mirror of https://github.com/VLSIDA/OpenRAM.git
Added initial neural network model
This commit is contained in:
parent
59200d1048
commit
1881d43948
|
|
@ -0,0 +1,150 @@
|
||||||
|
# See LICENSE for licensing information.
|
||||||
|
#
|
||||||
|
# Copyright (c) 2016-2019 Regents of the University of California and The Board
|
||||||
|
# of Regents for the Oklahoma Agricultural and Mechanical College
|
||||||
|
# (acting for and on behalf of Oklahoma State University)
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
|
||||||
|
from .analytical_util import *
|
||||||
|
from .simulation import simulation
|
||||||
|
from globals import OPTS
|
||||||
|
import debug
|
||||||
|
|
||||||
|
import os
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras import layers
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
relative_data_path = "/sim_data"
|
||||||
|
data_fnames = ["rise_delay.csv",
|
||||||
|
"fall_delay.csv",
|
||||||
|
"rise_slew.csv",
|
||||||
|
"fall_slew.csv",
|
||||||
|
"write1_power.csv",
|
||||||
|
"write0_power.csv",
|
||||||
|
"read1_power.csv",
|
||||||
|
"read0_power.csv",
|
||||||
|
"leakage_data.csv"]
|
||||||
|
|
||||||
|
data_dir = OPTS.openram_tech+relative_data_path
|
||||||
|
data_paths = [data_dir +'/'+fname for fname in data_fnames]
|
||||||
|
|
||||||
|
class neural_network(simulation):
|
||||||
|
|
||||||
|
def __init__(self, sram, spfile, corner):
|
||||||
|
super().__init__(sram, spfile, corner)
|
||||||
|
self.set_corner(corner)
|
||||||
|
|
||||||
|
def get_lib_values(self, slews, loads):
|
||||||
|
"""
|
||||||
|
A model and prediction is created for each output needed for the LIB
|
||||||
|
"""
|
||||||
|
|
||||||
|
log_num_words = math.log(OPTS.num_words, 2)
|
||||||
|
debug.info(1, "OPTS.words_per_row={}".format(OPTS.words_per_row))
|
||||||
|
model_inputs = [log_num_words,
|
||||||
|
OPTS.word_size,
|
||||||
|
OPTS.words_per_row,
|
||||||
|
self.sram.width * self.sram.height,
|
||||||
|
process_transform[self.process],
|
||||||
|
self.vdd_voltage,
|
||||||
|
self.temperature]
|
||||||
|
|
||||||
|
self.create_measurement_names()
|
||||||
|
models = self.train_models()
|
||||||
|
|
||||||
|
# Set delay/power for slews and loads
|
||||||
|
port_data = self.get_empty_measure_data_dict()
|
||||||
|
debug.info(1, 'Slew, Load, Delay(ns), Slew(ns)')
|
||||||
|
max_delay = 0.0
|
||||||
|
for slew in slews:
|
||||||
|
for load in loads:
|
||||||
|
# List returned with value order being delay, power, leakage, slew
|
||||||
|
# FIXME: make order less hard coded
|
||||||
|
sram_vals = self.get_predictions(model_inputs+[slew, load], models)
|
||||||
|
# Delay is only calculated on a single port and replicated for now.
|
||||||
|
for port in self.all_ports:
|
||||||
|
port_data[port]['delay_lh'].append(sram_vals[0][0][0])
|
||||||
|
port_data[port]['delay_hl'].append(sram_vals[1][0][0])
|
||||||
|
port_data[port]['slew_lh'].append(sram_vals[2][0][0])
|
||||||
|
port_data[port]['slew_hl'].append(sram_vals[3][0][0])
|
||||||
|
|
||||||
|
port_data[port]['write1_power'].append(sram_vals[4][0][0])
|
||||||
|
port_data[port]['write0_power'].append(sram_vals[5][0][0])
|
||||||
|
port_data[port]['read1_power'].append(sram_vals[6][0][0])
|
||||||
|
port_data[port]['read0_power'].append(sram_vals[7][0][0])
|
||||||
|
|
||||||
|
# Disabled power not modeled. Copied from other power predictions
|
||||||
|
port_data[port]['disabled_write1_power'].append(sram_vals[4][0][0])
|
||||||
|
port_data[port]['disabled_write0_power'].append(sram_vals[5][0][0])
|
||||||
|
port_data[port]['disabled_read1_power'].append(sram_vals[6][0][0])
|
||||||
|
port_data[port]['disabled_read0_power'].append(sram_vals[7][0][0])
|
||||||
|
|
||||||
|
|
||||||
|
# Estimate the period as double the delay with margin
|
||||||
|
period_margin = 0.1
|
||||||
|
sram_data = {"min_period": sram_vals[0][0][0] * 2,
|
||||||
|
"leakage_power": sram_vals[8][0][0]}
|
||||||
|
|
||||||
|
debug.info(2, "SRAM Data:\n{}".format(sram_data))
|
||||||
|
debug.info(2, "Port Data:\n{}".format(port_data))
|
||||||
|
|
||||||
|
return (sram_data, port_data)
|
||||||
|
|
||||||
|
def get_predictions(self, model_inputs, models):
|
||||||
|
"""
|
||||||
|
Generate a model and prediction for LIB output
|
||||||
|
"""
|
||||||
|
|
||||||
|
scaled_inputs = np.asarray([scale_input_datapoint(model_inputs, data_paths[0])])
|
||||||
|
|
||||||
|
predictions = []
|
||||||
|
for m, path in zip(models, data_paths):
|
||||||
|
features, labels = get_scaled_data(path)
|
||||||
|
scaled_pred = self.model_prediction(m, scaled_inputs)
|
||||||
|
pred = unscale_data(scaled_pred.tolist(), path)
|
||||||
|
debug.info(1,"Unscaled Prediction = {}".format(pred))
|
||||||
|
predictions.append(pred)
|
||||||
|
return predictions
|
||||||
|
|
||||||
|
def train_models(self):
|
||||||
|
"""
|
||||||
|
Generate and return models
|
||||||
|
"""
|
||||||
|
models = []
|
||||||
|
for path in data_paths:
|
||||||
|
features, labels = get_scaled_data(path)
|
||||||
|
model = self.generate_model(features, labels)
|
||||||
|
models.append(model)
|
||||||
|
return models
|
||||||
|
|
||||||
|
|
||||||
|
def generate_model(self, features, labels):
|
||||||
|
"""
|
||||||
|
Supervised training of model.
|
||||||
|
"""
|
||||||
|
|
||||||
|
model = keras.Sequential([
|
||||||
|
layers.Dense(32, activation=tf.nn.relu, input_shape=[features.shape[1]]),
|
||||||
|
layers.Dense(32, activation=tf.nn.relu),
|
||||||
|
layers.Dense(32, activation=tf.nn.relu),
|
||||||
|
layers.Dense(1)
|
||||||
|
])
|
||||||
|
|
||||||
|
optimizer = keras.optimizers.RMSprop(0.0099)
|
||||||
|
model.compile(loss='mean_squared_error', optimizer=optimizer)
|
||||||
|
model.fit(features, labels, epochs=100, verbose=0)
|
||||||
|
return model
|
||||||
|
|
||||||
|
def model_prediction(self, model, features):
|
||||||
|
"""
|
||||||
|
Have the model perform a prediction and unscale the prediction
|
||||||
|
as the model is trained with scaled values.
|
||||||
|
"""
|
||||||
|
|
||||||
|
pred = model.predict(features)
|
||||||
|
return pred
|
||||||
|
|
||||||
Loading…
Reference in New Issue