mirror of https://github.com/VLSIDA/OpenRAM.git
214 lines
7.8 KiB
Python
214 lines
7.8 KiB
Python
|
|
import diversipy as dp
|
||
|
|
import csv
|
||
|
|
import math
|
||
|
|
import numpy as np
|
||
|
|
import os
|
||
|
|
|
||
|
|
def get_data_names(self, file_name):
|
||
|
|
with open(file_name, newline='') as csvfile:
|
||
|
|
csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
|
||
|
|
row_iter = 0
|
||
|
|
# reader is iterable not a list, probably a better way to do this
|
||
|
|
for row in csv_reader:
|
||
|
|
# Return names from first row
|
||
|
|
return row[0].split(',')
|
||
|
|
|
||
|
|
def get_data(self, file_name):
|
||
|
|
with open(file_name, newline='') as csvfile:
|
||
|
|
csv_reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
|
||
|
|
row_iter = 0
|
||
|
|
for row in csv_reader:
|
||
|
|
#data = [int(csv_str) for csv_str in ', '.join(row)]
|
||
|
|
row_iter += 1
|
||
|
|
if row_iter == 1:
|
||
|
|
feature_names = row[0].split(',')
|
||
|
|
input_list = [[] for _ in feature_names]
|
||
|
|
scaled_list = [[] for _ in feature_names]
|
||
|
|
#label_list = []
|
||
|
|
continue
|
||
|
|
#print(row[0])
|
||
|
|
data = [float(csv_str) for csv_str in row[0].split(',')]
|
||
|
|
data[0] = math.log(data[0], 2)
|
||
|
|
#input_list.append(data)
|
||
|
|
for i in range(len(data)):
|
||
|
|
input_list[i].append(data[i])
|
||
|
|
#label_list.append([data[-1]])
|
||
|
|
#print(data)
|
||
|
|
return input_list
|
||
|
|
|
||
|
|
def apply_samples_to_data(self, all_data, algo_samples):
|
||
|
|
# Take samples from algorithm and match them to samples in data
|
||
|
|
data_samples, unused_data = [], []
|
||
|
|
sample_positions = set()
|
||
|
|
for sample in algo_samples:
|
||
|
|
sample_positions.add(self.find_sample_position_with_min_error(all_data, sample))
|
||
|
|
|
||
|
|
for i in range(len(all_data)):
|
||
|
|
if i in sample_positions:
|
||
|
|
data_samples.append(all_data[i])
|
||
|
|
else:
|
||
|
|
unused_data.append(all_data[i])
|
||
|
|
|
||
|
|
return data_samples, unused_data
|
||
|
|
|
||
|
|
def find_sample_position_with_min_error(self, data, sampled_vals):
|
||
|
|
min_error = 0
|
||
|
|
sample_pos = 0
|
||
|
|
count = 0
|
||
|
|
for data_slice in data:
|
||
|
|
error = self.squared_error(data_slice, sampled_vals)
|
||
|
|
if min_error == 0 or error < min_error:
|
||
|
|
min_error = error
|
||
|
|
sample_pos = count
|
||
|
|
count += 1
|
||
|
|
return sample_pos
|
||
|
|
|
||
|
|
def squared_error(self, list_a, list_b):
|
||
|
|
#print('a:',list_a, 'b:', list_b)
|
||
|
|
error_sum = 0;
|
||
|
|
for a,b in zip(list_a, list_b):
|
||
|
|
error_sum+=(a-b)**2
|
||
|
|
return error_sum
|
||
|
|
|
||
|
|
|
||
|
|
def get_max_min_from_datasets(self, dir):
|
||
|
|
if not os.path.isdir(dir):
|
||
|
|
print("Input Directory not found:",dir)
|
||
|
|
return [], [], []
|
||
|
|
|
||
|
|
# Assuming all files are CSV
|
||
|
|
data_files = [f for f in os.listdir(dir) if os.path.isfile(os.path.join(dir, f))]
|
||
|
|
maxs,mins,sums,total_count = [],[],[],0
|
||
|
|
for file in data_files:
|
||
|
|
data = self.get_data(os.path.join(dir, file))
|
||
|
|
# Get max, min, sum, and count from every file
|
||
|
|
data_max, data_min, data_sum, count = [],[],[], 0
|
||
|
|
for feature_list in data:
|
||
|
|
data_max.append(max(feature_list))
|
||
|
|
data_min.append(min(feature_list))
|
||
|
|
data_sum.append(sum(feature_list))
|
||
|
|
count = len(feature_list)
|
||
|
|
|
||
|
|
# Aggregate the data
|
||
|
|
if not maxs or not mins or not sums:
|
||
|
|
maxs,mins,sums,total_count = data_max,data_min,data_sum,count
|
||
|
|
else:
|
||
|
|
for i in range(len(maxs)):
|
||
|
|
maxs[i] = max(data_max[i], maxs[i])
|
||
|
|
mins[i] = min(data_min[i], mins[i])
|
||
|
|
sums[i] = data_sum[i]+sums[i]
|
||
|
|
total_count+=count
|
||
|
|
|
||
|
|
avgs = [s/total_count for s in sums]
|
||
|
|
return maxs,mins,avgs
|
||
|
|
|
||
|
|
def get_data_and_scale(self, file_name, sample_dir):
|
||
|
|
maxs,mins,avgs = self.get_max_min_from_datasets(sample_dir)
|
||
|
|
|
||
|
|
# Get data
|
||
|
|
all_data = self.get_data(file_name)
|
||
|
|
|
||
|
|
# Scale data from file
|
||
|
|
self_scaled_data = [[] for _ in range(len(all_data[0]))]
|
||
|
|
self_maxs,self_mins = [],[]
|
||
|
|
for feature_list, cur_max, cur_min in zip(all_data,maxs, mins):
|
||
|
|
for i in range(len(feature_list)):
|
||
|
|
self_scaled_data[i].append((feature_list[i]-cur_min)/(cur_max-cur_min))
|
||
|
|
|
||
|
|
return np.asarray(self_scaled_data)
|
||
|
|
|
||
|
|
def rescale_data(self, data, old_maxs, old_mins, new_maxs, new_mins):
|
||
|
|
# unscale from old values, rescale by new values
|
||
|
|
data_new_scaling = []
|
||
|
|
for data_row in data:
|
||
|
|
scaled_row = []
|
||
|
|
for val, old_max,old_min, cur_max, cur_min in zip(data_row, old_maxs,old_mins, new_maxs, new_mins):
|
||
|
|
unscaled_data = val*(old_max-old_min) + old_min
|
||
|
|
scaled_row.append((unscaled_data-cur_min)/(cur_max-cur_min))
|
||
|
|
|
||
|
|
data_new_scaling.append(scaled_row)
|
||
|
|
|
||
|
|
return data_new_scaling
|
||
|
|
|
||
|
|
def sample_from_file(self, num_samples, file_name, sample_dir=None):
|
||
|
|
if sample_dir:
|
||
|
|
maxs,mins,avgs = self.get_max_min_from_datasets(sample_dir)
|
||
|
|
else:
|
||
|
|
maxs,mins,avgs = [], [], []
|
||
|
|
|
||
|
|
# Get data
|
||
|
|
all_data = self.get_data(file_name)
|
||
|
|
|
||
|
|
# Get algorithms sample points, assuming hypercube for now
|
||
|
|
num_labels = 1
|
||
|
|
inp_dims = len(all_data) - num_labels
|
||
|
|
#samples = dp.hycusampling.lhd_matrix(num_samples, inp_dims)/num_samples
|
||
|
|
#samples = dp.hycusampling.halton(num_samples, inp_dims)
|
||
|
|
samples = dp.hycusampling.random_uniform(num_samples, inp_dims)
|
||
|
|
|
||
|
|
|
||
|
|
# Scale data from file
|
||
|
|
self_scaled_data = [[] for _ in range(len(all_data[0]))]
|
||
|
|
self_maxs,self_mins = [],[]
|
||
|
|
for feature_list in all_data:
|
||
|
|
max_val = max(feature_list)
|
||
|
|
self_maxs.append(max_val)
|
||
|
|
min_val = min(feature_list)
|
||
|
|
self_mins.append(min_val)
|
||
|
|
for i in range(len(feature_list)):
|
||
|
|
self_scaled_data[i].append((feature_list[i]-min_val)/(max_val-min_val))
|
||
|
|
# Apply algorithm sampling points to available data
|
||
|
|
sampled_data, unused_data = self.apply_samples_to_data(self_scaled_data,samples)
|
||
|
|
#print(sampled_data)
|
||
|
|
|
||
|
|
#unscale values and rescale using all available data (both sampled and unused points rescaled)
|
||
|
|
if len(maxs)!=0 and len(mins)!=0:
|
||
|
|
sampled_data = self.rescale_data(sampled_data, self_maxs,self_mins, maxs, mins)
|
||
|
|
unused_new_scaling = self.rescale_data(unused_data, self_maxs,self_mins, maxs, mins)
|
||
|
|
|
||
|
|
return np.asarray(sampled_data), np.asarray(unused_new_scaling)
|
||
|
|
|
||
|
|
def unscale_data(self, data, ref_dir, pos=None):
|
||
|
|
if ref_dir:
|
||
|
|
maxs,mins,avgs = self.get_max_min_from_datasets(ref_dir)
|
||
|
|
else:
|
||
|
|
print("Must provide reference data to unscale")
|
||
|
|
return None
|
||
|
|
|
||
|
|
# Hard coded to only convert the last max/min (i.e. the label of the data)
|
||
|
|
if pos == None:
|
||
|
|
maxs,mins,avgs = [maxs[-1]],[mins[-1]],[avgs[-1]]
|
||
|
|
else:
|
||
|
|
maxs,mins,avgs = [maxs[pos]],[mins[pos]],[avgs[pos]]
|
||
|
|
unscaled_data = []
|
||
|
|
for data_row in data:
|
||
|
|
unscaled_row = []
|
||
|
|
for val, cur_max, cur_min in zip(data_row, maxs, mins):
|
||
|
|
unscaled_val = val*(cur_max-cur_min) + cur_min
|
||
|
|
unscaled_row.append(unscaled_val)
|
||
|
|
unscaled_data.append(unscaled_row)
|
||
|
|
|
||
|
|
return unscaled_data
|
||
|
|
|
||
|
|
def abs_error(self, labels, preds):
|
||
|
|
total_error = 0
|
||
|
|
for label_i, pred_i in zip(labels, preds):
|
||
|
|
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
|
||
|
|
# print(cur_error)
|
||
|
|
total_error += cur_error
|
||
|
|
return total_error/len(labels)
|
||
|
|
|
||
|
|
def max_error(self, labels, preds):
|
||
|
|
mx_error = 0
|
||
|
|
for label_i, pred_i in zip(labels, preds):
|
||
|
|
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
|
||
|
|
mx_error = max(cur_error, mx_error)
|
||
|
|
return mx_error
|
||
|
|
|
||
|
|
def min_error(self, labels, preds):
|
||
|
|
mn_error = 1
|
||
|
|
for label_i, pred_i in zip(labels, preds):
|
||
|
|
cur_error = abs(label_i[0]-pred_i[0])/label_i[0]
|
||
|
|
mn_error = min(cur_error, mn_error)
|
||
|
|
return mn_error
|