2019-01-18 09:23:50 +01:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
"""
|
|
|
|
|
Run a regression test on various srams
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
|
from testutils import header,openram_test
|
|
|
|
|
import sys,os
|
|
|
|
|
sys.path.append(os.path.join(sys.path[0],".."))
|
|
|
|
|
import globals
|
|
|
|
|
from globals import OPTS
|
|
|
|
|
import debug
|
|
|
|
|
import csv
|
|
|
|
|
from sram import sram
|
|
|
|
|
from sram_config import sram_config
|
|
|
|
|
|
|
|
|
|
MODEL_DIR = "model_data/"
|
|
|
|
|
|
|
|
|
|
class data_collection(openram_test):
|
|
|
|
|
|
|
|
|
|
def runTest(self):
|
|
|
|
|
self.init_data_gen()
|
|
|
|
|
|
2019-01-23 01:40:46 +01:00
|
|
|
word_size, num_words, words_per_row = 4, 16, 1
|
|
|
|
|
self.evalulate_sram_on_corners(word_size, num_words, words_per_row)
|
|
|
|
|
globals.end_openram()
|
|
|
|
|
|
|
|
|
|
def evalulate_sram_on_corners(self, word_size, num_words, words_per_row):
|
|
|
|
|
"""Performs corner analysis on a single SRAM configuration"""
|
|
|
|
|
self.create_sram(word_size, num_words, words_per_row)
|
2019-01-18 09:23:50 +01:00
|
|
|
#Run on one size to initialize CSV writing (csv names come from return value). Strange, but it is okay for now.
|
2019-01-23 01:40:46 +01:00
|
|
|
corner_gen = self.corner_combination_generator()
|
|
|
|
|
init_corner = next(corner_gen)
|
|
|
|
|
sram_data = self.get_sram_data(init_corner)
|
|
|
|
|
self.initialize_csv_file(sram_data, word_size, num_words, words_per_row)
|
|
|
|
|
self.add_sram_data_to_csv(sram_data, word_size, num_words, words_per_row, init_corner)
|
2019-01-18 09:23:50 +01:00
|
|
|
|
2019-01-23 01:40:46 +01:00
|
|
|
#Run openRAM for all corners
|
|
|
|
|
for corner in corner_gen:
|
|
|
|
|
sram_data = self.get_sram_data(corner)
|
|
|
|
|
self.add_sram_data_to_csv(sram_data, word_size, num_words, words_per_row, corner)
|
|
|
|
|
|
2019-01-18 09:23:50 +01:00
|
|
|
self.close_files()
|
|
|
|
|
debug.info(1,"Data Generated")
|
|
|
|
|
|
|
|
|
|
def init_data_gen(self):
|
|
|
|
|
"""Initialization for the data test to run"""
|
2019-01-23 01:40:46 +01:00
|
|
|
globals.init_openram("config_data")
|
|
|
|
|
if OPTS.tech_name == "scmos":
|
|
|
|
|
debug.warning("Device models not up to date with scn4m technology.")
|
2019-01-18 09:23:50 +01:00
|
|
|
OPTS.spice_name="hspice" #Much faster than ngspice.
|
|
|
|
|
OPTS.trim_netlist = False
|
|
|
|
|
OPTS.netlist_only = True
|
|
|
|
|
OPTS.analytical_delay = False
|
|
|
|
|
# This is a hack to reload the characterizer __init__ with the spice version
|
|
|
|
|
from importlib import reload
|
|
|
|
|
import characterizer
|
|
|
|
|
reload(characterizer)
|
|
|
|
|
|
|
|
|
|
def close_files(self):
|
|
|
|
|
"""Closes all files stored in the file dict"""
|
|
|
|
|
for key,file in self.csv_files.items():
|
|
|
|
|
file.close()
|
2019-01-23 01:40:46 +01:00
|
|
|
|
|
|
|
|
def corner_combination_generator(self):
|
|
|
|
|
"""Generates corner using a combination of values from config file"""
|
|
|
|
|
processes = OPTS.process_corners
|
|
|
|
|
voltages = OPTS.supply_voltages
|
|
|
|
|
temperatures = OPTS.temperatures
|
|
|
|
|
for proc in processes:
|
|
|
|
|
for volt in voltages:
|
|
|
|
|
for temp in temperatures:
|
|
|
|
|
yield (proc, volt, temp)
|
|
|
|
|
|
|
|
|
|
|
2019-01-18 09:23:50 +01:00
|
|
|
def get_sram_configs(self):
|
|
|
|
|
"""Generate lists of wordsizes, number of words, and column mux size (words per row) to be tested."""
|
|
|
|
|
min_word_size = 1
|
|
|
|
|
max_word_size = 16
|
|
|
|
|
min_num_words_log2 = 4
|
|
|
|
|
max_num_words_log2 = 8
|
|
|
|
|
word_sizes = [i for i in range(min_word_size,max_word_size+1)]
|
|
|
|
|
num_words = [2**i for i in range(min_num_words_log2,max_num_words_log2+1)]
|
|
|
|
|
words_per_row = [1]
|
|
|
|
|
return word_sizes, num_words, words_per_row
|
|
|
|
|
|
2019-01-23 01:40:46 +01:00
|
|
|
def add_sram_data_to_csv(self, sram_data, word_size, num_words, words_per_row, corner):
|
2019-01-18 09:23:50 +01:00
|
|
|
"""Writes data to its respective CSV file. There is a CSV for each measurement target (wordline, sense amp enable, and models)"""
|
2019-01-23 01:40:46 +01:00
|
|
|
sram_specs = [word_size,num_words,words_per_row,*corner]
|
2019-01-18 09:23:50 +01:00
|
|
|
for data_name, data_values in sram_data.items():
|
|
|
|
|
self.csv_writers[data_name].writerow(sram_specs+sram_data[data_name])
|
|
|
|
|
debug.info(2,"Data Added to CSV file.")
|
|
|
|
|
|
2019-01-23 01:40:46 +01:00
|
|
|
def initialize_csv_file(self, sram_data, word_size, num_words, words_per_row):
|
2019-01-18 09:23:50 +01:00
|
|
|
"""Opens a CSV file and writer for every data set being written (wl/sae measurements and model values)"""
|
|
|
|
|
#CSV File writing
|
|
|
|
|
header_dict = self.delay_obj.get_all_signal_names()
|
|
|
|
|
self.csv_files = {}
|
|
|
|
|
self.csv_writers = {}
|
|
|
|
|
for data_name, header_list in header_dict.items():
|
2019-01-23 01:40:46 +01:00
|
|
|
file_name = '{}data_{}b_{}word_{}way_{}.csv'.format(MODEL_DIR,
|
|
|
|
|
word_size,
|
|
|
|
|
num_words,
|
|
|
|
|
words_per_row,
|
|
|
|
|
data_name)
|
|
|
|
|
self.csv_files[data_name] = open(file_name, 'w')
|
|
|
|
|
fields = ('word_size', 'num_words', 'words_per_row', 'process', 'voltage', 'temp', *header_list)
|
2019-01-18 09:23:50 +01:00
|
|
|
self.csv_writers[data_name] = csv.writer(self.csv_files[data_name], lineterminator = '\n')
|
|
|
|
|
self.csv_writers[data_name].writerow(fields)
|
2019-01-23 01:40:46 +01:00
|
|
|
|
|
|
|
|
def create_sram(self, word_size, num_words, words_per_row):
|
|
|
|
|
"""Generates the SRAM based on input configuration."""
|
2019-01-18 09:23:50 +01:00
|
|
|
c = sram_config(word_size=word_size,
|
|
|
|
|
num_words=num_words,
|
|
|
|
|
num_banks=1)
|
|
|
|
|
#minimum 16 rows. Most sizes below 16*16 will try to automatically use less rows unless enforced.
|
|
|
|
|
#if word_size*num_words < 256:
|
|
|
|
|
c.words_per_row=words_per_row #Force no column mux until incorporated into analytical delay.
|
|
|
|
|
|
2019-01-23 01:40:46 +01:00
|
|
|
debug.info(1, "Creating SRAM: {} bit, {} words, with 1 bank".format(word_size, num_words))
|
|
|
|
|
self.sram = sram(c, name="sram_{}ws_{}words".format(word_size, num_words))
|
2019-01-18 09:23:50 +01:00
|
|
|
|
2019-01-23 01:40:46 +01:00
|
|
|
self.sram_spice = OPTS.openram_temp + "temp.sp"
|
|
|
|
|
self.sram.sp_write(self.sram_spice)
|
|
|
|
|
|
|
|
|
|
def get_sram_data(self, corner):
|
|
|
|
|
"""Generates the delay object using the corner and runs a simulation for data."""
|
|
|
|
|
from characterizer import model_check
|
|
|
|
|
self.delay_obj = model_check(self.sram.s, self.sram_spice, corner)
|
2019-01-18 09:23:50 +01:00
|
|
|
|
|
|
|
|
import tech
|
|
|
|
|
#Only 1 at a time
|
2019-01-23 01:40:46 +01:00
|
|
|
probe_address = "1" * self.sram.s.addr_size
|
|
|
|
|
probe_data = self.sram.s.word_size - 1
|
2019-01-18 09:23:50 +01:00
|
|
|
loads = [tech.spice["msflop_in_cap"]*4]
|
|
|
|
|
slews = [tech.spice["rise_time"]*2]
|
|
|
|
|
|
|
|
|
|
sram_data = self.delay_obj.analyze(probe_address,probe_data,slews,loads)
|
|
|
|
|
return sram_data
|
|
|
|
|
|
|
|
|
|
def remove_lists_from_dict(self, dict):
|
|
|
|
|
"""Check all the values in the dict and replaces the list items with its first value."""
|
|
|
|
|
#This is useful because the tests performed here only generate 1 value but a list
|
|
|
|
|
#with 1 item makes writing it to a csv later harder.
|
|
|
|
|
for key in dict.keys():
|
|
|
|
|
if type(dict[key]) is list:
|
|
|
|
|
if len(dict[key]) > 0:
|
|
|
|
|
dict[key] = dict[key][0]
|
|
|
|
|
else:
|
|
|
|
|
del dict[key]
|
|
|
|
|
|
|
|
|
|
# instantiate a copdsay of the class to actually run the test
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
(OPTS, args) = globals.parse_args()
|
|
|
|
|
del sys.argv[1:]
|
|
|
|
|
header(__file__, OPTS.tech_name)
|
|
|
|
|
unittest.main()
|