2021-09-23 02:06:37 +02:00
<?xml version="1.0" encoding="utf-8"?>
<klayout-macro>
<description/>
<version/>
<category>drc</category>
<prolog/>
<epilog/>
<doc/>
<autorun>false</autorun>
<autorun-early>false</autorun-early>
<shortcut/>
<show-in-menu>true</show-in-menu>
<group-name>drc_scripts</group-name>
<menu-path>tools_menu.drc.end</menu-path>
<interpreter>dsl</interpreter>
<dsl-interpreter-name>drc-dsl-xml</dsl-interpreter-name>
<text>#
# MOSIS SCMOS DRC
#
########################
tstart = Time.now
# optionnal for a batch launch : klayout -b r drc_SCMOS.lydrc -rd input=my_layout.gds -rd topcell=your_topcell -rd output=SCMOS_DRC.lyrdb
if $input
if $topcell
source($input,$topcell)
else
source($input)
end
end
if $output
report("SCMOS DRC runset", $output)
else
report("SCMOS DRC runset", "SCMOS_DRC.lyrdb")
end
# PROCESS OPTIONS
########################
LAMBDA = 0.2
SUBM = true
DEEP = false
NBR_OF_METALS = 6
DFM = false
# design rules limits definitions
########################
R1_3 = ( 6 *LAMBDA ).round(3)
R2_1 = ( 3 *LAMBDA ).round(3)
R2_2 = ( 3 *LAMBDA ).round(3)
R2_4 = ( 3 *LAMBDA ).round(3)
R2_5 = ( 4 *LAMBDA ).round(3)
R3_1 = ( 2 *LAMBDA ).round(3)
R3_5 = ( 1 *LAMBDA ).round(3)
R4_1 = ( 3 *LAMBDA ).round(3)
R4_2 = ( 2 *LAMBDA ).round(3)
R5_1 = ( 2 *LAMBDA ).round(3)
R5_2 = ( 1.5 *LAMBDA ).round(3)
R5_4 = ( 2 *LAMBDA ).round(3)
R5_2_b = ( 1 *LAMBDA ).round(3)
R5_6_b = ( 2 *LAMBDA ).round(3)
R5_7_b = ( 3 *LAMBDA ).round(3)
R6_1 = ( 2 *LAMBDA ).round(3)
R6_2 = ( 1.5 *LAMBDA ).round(3)
R6_4 = ( 2 *LAMBDA ).round(3)
R6_2_b = ( 1 *LAMBDA ).round(3)
R6_5_b = ( 5 *LAMBDA ).round(3)
R6_6_b = ( 2 *LAMBDA ).round(3)
R6_7_b = ( 3 *LAMBDA ).round(3)
R6_8_b = ( 4 *LAMBDA ).round(3)
R7_1 = ( 3 *LAMBDA ).round(3)
R7_3 = ( 1 *LAMBDA ).round(3)
R8_2 = ( 3 *LAMBDA ).round(3)
R8_3 = ( 1 *LAMBDA ).round(3)
R8_4 = ( 2 *LAMBDA ).round(3)
R9_1 = ( 3 *LAMBDA ).round(3)
R9_3 = ( 1 *LAMBDA ).round(3)
R10_1 = ( 60 *LAMBDA ).round(3)
R10_2 = ( 20 *LAMBDA ).round(3)
R10_3 = ( 6 *LAMBDA ).round(3)
R10_4 = ( 30 *LAMBDA ).round(3)
R10_5 = ( 15 *LAMBDA ).round(3)
R11_2 = ( 3 *LAMBDA ).round(3)
R11_4 = ( 2 *LAMBDA ).round(3)
R11_6 = ( 2 *LAMBDA ).round(3)
R12_1 = ( 2 *LAMBDA ).round(3)
R12_2 = ( 3 *LAMBDA ).round(3)
R12_3 = ( 2 *LAMBDA ).round(3)
R12_4 = ( 1 *LAMBDA ).round(3)
R12_5 = ( 2 *LAMBDA ).round(3)
R12_6 = ( 3 *LAMBDA ).round(3)
R13_1 = ( 2 *LAMBDA ).round(3)
R13_3 = ( 3 *LAMBDA ).round(3)
R13_4 = ( 2 *LAMBDA ).round(3)
R13_5 = ( 3 *LAMBDA ).round(3)
R14_2 = ( 3 *LAMBDA ).round(3)
R14_3 = ( 1 *LAMBDA ).round(3)
R14_4 = ( 2 *LAMBDA ).round(3)
if NBR_OF_METALS > 3
R15_3 = ( 1 *LAMBDA ).round(3)
else
R15_3 = ( 2 *LAMBDA ).round(3)
end
R16_1 = ( 2 *LAMBDA ).round(3)
R16_2 = ( 3 *LAMBDA ).round(3)
R16_3 = ( 2 *LAMBDA ).round(3)
R16_4 = ( 4 *LAMBDA ).round(3)
R16_5 = ( 2 *LAMBDA ).round(3)
R16_6 = ( 2 *LAMBDA ).round(3)
R16_7 = ( 6 *LAMBDA ).round(3)
R16_8 = ( 4 *LAMBDA ).round(3)
R16_9 = ( 2 *LAMBDA ).round(3)
R16_10 = ( 3 *LAMBDA ).round(3)
R16_11 = ( 2 *LAMBDA ).round(3)
R18_1 = ( 3 *LAMBDA ).round(3)
R18_2 = ( 2 *LAMBDA ).round(3)
R18_3 = ( 3 *LAMBDA ).round(3)
R18_4 = ( 2 *LAMBDA ).round(3)
R18_5 = ( 6 *LAMBDA ).round(3)
R20_1 = ( 4 *LAMBDA ).round(3)
R20_2 = ( 4 *LAMBDA ).round(3)
R20_3 = ( 2 *LAMBDA ).round(3)
R20_4 = ( 2 *LAMBDA ).round(3)
R20_5 = ( 2 *LAMBDA ).round(3)
R20_7 = ( 5 *LAMBDA ).round(3)
R20_8 = ( 7 *LAMBDA ).round(3)
R20_9 = ( 2 *LAMBDA ).round(3)
R20_10 = ( 3 *LAMBDA ).round(3)
R21_2 = ( 3 *LAMBDA ).round(3)
R21_3 = ( 1 *LAMBDA ).round(3)
if NBR_OF_METALS > 4
R22_3 = ( 1 *LAMBDA ).round(3)
else
R22_3 = ( 2 *LAMBDA ).round(3)
end
R23_1 = ( 8 *LAMBDA ).round(3)
R23_2 = ( 4 *LAMBDA ).round(3)
R23_3 = ( 8 *LAMBDA ).round(3)
R23_4 = ( 3 *LAMBDA ).round(3)
R23_5 = ( 2 *LAMBDA ).round(3)
R23_6 = ( 2 *LAMBDA ).round(3)
R23_7 = ( 2 *LAMBDA ).round(3)
R23_8 = ( 4 *LAMBDA ).round(3)
R23_9 = ( 2 *LAMBDA ).round(3)
R24_1 = ( 4 *LAMBDA ).round(3)
R24_2 = ( 4 *LAMBDA ).round(3)
R24_3 = ( 4 *LAMBDA ).round(3)
R24_4 = ( 4 *LAMBDA ).round(3)
R24_5 = ( 3 *LAMBDA ).round(3)
R27_1 = ( 4 *LAMBDA ).round(3)
R27_2 = ( 4 *LAMBDA ).round(3)
R27_3 = ( 2 *LAMBDA ).round(3)
R27_4 = ( 2 *LAMBDA ).round(3)
R27_5 = ( 2 *LAMBDA ).round(3)
R27_7 = ( 5 *LAMBDA ).round(3)
R27_8 = ( 7 *LAMBDA ).round(3)
R27_9 = ( 2 *LAMBDA ).round(3)
if !SUBM && !DEEP
R1_1 = ( 10 *LAMBDA ).round(3)
R1_2 = ( 9 *LAMBDA ).round(3)
R2_3 = ( 5 *LAMBDA ).round(3)
R3_2 = ( 2 *LAMBDA ).round(3)
R3_2_a = ( 2 *LAMBDA ).round(3)
R3_3 = ( 2 *LAMBDA ).round(3)
R3_4 = ( 3 *LAMBDA ).round(3)
R4_3 = ( 1 *LAMBDA ).round(3)
R4_4 = ( 2 *LAMBDA ).round(3)
R5_3 = ( 2 *LAMBDA ).round(3)
R5_5_b = ( 4 *LAMBDA ).round(3)
R6_3 = ( 2 *LAMBDA ).round(3)
R7_2 = ( 2 *LAMBDA ).round(3)
R7_4 = ( 4 *LAMBDA ).round(3)
R8_1 = ( 2 *LAMBDA ).round(3)
R8_5 = ( 2 *LAMBDA ).round(3)
R9_2 = ( 3 *LAMBDA ).round(3)
R9_4 = ( 6 *LAMBDA ).round(3)
R11_1 = ( 3 *LAMBDA ).round(3)
R11_3 = ( 2 *LAMBDA ).round(3)
R11_5 = ( 3 *LAMBDA ).round(3)
R13_2 = ( 2 *LAMBDA ).round(3)
R14_1 = ( 2 *LAMBDA ).round(3)
if NBR_OF_METALS > 3
R15_1 = ( 3 *LAMBDA ).round(3)
R15_2 = ( 3 *LAMBDA ).round(3)
R15_4 = ( 6 *LAMBDA ).round(3)
else
R15_1 = ( 6 *LAMBDA ).round(3)
R15_2 = ( 4 *LAMBDA ).round(3)
R15_4 = ( 8 *LAMBDA ).round(3)
end
R17_1 = ( 10 *LAMBDA ).round(3)
R17_2 = ( 9 *LAMBDA ).round(3)
R17_3 = ( 5 *LAMBDA ).round(3)
R17_4 = ( 5 *LAMBDA ).round(3)
R20_11 = ( 3 *LAMBDA ).round(3)
R21_1 = ( 2 *LAMBDA ).round(3)
if NBR_OF_METALS > 4
R22_1 = ( 3 *LAMBDA ).round(3)
R22_2 = ( 3 *LAMBDA ).round(3)
R22_4 = ( 6 *LAMBDA ).round(3)
else
R22_1 = ( 6 *LAMBDA ).round(3)
R22_2 = ( 6 *LAMBDA ).round(3)
R22_4 = ( 12 *LAMBDA ).round(3)
end
end
if SUBM
R1_1 = ( 12 *LAMBDA ).round(3)
# We are assuming the wells are at the same potential since
# DRC can't tell otherwise
#R1_2 = ( 18 *LAMBDA ).round(3)
R1_2 = ( 6 *LAMBDA ).round(3)
R2_3 = ( 6 *LAMBDA ).round(3)
R3_2 = ( 3 *LAMBDA ).round(3)
R3_2_a = ( 3 *LAMBDA ).round(3)
R3_3 = ( 2 *LAMBDA ).round(3)
R3_4 = ( 3 *LAMBDA ).round(3)
R4_3 = ( 1 *LAMBDA ).round(3)
R4_4 = ( 2 *LAMBDA ).round(3)
R5_3 = ( 3 *LAMBDA ).round(3)
R5_5_b = ( 5 *LAMBDA ).round(3)
R6_3 = ( 3 *LAMBDA ).round(3)
R7_2 = ( 3 *LAMBDA ).round(3)
R7_4 = ( 6 *LAMBDA ).round(3)
R8_1 = ( 2 *LAMBDA ).round(3)
R8_5 = ( 2 *LAMBDA ).round(3)
R9_2 = ( 3 *LAMBDA ).round(3)
R9_4 = ( 6 *LAMBDA ).round(3)
R11_1 = ( 7 *LAMBDA ).round(3)
R11_3 = ( 5 *LAMBDA ).round(3)
R11_5 = ( 6 *LAMBDA ).round(3)
R13_2 = ( 3 *LAMBDA ).round(3)
R14_1 = ( 2 *LAMBDA ).round(3)
if NBR_OF_METALS > 3
R15_1 = ( 3 *LAMBDA ).round(3)
R15_2 = ( 3 *LAMBDA ).round(3)
R15_4 = ( 6 *LAMBDA ).round(3)
else
R15_1 = ( 5 *LAMBDA ).round(3)
R15_2 = ( 3 *LAMBDA ).round(3)
R15_4 = ( 6 *LAMBDA ).round(3)
end
R17_1 = ( 12 *LAMBDA ).round(3)
R17_2 = ( 18 *LAMBDA ).round(3)
R17_3 = ( 6 *LAMBDA ).round(3)
R17_4 = ( 6 *LAMBDA ).round(3)
R20_11 = ( 5 *LAMBDA ).round(3)
R21_1 = ( 2 *LAMBDA ).round(3)
if NBR_OF_METALS > 4
R22_1 = ( 3 *LAMBDA ).round(3)
R22_2 = ( 3 *LAMBDA ).round(3)
R22_4 = ( 6 *LAMBDA ).round(3)
else
R22_1 = ( 6 *LAMBDA ).round(3)
R22_2 = ( 6 *LAMBDA ).round(3)
R22_4 = ( 12 *LAMBDA ).round(3)
end
R25_1 = ( 2 *LAMBDA ).round(3)
R25_2 = ( 3 *LAMBDA ).round(3)
R25_3 = ( 1 *LAMBDA ).round(3)
if NBR_OF_METALS > 5
R26_1 = ( 3 *LAMBDA ).round(3)
R26_2 = ( 3 *LAMBDA ).round(3)
R26_3 = ( 1 *LAMBDA ).round(3)
R26_4 = ( 6 *LAMBDA ).round(3)
else
R26_1 = ( 4 *LAMBDA ).round(3)
R26_2 = ( 4 *LAMBDA ).round(3)
R26_3 = ( 2 *LAMBDA ).round(3)
R26_4 = ( 8 *LAMBDA ).round(3)
end
R28_1 = ( 40 *LAMBDA ).round(3)
R28_2 = ( 12 *LAMBDA ).round(3)
R28_3 = ( 4 *LAMBDA ).round(3)
R28_4 = ( 3 *LAMBDA ).round(3)
R28_5 = ( 4 *LAMBDA ).round(3)
R28_6 = ( 2 *LAMBDA ).round(3)
R28_7 = ( 25 *LAMBDA ).round(3)
R28_8 = ( 4 *LAMBDA ).round(3)
R28_9 = ( 8 *LAMBDA ).round(3)
R28_10 = ( 20 *LAMBDA ).round(3)
R28_11 = ( 40 *LAMBDA ).round(3)
R29_1 = ( 3 *LAMBDA ).round(3)
R29_2 = ( 4 *LAMBDA ).round(3)
R29_3 = ( 1 *LAMBDA ).round(3)
R30_1 = ( 5 *LAMBDA ).round(3)
R30_2 = ( 5 *LAMBDA ).round(3)
R30_3 = ( 1 *LAMBDA ).round(3)
R30_4 = ( 10 *LAMBDA ).round(3)
R31_1 = ( 30 *LAMBDA ).round(3)
R31_2 = ( 50 *LAMBDA ).round(3)
R31_3 = ( 15 *LAMBDA ).round(3)
R31_4 = ( 20 *LAMBDA ).round(3)
R31_5 = ( 35 *LAMBDA ).round(3)
R31_6 = ( 5 *LAMBDA ).round(3)
R31_7 = ( 30 *LAMBDA ).round(3)
R31_8 = ( 10 *LAMBDA ).round(3)
end
if DEEP
R1_1 = ( 12 *LAMBDA ).round(3)
# We are assuming the wells are at the same potential since
# DRC can't tell otherwise
#R1_2 = ( 18 *LAMBDA ).round(3)
R1_2 = ( 6 *LAMBDA ).round(3)
R2_3 = ( 6 *LAMBDA ).round(3)
R3_2 = ( 3 *LAMBDA ).round(3)
R3_2_a = ( 4 *LAMBDA ).round(3)
R3_3 = ( 2.5 *LAMBDA ).round(3)
R3_4 = ( 4 *LAMBDA ).round(3)
R4_3 = ( 1.5 *LAMBDA ).round(3)
R4_4 = ( 4 *LAMBDA ).round(3)
R5_3 = ( 4 *LAMBDA ).round(3)
R5_5_b = ( 5 *LAMBDA ).round(3)
R6_3 = ( 4 *LAMBDA ).round(3)
R7_2 = ( 3 *LAMBDA ).round(3)
R7_4 = ( 6 *LAMBDA ).round(3)
R8_1 = ( 3 *LAMBDA ).round(3)
R9_2 = ( 4 *LAMBDA ).round(3)
R9_4 = ( 8 *LAMBDA ).round(3)
R11_1 = ( 7 *LAMBDA ).round(3)
R11_3 = ( 5 *LAMBDA ).round(3)
R11_5 = ( 6 *LAMBDA ).round(3)
R13_2 = ( 3 *LAMBDA ).round(3)
R14_1 = ( 3 *LAMBDA ).round(3)
if NBR_OF_METALS > 3
R15_1 = ( 3 *LAMBDA ).round(3)
R15_2 = ( 4 *LAMBDA ).round(3)
R15_4 = ( 8 *LAMBDA ).round(3)
else
R15_1 = ( 5 *LAMBDA ).round(3)
R15_2 = ( 3 *LAMBDA ).round(3)
R15_4 = ( 6 *LAMBDA ).round(3)
end
R17_1 = ( 12 *LAMBDA ).round(3)
R17_2 = ( 18 *LAMBDA ).round(3)
R17_3 = ( 6 *LAMBDA ).round(3)
R17_4 = ( 6 *LAMBDA ).round(3)
R20_11 = ( 5 *LAMBDA ).round(3)
R21_1 = ( 3 *LAMBDA ).round(3)
if NBR_OF_METALS > 4
R22_1 = ( 3 *LAMBDA ).round(3)
R22_2 = ( 4 *LAMBDA ).round(3)
R22_4 = ( 8 *LAMBDA ).round(3)
else
R22_1 = ( 6 *LAMBDA ).round(3)
R22_2 = ( 6 *LAMBDA ).round(3)
R22_4 = ( 12 *LAMBDA ).round(3)
end
R25_1 = ( 3 *LAMBDA ).round(3)
R25_2 = ( 3 *LAMBDA ).round(3)
R25_3 = ( 1 *LAMBDA ).round(3)
if NBR_OF_METALS > 5
R26_1 = ( 3 *LAMBDA ).round(3)
R26_2 = ( 4 *LAMBDA ).round(3)
R26_3 = ( 1 *LAMBDA ).round(3)
R26_4 = ( 8 *LAMBDA ).round(3)
else
R26_1 = ( 4 *LAMBDA ).round(3)
R26_2 = ( 4 *LAMBDA ).round(3)
R26_3 = ( 2 *LAMBDA ).round(3)
R26_4 = ( 8 *LAMBDA ).round(3)
end
R28_1 = ( 45 *LAMBDA ).round(3)
R28_2 = ( 14 *LAMBDA ).round(3)
R28_3 = ( 5 *LAMBDA ).round(3)
R28_4 = ( 3 *LAMBDA ).round(3)
R28_5 = ( 5 *LAMBDA ).round(3)
R28_6 = ( 2 *LAMBDA ).round(3)
R28_7 = ( 25 *LAMBDA ).round(3)
R28_8 = ( 5 *LAMBDA ).round(3)
R28_9 = ( 9 *LAMBDA ).round(3)
R28_10 = ( 23 *LAMBDA ).round(3)
R28_11 = ( 45 *LAMBDA ).round(3)
R29_1 = ( 4 *LAMBDA ).round(3)
R29_2 = ( 4 *LAMBDA ).round(3)
R29_3 = ( 1 *LAMBDA ).round(3)
R30_1 = ( 5 *LAMBDA ).round(3)
R30_2 = ( 5 *LAMBDA ).round(3)
R30_3 = ( 2 *LAMBDA ).round(3)
R30_4 = ( 10 *LAMBDA ).round(3)
R31_1 = ( 34 *LAMBDA ).round(3)
R31_2 = ( 56 *LAMBDA ).round(3)
R31_3 = ( 17 *LAMBDA ).round(3)
R31_4 = ( 23 *LAMBDA ).round(3)
R31_5 = ( 39 *LAMBDA ).round(3)
R31_6 = ( 6 *LAMBDA ).round(3)
R31_7 = ( 34 *LAMBDA ).round(3)
R31_8 = ( 13 *LAMBDA ).round(3)
end
# KLAYOUT setttings
########################
# Use a tile size of 1mm
tiles(1000.um)
# Use a tile border of 10 micron:
tile_borders(1.um)
#no_borders
# Use 4 CPU cores
threads(4)
verbose(true)
# Define a new custom function that selects polygons by their number of holes:
# It will return a new layer containing those polygons with min to max holes.
# max can be nil to omit the upper limit.
class DRC::DRCLayer
def with_holes(min, max)
new_data = RBA::Region::new
self.data.each do |p|
if p.holes >= (min || 0) && (!max || p.holes <= max)
new_data.insert(p)
end
end
DRC::DRCLayer::new(@engine, new_data)
end
end
# layers definitions
########################
info("Layers definitions")
DNW = input(38,0)
NW = input(42,0)
PW = input(41,0)
CW = input(59,0)
AA = input(43,0)
TA = input(60,0)
PBase = input(58,0)
PL = input(46,0)
SB = input(29,0)
Nselect = input(45,0)
Pselect = input(44,0)
PO2 = input(56,0)
HR = input(34,0)
Contact = input(25,0)
ContactPoly = input(47,0)
ContactActive = input(48,0)
ContactPoly2 = input(55, 0)
CT = Contact + ContactPoly + ContactActive + ContactPoly2
M1 = input(49,0)
V1 = input(50,0)
M2 = input(51,0)
V2 = input(61,0)
M3 = input(62,0)
V3 = input(30,0)
M4 = input(31,0)
CTM = input(35,0)
V4 = input(32,0)
M5 = input(33,0)
V5 = input(36,0)
M6 = input(37,0)
Glass = input(52,0)
Pads = input(26,0)
# layers processing
########################
info("Layers processing")
#CHIP = extent.sized(1.0)
NP = AA & Nselect
PP = AA & Pselect
NSTP = NP.and(NW)
PSTP = PP.not(NW)
GATE = PL & AA
# DRC section
########################
info("DRC section")
### Deep NWell
DNW.ongrid(0.5*LAMBDA).output("DNW_offgrid", "Offgrid vertex on DNW")
DNW.with_angle(0 .. 45).output("DNW_angle", "Non 45 degree angle DNW")
DNW.edges.and(PW).output("DNW_PW","DNW cannot cross PWell")
DNW.width(R31_1, euclidian).output("31.1 DNW_width", "31.1 : Min. DNW width : #{R31_1}um")
DNW.isolated(R31_2, euclidian).output("31.2 DNW_space", "31.2 : Min. DNW spacing : #{R31_2}um")
NW.enclosing(DNW, R31_3, euclidian).output("31.3 NW_enc_DNW", "31.3 : Min. NWell enclosing DNW : #{R31_3}um")
DNW.enclosing(NW, R31_4, euclidian).output("31.4 DNW_enc_NW", "31.4 : Min. DNW enclosing NWell : #{R31_4}um")
DNW.separation(NW, R31_5, euclidian).output("31.5 DNW_sep_NW", "31.5 : Min. DNW separation NWell : #{R31_5}um")
DNW.not(NW).enclosing(NP, R31_6, euclidian).output("31.6 DNW_enc_NP", "31.6 : Min. PW in DNW enclosing N+ : #{R31_6}um")
DNW.separation(NP, R31_7, euclidian).output("31.7 DNW_sep_NP", "31.7 : Min. DNW separation N+ : #{R31_7}um")
### Nwell / Pwell
NW.ongrid(0.5*LAMBDA).output("NW_offgrid", "Offgrid vertex on NWell")
NW.with_angle(0 .. 45).output("NW_angle", "Non 45 degree angle NWell")
NW.and(PW).output("NW_PW","NW over PW not allowed")
NW.width(R1_1, euclidian).output("1.1 NW_width", "1.1 : Min. NWell width : #{R1_1}um")
NW.isolated(R1_2, euclidian).output("1.2 NW_space", "1.2 : Min. NWell spacing : #{R1_2}um")
NW.and(TA).isolated(18, euclidian).output("1.3 NW_TA_space", "1.3 : Min. NWell-TA spacing : #{R1_3}um")
PW.width(R1_1, euclidian).output("1.1 PW_width", "1.1 : Min. PWell width : #{R1_1}um")
PW.isolated(R1_2, euclidian).output("1.2 PW_space", "1.2 : Min. PWell spacing : #{R1_2}um")
PW.and(TA).isolated(R1_3, euclidian).output("1.3 PW_TA_space", "1.3 : Min. PWell-TA spacing : #{R1_3}um")
### Active
AA.ongrid(0.5*LAMBDA).output("AA_offgrid", "Offgrid vertex on AA")
AA.with_angle(0 .. 45).output("AA_angle", "Non 45 degree angle AA")
AA.width(R2_1, euclidian).output("2.1 AA_width", "2.1 : Min. active width : #{R2_1}um")
AA.space(R2_2, euclidian).output("2.2 AA_space", "2.2 : Min. active spacing : #{R2_2}3um")
NW.enclosing(PP.interacting(GATE), R2_3, euclidian).output("2.3 NW_enc_PP", "2.3 : Min. NWell enclosing Source/Drain : #{R2_3}um")
PW.enclosing(NP.interacting(GATE), R2_3, euclidian).output("2.3 PW_enc_NP", "2.3 : Min. PWell enclosing Source/Drain : #{R2_3}um")
NW.enclosing(NP, R2_4, euclidian).output("2.4 NW_enc_NP", "2.4 : Min. NWell enclosing Nstrap : #{R2_4}um")
PW.enclosing(PP, R2_4, euclidian).output("2.4 PW_enc_PP", "2.4 : Min. PWell enclosing Pstrap : #{R2_4}um")
NP.separation(PP, R2_5, euclidian).polygons.without_area(0).output("2.5 NP_space_PP", "2.5 : Min. N+ space P+ : #{R2_5}um (if not abutted)")
### TA Thick Active
TA.ongrid(0.5*LAMBDA).output("TA_offgrid", "Offgrid vertex on TA")
TA.with_angle(0 .. 45).output("TA_angle", "Non 45 degree angle TA")
TA.width(R24_1, euclidian).output("24.1 TA_width", "24.1 : Min. TA width : #{R24_1}um")
TA.space(R24_2, euclidian).output("24.2 TA_space", "24.2 : Min. TA spacing : #{R24_2}um")
TA.enclosing(AA, R24_3, euclidian).output("24.3 TA_enc_AA", "24.3 : Min. TA enclosing Active : #{R24_3}um")
TA.separation(AA, R24_4, euclidian).output("24.4 TA_space_AA", "24.4 : Min. TA spacing Active : #{R24_4}um")
TA.and(GATE).width(R24_5, euclidian).output("24.5 TA_gate_width", "24.5 : Min. TA Gate width : #{R24_5}um")
AA.edges.and(TA).output("24.6 AA_in_TA","24.6 : Active edge cannot cross TA")
### Poly
PL.ongrid(0.5*LAMBDA).output("POLY_offgrid", "Offgrid vertex on Poly")
PL.with_angle(0 .. 45).output("POLY_angle", "Non 45 degree angle Poly")
PL.width(R3_1, euclidian).output("3.1 POLY_width", "3.1 : Min. Poly width : #{R3_1}um")
PL.space(R3_2, euclidian).output("3.2 Poly_space", "3.2 : Min. Poly spacing : #{R3_2}um")
GATE.space(R3_2_a, euclidian).output("3.2a Gate_space", "3.2a : Min. Gate spacing : #{R3_2_a}um")
PL.enclosing(GATE, R3_3, projection).polygons.without_area(0).output("3.3 PL_enc_GATE", "3.3 : Min. Poly extention Gate : #{R3_3}um")
AA.enclosing(GATE, R3_4, projection).polygons.without_area(0).output("3.4 AA_enc_GATE", "3.4 : Min. Source/Drain length : #{R3_4}um")
PL.not(AA).separation(AA, 1, euclidian).polygons.without_area(0).output("3.5 PL_space_AA", "3.5 : Min. Poly on Field spacing Active : #{R3_5}um")
### Poly2
if !DEEP
PO2.ongrid(0.5*LAMBDA).output("POLY2_offgrid", "Offgrid vertex on Poly2")
PO2.with_angle(0 .. 45).output("POLY2_angle", "Non 45 degree angle Poly2")
PO2.width(R12_1, euclidian).output("12.1 POLY2_width", "12.1 : Min. Poly2 width : #{R12_1}um")
PO2.space(R12_2, euclidian).output("12.2 POLY2_space", "12.2 : Min. Poly2 space : #{R12_2}um")
# rule R12.3 not coded
PO2.not(AA).separation(AA, R12_4, euclidian).output("12.4 POLY2_space_AA"," 12.4 : Min. Poly2 on Field spacing Active : #{R12_4}um")
PO2.not(PL).separation(PL, R12_5, euclidian).output("12.5 POLY2_space_PL"," 12.5 : Min. Poly2 spacing Poly : #{R12_5}um")
PO2.enclosing(PL, R12_5, euclidian).output("12.5 POLY2_overlap_PL"," 12.5 : Min. Poly2 overlap of Poly : #{R12_5}um")
PO2.separation(AA.or(PL).and(CT), R12_6, euclidian).output("12.6 POLY2_space_CT"," 12.5 : Min. Poly2 spacing Poly or Active contact: #{R12_6}um")
PO2cap = PL & PO2
PO2cap.width(R11_1, euclidian).output("11.1 POLY2CAP_width", "11.1 : Min. Poly2 Capacitor width : #{R11_1}um")
PO2cap.space(R11_2, euclidian).output("11.2 POLY2CAP_space", "11.2 : Min. Poly2 Capacitor space : #{R11_2}um")
PL.enclosing(PO2cap, R11_3, euclidian).output("12.3 PL_overlap_POLY2CAP"," 11.3 : Min. Poly overlap of Poly2 Capacitor : #{R11_3}um")
PO2cap.edges.separation(AA.or(NW).edges, R11_4, euclidian).output("11.4 POLY2CAP_space_AA/NW"," 11.4 : Min. Poly2 Capacitor spacing Active or Well: #{R11_4}um")
PO2cap.separation(PL.and(CT), R11_5, euclidian).output("11.5 POLY2CAP_space_PLCT"," 11.5 : Min. Poly2 Capacitor spacing Poly contact: #{R11_5}um")
PO2cap.separation(M1.or(M2).or(M3), R11_6, euclidian).output("11.6 POLY2CAP_space_METAL"," 11.6 : Min. Poly2 Capacitor spacing any Metal: #{R11_6}um")
PO2cap.forget
### Capacitor Well
CW.ongrid(0.5*LAMBDA).output("CW_offgrid", "Offgrid vertex on CapacitorWell")
CW.with_angle(0 .. 45).output("CW_angle", "Non 45 degree angle CapacitorWell")
CW.width(R17_1, euclidian).output("17.1 CW_width", "17.1 : Min. CapacitorWell width : #{R17_1}um")
CW.space(R17_2, euclidian).output("17.2 CW_space", "17.2 : Min. CapacitorWell space : #{R17_2}um")
AA.not(CW).separation(CW, R17_3, euclidian).output("17.3 CW_space_AA"," 17.3 : Min. CapacitorWell spacing Active : #{R17_3}um")
CW.enclosing(AA, R17_4, euclidian).output("17.4 CW_overlap_AA"," 17.4 : Min. CapacitorWell overlap of Active : #{R17_4}um")
LinCap = PL & CW
LinCap.width(R18_1, euclidian).output("18.1 LC_width", "18.1 : Min. Linear Capacitor width : #{R18_1}um")
LinCap.space(R18_2, euclidian).output("18.2 LC_space", "18.2 : Min. Linear Capacitor space : #{R18_2}um")
LinCap.separation(AA.and(CT), R18_3, euclidian).output("18.3 LC_space_AACT"," 18.3 : Min. Linear Capacitor spacing Active contact : #{R18_3}um")
LinCap.separation(PL.and(CT), R18_4, euclidian).output("18.4 LC_space_PLCT"," 18.4 : Min. Linear Capacitor spacing Poly contact : #{R18_4}um")
LinCap.forget
end
### N+/P+ Select
Nselect.ongrid(0.5*LAMBDA).output("NSel_offgrid", "Offgrid vertex on Nselect")
Pselect.ongrid(0.5*LAMBDA).output("PSel_offgrid", "Offgrid vertex on Pselect")
Nselect.with_angle(0 .. 45).output("N+_angle", "Non 45 degree angle Nselect")
Pselect.with_angle(0 .. 45).output("N+_angle", "Non 45 degree angle Pselect")
NP.enclosing(GATE, R4_1, projection).polygons.without_area(0).output("4.1 N+_enc_GATE", "4.1 : Min. N+ extention Gate on Source/Drain : #{R4_1}um")
PP.enclosing(GATE, R4_1, projection).polygons.without_area(0).output("4.1 P+_enc_GATE", "4.1 : Min. P+ extention Gate on Source/Drain : #{R4_1}um")
Nselect.enclosing(AA, R4_2, euclidian).output("4.2 N+_enc_AA", "4.2 : Min. N+ enclosing Active : #{R4_2}um")
Pselect.enclosing(AA, R4_2, euclidian).output("4.2 P+_enc_AA", "4.2 : Min. P+ enclosing Active : #{R4_2}um")
Nselect.enclosing(CT, R4_3, euclidian).output("4. N+_enc_CT", "4.3 : Min. N+ enclosing Contact : #{R4_3}um")
Pselect.enclosing(CT, R4_3, euclidian).output("4.3 P+_enc_CT", "4.3 : Min. P+ enclosing Contact : #{R4_3}um")
Nselect.width(R4_4,euclidian).output("4.4 N+_width", "4.4 : Min. N+ width : #{R4_4}um")
Pselect.width(R4_4,euclidian).output("4.4 P+_width", "4.4 : Min. N+ width : #{R4_4}um")
Nselect.space(R4_4,euclidian).output("4.4 N+_space", "4.4 : Min. N+ spacing : #{R4_4}um")
Pselect.space(R4_4,euclidian).output("4.4 P+_space", "4.4 : Min. N+ spacing : #{R4_4}um")
Nselect.and(Pselect).output("4.4 N+_and_P+", "4.4 : N+ over P+ not allowed")
### HR - High Resistive
HR.ongrid(0.5*LAMBDA).output("HR_offgrid", "Offgrid vertex on HighRes")
HR.with_angle(0 .. 45).output("HR_angle", "Non 45 degree angle HighRes")
HR.width(R27_1, euclidian).output("27.1 HR_width", "27.1 : Min. HiRes width : #{R27_1}um")
HR.space(R27_2, euclidian).output("27.2 HR_space", "27.2 : Min. HiRes spacing : #{R27_2}um")
HR.and(CT).output("27.3 CT_and_HR", "27.3 : Contact on HiRes not allowed")
HR.separation(CT, R27_3, euclidian).output("27.3 HR_space_CT", "27.3 : Min. HiRes space to Contact : #{R27_3}um")
HR.separation(AA, R27_5, euclidian).output("27.4 HR_space_AA", "27.4 : Min. HiRes space to Active : #{R27_4}um")
HR.separation(PO2, R27_5, euclidian).output("27.5 HR_space_PO2", "27.5 : Min. HiRes space to Poly2 : #{R27_5}um")
HR.and(PO2).and(AA).output("27.6 HR_and_active", "27.6 : HiRes Po2 over Active not allowed")
HR.and(PO2).and(NW.or(PW)).output("27.6 HR_and_Well", "27.6 : HiRes Po2 over Well not allowed")
HR.and(PO2).width(R27_7,euclidian).output("27.7 HRPO2_width", "27.7 : Min. HiRes Poly2 width : #{R27_7}um")
HR.and(PO2).space(R27_8,euclidian).output("27.8 HRPO2_space", "27.8 : Min. HiRes Poly2 space : #{R27_8}um")
HR.enclosing(PO2, R27_9, projection).output("27.9 HR_enc_PO2", "27.9 : Min. HiRes enclosing Poly2 : #{R27_9}um")
### SB - Silicide block
SB.ongrid(0.5*LAMBDA).output("SB_offgrid", "Offgrid vertex on Sil. Block")
SB.with_angle(0 .. 45).output("SB_angle", "Non 45 degree angle Sil. Block")
SB.width(R20_1, euclidian).output("20.1 SB_width", "20.1 : Min. Sil. Block width : #{R20_1}um")
SB.space(R20_2, euclidian).output("20.2 SB_space", "20.2 : Min. Sil. Block spacing : #{R20_2}um")
SB.separation(CT, R20_3, euclidian).output("20.3 SB_space_CT", "20.3 : Min. Sil. Block space to Contact : #{R20_3}um")
SB.and(CT).output("20.3 SB_and_CT", "20.3 : Sil. Block over Contact not allowed")
SB.separation(AA, R20_4, euclidian).output("20.4 SB_space_AA", "20.4 : Min. Sil. Block space to Active : #{R20_4}um")
SB.separation(PL, R20_5, euclidian).output("20.5 SB_space_PL", "20.5 : Min. Sil. Block space to Poly : #{R20_5}um")
SB.and(GATE).output("20.6 SBres_overAA","20.6 : SB resistor over Active not allowed")
SB.and(PL).and(Nselect.or(Pselect)).output("20.6 SBres_over_WELL","20.6 : SB resistor over Well not allowed")
SB.and(PL).width(R20_7,euclidian).output("20.6 SBres_width", "20.7 : Min. SB resistor width : #{R20_7}um")
SB.and(PL).space(R20_7,euclidian).output("20.7 SBres_space", "20.7 : Min. SB resistor space : #{R20_7}um")
SB.enclosing(AA, R20_8, projection).polygons.without_area(0).output("20.8 SB_enc_AA", "20.8 : Min. Sil. Block enclosing Active : #{R20_8}um")
AA.enclosing(SB, R20_9, projection).polygons.without_area(0).output("20.9 AA_enc_SB", "20.9 : Min. Active enclosing Sil. Block : #{R20_9}um")
SB.enclosing(PL, R20_9, projection).output("20.8 SB_enc_PL", "20.8 : Min. Sil. Block enclosing Poly : #{R20_8}um")
PL.enclosing(SB, R20_8, projection).polygons.without_area(0).output("20.9 PL_enc_SB", "20.9 : Min. Poly enclosing Sil. Block : #{R20_9}um")
SB.separation(GATE, R20_11, euclidian).output("20.11 SB_space_GATE", "20.11 : Min. Sil. Block space to Gate : #{R20_11}um")
### Contact
CT.ongrid(0.5*LAMBDA).output("CT_offgrid", "Offgrid vertex on Contact")
CT.with_angle(0 .. 90).output("CT_angle", "Non 90 degree angle Contact")
CT.and(GATE).output("CT_and_GATE", "Contact on Gate not allowed")
CT.not(M1).output("CT_not_M1", "Contact without Metal1 not recommended")
# CT.drc(length != R5_1).output("5.1 CT_width", "5.1 : Exact Contact width : #{R5_1}um")
CT.width(R5_1).output("5.1 CT_width", "5.1 : Exact Contact width : #{R5_1}um")
CT.without_area(R5_1*R5_1).output("5.1 CT_area", "5.1 : Exact Contact Area : #{R5_1*R5_1}um2")
CT.space(R5_3, euclidian).output("5.3 CT_space", "5.3 : Contact spacing : #{R5_3}um")
PL.enclosing(CT, R5_2_b, euclidian).output("5.2 PL_enc_CT", "5.2 : Min. Poly enclosing Contact : #{R5_2_b}um")
AA.enclosing(CT, R6_2_b, euclidian).output("6.2 AA_enc_CT", "6.2 : Min. Active enclosing Contact : #{R6_2_b}um")
PO2.enclosing(CT, R13_3, euclidian).output("13.3 PO2_enc_CT", "13.3 : Min. Poly2 enclosing Contact : #{R13_3}um")
CT.and(AA).separation(GATE, R5_4, euclidian).output("5.4 CTAA_space_GATE", "5.4 : Min. ActiveContact space to Gate : #{R5_4}um")
CT.and(PL).separation(PL, R5_5_b, euclidian).polygons.without_area(0).output("5.5.b CTPL_space_Poly", "5.5.b : Min. PolyContact space to Poly : #{R5_5_b}um")
CT.and(PL).separation(AA, R5_6_b, euclidian).output("5.6.b CTPL_space_AA", "5.6.b : Min. PolyContact space to AA : #{R5_6_b}um")
# rule 5.7.b not coded
CT.and(AA).separation(AA, R6_5_b, euclidian).polygons.without_area(0).output("6.5.b CTAA_space_AA", "6.5.b : Min. ActiveContact space to AA : #{R6_5_b}um")
CT.and(AA).separation(PL, R6_6_b, euclidian).output("6.6.b CTAA_space_PL", "6.6.b : Min. ActiveContact space to Poly : #{R6_6_b}um")
CT.and(AA).separation(CT.and(PL), R6_7_b, euclidian).output("6.7.b CTAA_space_CTPL", "6.7.b : Min. ActiveContact space to PolyContact : #{R6_7_b}um")
# rule 6.8.b not coded
CT.and(PO2).separation(AA, R13_5, euclidian).output("13.5 CTPO2_space_AA", "13.5 : Min. Poly2Contact space to AA : #{R13_5}um")
CT.and(PO2).separation(PL, R13_5, euclidian).output("13.5 CTPO2_space_PL", "13.5 : Min. Poly2Contact space to Poly : #{R13_5}um")
M1.enclosing(CT, R7_3, euclidian).output("7.3 M1_enc_CT", "7.3 : Min. Metal1 enclosing Contact : #{R7_3}um")
### Metal 1
M1.ongrid(0.5*LAMBDA).output("M1_offgrid", "Offgrid vertex on ME1")
M1.with_angle(0 .. 45).output("M1_angle", "Non 45 degree angle ME1")
M1.holes.with_area(0 .. R7_1*R7_1).output("M1_holes", "Min. Metal1 holes area : #{R7_1*R7_1}um2")
M1.width(R7_1, euclidian).output("7.1 M1_width", "7.1 : Min. Metal1 width : #{R7_1}um")
M1.space(R7_2, euclidian).output("7.2 M1_space", "7.2 : Min. Metal1 spacing : #{R7_2}um")
M1.sized(-10*LAMBDA).sized(10*LAMBDA).separation(M1,R7_4,euclidian).polygons.without_area(0).output("7.4 M1_10_space", "7.4 : Space if at least one metal1 line width is > #{10*LAMBDA}um : #{R7_4}um")
### Via 1
V1.ongrid(0.5*LAMBDA).output("V1_offgrid", "Offgrid vertex on Via1")
V1.not(M1).output("V1_not_M1", "Via1 without Metal1 not allowed")
V1.not(M2).output("V1_not_M2", "Via1 without Metal2 not allowed")
V1.with_angle(0 .. 90).output("V1_angle", "Non 90 degree angle Via1")
V1.width(R8_1,square).output("8.1 V1_width", "8.1 : Exact Via1 width : #{R8_1}um")
V1.without_area(R8_1*R8_1).output("8.1 V1_width", "8.1 : Exact Via1 width : #{R8_1}um2")
V1.space(R8_2,euclidian).output("8.2 V1_space", "8.2 : Via1 spacing : #{R8_2}um")
M1.enclosing(V1, R8_3, euclidian).output("8.3 M1_enc_V1", "8.3 : Min. Metal1 enclosing Via1 : #{R8_3}um")
M2.enclosing(V1, R8_3, euclidian).output("9.3 M2_enc_V1", "9.3 : Min. Metal2 enclosing Via1 : #{R9_3}um")
if !DEEP && NBR_OF_METALS < 4
V1.and(CT).or(V1.separation(CT, R8_4, euclidian).polygons).output("8.4 V1_space_CT", "8.4 : Via1 space CT : #{R8_4}um")
V1.separation(PL + AA, R8_5, euclidian).output("8.5 V1_space_PL/AAedges", "8.5 : Via1 space to Poly orActive edges : #{R8_5}um")
end
if DFM
M1.and(M2).not(V1).with_holes(1,1).output("2_V1", "Min. 2 Via1 are needed")
end
### Metal 2
M2.ongrid(0.5*LAMBDA).output("M2_offgrid", "Offgrid vertex on ME2")
M2.with_angle(0 .. 45).output("M2_angle", "Non 45 degree angle ME2")
M2.width(R9_1, euclidian).output("9.1 M2_width", "9.1 : Min. Metal2 width : #{R9_1}um")
M2.space(R9_2, euclidian).output("9.2 M2_space", "9.2 : Min. Metal2 spacing : #{R9_2}um")
M2.sized(-10*LAMBDA).sized(10*LAMBDA).separation(M2,R9_4,euclidian).polygons.without_area(0).output("9.4 M2_10_space", "9.4 : Space if at least one metal2 line width is > #{10*LAMBDA}um : #{R9_4}um")
### Via 2
V2.ongrid(0.5*LAMBDA).output("V2_offgrid", "Offgrid vertex on Via2")
V2.not(M3).output("V2_not_M3", "Via2 without Metal3 not allowed")
V2.not(M2).output("V2_not_M2", "Via2 without Metal2 not allowed")
V2.with_angle(0 .. 90).output("V2_angle", "Non 90 degree angle Via2")
V2.width(R14_1, square).output("14.1 V2_width", "14.1 : Exact Via2 width : #{R14_1}um")
V2.without_area(R14_1*R14_1).output("14.1 V2_width", "14.1 : Exact Via2 width : #{R14_1}um2")
V2.space(R14_2, euclidian).output("14.2 V2_space", "14.2 : Via2 spacing : #{R14_2}um")
M2.enclosing(V2, R14_3, euclidian).output("14.3 M2_enc_V2", "14.3 : Min. Metal2 enclosing Via2 : #{R14_3}um")
M3.enclosing(V2, R15_3, euclidian).output("15.3 M3_enc_V2", "15.3 : Min. Metal3 enclosing Via2 : #{R15_3}um")
if !DEEP && NBR_OF_METALS < 4
V2.and(V1).or(V2.separation(V1, R14_4, euclidian).polygons).output("14.4 V2_space_V1", "14.4 : Via2 space Via1 : #{R14_4}um")
end
if DFM
M2.and(M3).not(V2).with_holes(1,1).output("2_V2", "Min. 2 Via2 are needed")
end
### Metal 3
M3.ongrid(0.5*LAMBDA).output("M3_offgrid", "Offgrid vertex on ME3")
M3.with_angle(0 .. 45).output("M3_angle", "Non 45 degree angle ME3")
M3.width(R15_1, euclidian).output("15.1 M3_width", "15.1 : Min. Metal3 width : #{R15_1}um")
M3.space(R15_2, euclidian).output("15.2 M3_space", "15.2 : Min. Metal3 spacing : #{R15_2}um")
M3.sized(-10*LAMBDA).sized(10*LAMBDA).separation(M3, R15_4, euclidian).polygons.without_area(0).output("15.4 M3_10_space", "15.4 : Space if at least one metal3 line width is > #{10*LAMBDA}um : #{R15_4}um")
### Cap Top Metal
if SUBM || DEEP
CTM.ongrid(0.5*LAMBDA).output("CTM_offgrid", "Offgrid vertex on CTM")
CTM.with_angle(0 .. 45).output("CTM_angle", "Non 45 degree angle CTM")
CTM.width(R28_1, euclidian).output("28.1 CTM_width", "28.1 : Min. Cap Top Metal width : #{R28_1}um")
CTM.space(R28_2, euclidian).output("28.2 CTM_space", "28.2 : Min. Cap Top Metal spacing : #{R28_2}um")
if NBR_OF_METALS == 4
TM = M4
VT = V3
TB = V2
end
if NBR_OF_METALS == 5
TM = M5
VT = V4
VB = V3
end
if NBR_OF_METALS == 6
TM = M6
VT = V5
VB = V4
end
TM.enclosing(CTM, R28_3, euclidian).output("28.3 TM_overlap_CTM", "28.3 : Min. Top Metal overlap Cap Top Metal : #{R28_3}um")
CTM.enclosing(VT, R28_4, euclidian).output("28.4 CTM_overlap_VT", "28.4 : Min. Cap Top Metal overlap Top Via : #{R28_4}um")
CTM.separation(VB, R28_5, euclidian).output("28.5 CTM_space_VB", "28.5 : Min. Cap Top Metal space Bottom Via : #{R28_5}um")
CTM.separation(VT, R28_5, euclidian).output("28.5 CTM_space_VT", "28.5 : Min. Cap Top Metal space Top Via : #{R28_5}um")
TM.enclosing(VB, R28_6, euclidian).output("28.6 TM_overlap_VB", "28.6 : Min. Top Metal overlap Bottom Via : #{R28_6}um")
# rule 28.7 not coded
CTM.not_interacting(VT).width(R28_8, euclidian).output("28.8 CTMdummies_width", "28.8 : Min. dummies Cap Top Metal width : #{R28_8}um")
TM.interacting(CTM).space(R28_9, euclidian).output("28.9 VT_space", "28.9 : Min. Top Metal spacing : #{R28_9}um")
VT.interacting(CTM).space(R28_10, euclidian).output("28.10 VT_space", "28.10 : Min. Top Via spacing : #{R28_10}um")
VB.interacting(TM.interacting(CTM)).space(R28_11, euclidian).output("28.11 VB_space", "28.11 : Min. Bottom Via spacing : #{R28_11}um")
CTM.sized(-15.um).sized(15.um).output("28.12 CTM_width", "28.12 : Max. CTM width/length : 30um")
TM.interacting(CTM).sized(-17.5.um).sized(17.5.um).output("28.13 TM_width", "28.13 : Max. Top Metal width/length : 35um")
CTM.and(VB).output("28.14 CTM_VB", "28.14 : no VB under CTM allowed")
CTM.and(AA.or(PL)).output("28.15 CTM_AA", "28.15 : no active or passive circuitry under CTM allowed")
end
### Via 3
if NBR_OF_METALS > 3
V3.ongrid(0.5*LAMBDA).output("V3_offgrid", "Offgrid vertex on Via3")
V3.not(M3).output("V3_not_M3", "Via3 without Metal3 not allowed")
V3.not(M4).output("V3_not_M4", "Via3 without Metal4 not allowed")
V3.with_angle(0 .. 90).output("V3_angle", "Non 90 degree angle Via3")
V3.width(R21_1, square).output("21.1 V3_width", "21.1 : Exact Via3 width : #{R21_1}um")
V3.without_area(R21_1*R21_1).output("21.1 V3_width", "21.1 : Exact Via3 width : #{R21_1}um2")
V3.space(R21_2, euclidian).output("21.2 V3_space", "21.2 : Via3 spacing : #{R21_2}um")
M3.enclosing(V3, R21_3, euclidian).output("21.3 M3_enc_V3", "21.3 : Min. Metal3 enclosing Via3 : #{R21_3}um")
M4.enclosing(V3, R22_3, euclidian).output("22.3 M4_enc_V3", "22.3 : Min. Metal4 enclosing Via3 : #{R22_3}um")
if DFM
M3.and(M4).not(V3).with_holes(1,1).output("2_V3", "Min. 2 Via3 are needed")
end
### Metal 4
M4.ongrid(0.5*LAMBDA).output("M4_offgrid", "Offgrid vertex on ME4")
M4.with_angle(0 .. 45).output("M4_angle", "Non 45 degree angle ME4")
M4.width(R22_1, euclidian).output("22.1 M4_width", "22.1 : Min. Metal4 width : #{R22_1}um")
M4.space(R22_2, euclidian).output("22.2 M4_space", "22.2 : Min. Metal4 spacing : #{R22_2}um")
M4.sized(-10*LAMBDA).sized(10*LAMBDA).separation(M4, R22_4, euclidian).polygons.without_area(0).output("22.4 M4_10_space", "22.4 : Space if at least one metal4 line width is > #{10*LAMBDA}um : #{R22_4}um")
### Via 4
if NBR_OF_METALS > 4
V4.ongrid(0.5*LAMBDA).output("V4_offgrid", "Offgrid vertex on Via4")
V4.not(M5).output("V4_not_M5", "Via4 without Metal5 not allowed")
V4.not(M4).output("V4_not_M4", "Via4 without Metal4 not allowed")
V4.with_angle(0 .. 90).output("V4_angle", "Non 90 degree angle Via4")
V4.width(R25_1, square).output("25.1 V4_width", "25.1 : Exact Via4 width : #{R25_1}um")
V4.without_area(R25_1*R25_1).output("25.1 V4_width", "25.1 : Via4 width : #{R25_1}um2")
V4.space(R25_2, euclidian).output("25.2 V4_space", "25.2 : Exact Via4 spacing : #{R25_2}um")
M4.enclosing(V4, R25_3, euclidian).output("25.3 M4_enc_V4", "25.3 : Min. Metal4 enclosing Via4 : #{R25_3}um")
M5.enclosing(V4, R26_3, euclidian).output("26.3 M5_enc_V4", "26.3 : Min. Metal5 enclosing Via4 : #{R26_3}um")
if DFM
M4.and(M5).not(V4).with_holes(1,1).output("2_V4", "Min. 2 Via4 are needed")
end
### Metal 5
M5.ongrid(0.5*LAMBDA).output("M5_offgrid", "Offgrid vertex on ME5")
M5.with_angle(0 .. 45).output("M5_angle", "Non 45 degree angle ME5")
M5.width(R26_1, euclidian).output("26.1 M5_width", "26.1 : Min. Metal5 width : #{R26_1}um")
M5.space(R26_2, euclidian).output("26.2 M5_space", "26.2 : Min. Metal5 spacing : #{R26_2}um")
M5.sized(-10*LAMBDA).sized(10*LAMBDA).separation(M5, R26_4, euclidian).polygons.without_area(0).output("26.4 M5_10_space", "26 .4 : Space if at least one metal5 line width is > #{10*LAMBDA}um : #{R26_4}um")
### Via 5
if NBR_OF_METALS > 5
V5.ongrid(0.5*LAMBDA).output("V5_offgrid", "Offgrid vertex on Via5")
V5.not(M5).output("V5_not_M5", "Via5 without Metal5 not allowed")
V5.not(M6).output("V5_not_M6", "Via5 without Metal6 not allowed")
V5.with_angle(0 .. 90).output("V4_angle", "Non 90 degree angle Via5")
V5.width(R29_1, square).output("29.1 V5_width", "29.1 : Exact Via5 width : #{R29_1}um")
V5.without_area(R29_1*R29_1).output("29.1 V5_width", "29.1 : Exact Via5 width : #{R29_1}um2")
V5.space(R29_2, euclidian).output("29.2 V5_space", "29.2 : Via5 spacing : #{R29_2}um")
M5.enclosing(V5, R29_3, euclidian).output("29.3 M5_enc_V5", "29.3 : Min. Metal5 enclosing Via5 : #{R29_3}um")
M6.enclosing(V5, R30_3, euclidian).output("30.3 M3_enc_V5", "30.3 : Min. Metal6 enclosing Via5 : #{R30_3}um")
if DFM
M5.and(M6).not(V5).with_holes(1,1).output("2_V5", "Min. 2 Via5 are needed")
end
### Metal 6
M6.ongrid(0.5*LAMBDA).output("M6_offgrid", "Offgrid vertex on ME6")
M6.with_angle(0 .. 45).output("M6_angle", "Non 45 degree angle ME5")
M6.width(R30_1, euclidian).output("30.1 M6_width", "30.1 : Min. Metal6 width : #{R30_1}um")
M6.space(R30_2, euclidian).output("30.2 M6_space", "30.2 : Min. Metal6 spacing : #{R30_2}um")
M6.sized(-10*LAMBDA).sized(10*LAMBDA).separation(M5, 10, euclidian).polygons.without_area(0).output("30.4 M6_10_space", "30.4 : Space if at least one metal6 line width is > #{10*LAMBDA}um : #{R30_4}um")
end
end
end
# time spent for the DRC
time = Time.now
hours = ((time - tstart)/3600).to_i
minutes = ((time - tstart)/60 - hours * 60).to_i
seconds = ((time - tstart) - (minutes * 60 + hours * 3600)).to_i
$stdout.write "DRC finished at : #{time.hour}:#{time.min}:#{time.sec} - DRC duration = #{hours} hrs. #{minutes} min. #{seconds} sec.\n"</text>
</klayout-macro>