.4f}ns".format(*feasible_slews)
debug.info(2, "feasible_period passed for Port {3}: {0}ns {1} {2} ".format(feasible_period,
delay_str,
slew_str,
@ -363,19 +373,18 @@ class delay():
if success:
debug.info(1, "Found feasible_period: {0}ns".format(feasible_period))
self.period = feasible_period
return (feasible_delay_measures[0], feasible_delay_measures[1])
return results
def find_feasible_period(self):
"""
Loops through all read ports determining the feasible period and collecting
delay information from each port.
"""
feasible_delays_lh = {}
feasible_delays_hl = {}
feasible_delays = {}
self.period = float(tech.spice["feasible_period"])
#Get initial feasible period from first port
(feasible_delays_lh[0], feasible_delays_hl[0]) = self.find_feasible_period_one_port(self.read_ports[0])
feasible_delays.update(self.find_feasible_period_one_port(self.read_ports[0]))
previous_period = self.period
@ -384,14 +393,14 @@ class delay():
i = 1
while i < len(self.read_ports):
port = self.read_ports[i]
(feasible_delays_lh[port], feasible_delays_hl[port]) = self.find_feasible_period_one_port(port)
feasible_delays.update(self.find_feasible_period_one_port(port))
#Function sets the period. Restart the entire process if period changes to collect accurate delays
if self.period > previous_period:
i = 0
else:
i+=1
previous_period = self.period
return (feasible_delays_lh, feasible_delays_hl)
return feasible_delays
def parse_values(self, values_names, mult = 1.0):
@ -430,11 +439,11 @@ class delay():
for port in self.targ_read_ports:
delay_names = ["{0}{1}".format(mname,port) for mname in self.delay_meas_names]
delays = self.parse_values(delay_names, 1e9) # scale delays to ns
if not self.check_valid_delays((delays[delay_names[0]],delays[delay_names[1]],delays[delay_names[2]],delays[delay_names[3]])):
if not self.check_valid_delays(tuple(delays.values())):
return (False,{})
result.update(delays)
power_names = ["{0}{1}".format(mname,port) for mname in self.power_meas_names[:2]]
power_names = ["{0}{1}".format(mname,port) for mname in self.power_meas_names if 'read' in mname]
powers = self.parse_values(power_names, 1e3) # scale power to mw
#Check that power parsing worked.
for name, power in powers.items():
@ -443,7 +452,7 @@ class delay():
result.update(powers)
for port in self.targ_write_ports:
power_names = ["{0}{1}".format(mname,port) for mname in self.power_meas_names[2:]]
power_names = ["{0}{1}".format(mname,port) for mname in self.power_meas_names if 'write' in mname]
powers = self.parse_values(power_names, 1e3) # scale power to mw
#Check that power parsing worked.
for name, power in powers.items():
@ -508,7 +517,7 @@ class delay():
return True
def find_min_period(self, feasible_delays_lh, feasible_delays_hl):
def find_min_period(self, feasible_delays):
"""
Determine the minimum period for all ports.
"""
@ -520,7 +529,7 @@ class delay():
#Find the minimum period for all ports. Start at one port and perform binary search then use that delay as a starting position.
#For testing purposes, only checks read ports.
for port in self.read_ports:
target_period = self.find_min_period_one_port(feasible_delays_lh, feasible_delays_hl, port, lb_period, ub_period, target_period)
target_period = self.find_min_period_one_port(feasible_delays, port, lb_period, ub_period, target_period)
#The min period of one port becomes the new lower bound. Reset the upper_bound.
lb_period = target_period
ub_period = feasible_period
@ -530,7 +539,7 @@ class delay():
self.targ_write_ports = []
return target_period
def find_min_period_one_port(self, feasible_delays_lh, feasible_delays_hl, port, lb_period, ub_period, target_period):
def find_min_period_one_port(self, feasible_delays, port, lb_period, ub_period, target_period):
"""
Searches for the smallest period with output delays being within 5% of
long period. For the current logic to characterize multiport, bound are required as an input.
@ -555,24 +564,20 @@ class delay():
lb_period,
port))
if self.try_period(feasible_delays_lh, feasible_delays_hl):
if self.try_period(feasible_delays):
ub_period = target_period
else:
lb_period = target_period
if relative_compare(ub_period, lb_period, error_tolerance=0.05):
# ub_period is always feasible. When done with a port, set the target period of the next port as the lower bound
# and reset the upperbound
# ub_period is always feasible.
return ub_period
#target_period = lb_period = ub_period
#ub_period = previous_period
#break
#Update target
target_period = 0.5 * (ub_period + lb_period)
def try_period(self, feasible_delays_lh, feasible_delays_hl):
def try_period(self, feasible_delays):
"""
This tries to simulate a period and checks if the result
works. If it does and the delay is within 5% still, it returns True.
@ -583,25 +588,20 @@ class delay():
return False
#Check the values of target readwrite and read ports. Write ports do not produce delays in this current version
for port in self.targ_read_ports:
#Positions of measurements currently hardcoded. First 2 are delays, next 2 are slews
delay_measures = [results["{0}{1}".format(mname,port)] for mname in self.delay_meas_names]
if not relative_compare(delay_measures[0],feasible_delays_lh[port],error_tolerance=0.05):
debug.info(2,"Delay too big {0} vs {1}".format(delay_measures[0],feasible_delays_lh[port]))
return False
elif not relative_compare(delay_measures[1],feasible_delays_hl[port],error_tolerance=0.05):
debug.info(2,"Delay too big {0} vs {1}".format(delay_measures[1],feasible_delays_hl[port]))
return False
for port in self.targ_read_ports:
delay_port_names = ["{0}{1}".format(mname,port) for mname in self.delay_meas_names if "delay" in mname]
for dname in delay_port_names:
if not relative_compare(results[dname],feasible_delays[dname],error_tolerance=0.05):
debug.info(2,"Delay too big {0} vs {1}".format(results[dname],feasible_delays[dname]))
return False
#key=raw_input("press return to continue")
debug.info(2,"Successful period {0}, Port {5}, delay_lh={1}ns, delay_hl={2}ns, slew_lh={3}ns slew_hl={4}ns".format(self.period,
delay_measures[0],
delay_measures[1],
delay_measures[2],
delay_measures[3],
port))
#Dynamic way to build string. A bit messy though.
delay_str = ', '.join("{0}={1}ns".format(mname, results["{0}{1}".format(mname,port)]) for mname in self.delay_meas_names)
debug.info(2,"Successful period {0}, Port {2}, {1}".format(self.period,
delay_str,
port))
return True
def set_probe(self,probe_address, probe_data):
@ -670,17 +670,14 @@ class delay():
# return char_data
# 1) Find a feasible period and it's corresponding delays using the trimmed array.
(feasible_delays_lh, feasible_delays_hl) = self.find_feasible_period()
feasible_delays = self.find_feasible_period()
#Check all the delays
for k,v in feasible_delays_lh.items():
debug.check(v>0,"Negative delay may not be possible")
for k,v in feasible_delays_hl.items():
debug.check(v>0,"Negative delay may not be possible")
for k,v in feasible_delays.items():
debug.check(v>0,"Negative delay may not be possible: {0}={1}".format(k,v))
# 2) Finds the minimum period without degrading the delays by X%
self.set_load_slew(max(loads),max(slews))
min_period = self.find_min_period(feasible_delays_lh, feasible_delays_hl)
min_period = self.find_min_period(feasible_delays)
debug.check(type(min_period)==float,"Couldn't find minimum period.")
debug.info(1, "Min Period Found: {0}ns".format(min_period))
char_data["min_period"] = round_time(min_period)