OpenRAM/compiler/pin_layout.py

145 lines
4.3 KiB
Python
Raw Normal View History

from vector import vector
from tech import layer
class pin_layout:
"""
A class to represent a rectangular design pin. It is limited to a
single shape.
"""
def __init__(self, name, rect, layer_name_num):
self.name = name
# repack the rect as a vector, just in case
if type(rect[0])==vector:
self.rect = rect
else:
self.rect = [vector(rect[0]),vector(rect[1])]
# if it's a layer number look up the layer name. this assumes a unique layer number.
if type(layer_name_num)==int:
self.layer = layer.keys()[layer.values().index(layer_name_num)]
else:
self.layer=layer_name_num
def __str__(self):
""" override print function output """
return "({} layer={} ll={} ur={})".format(self.name,self.layer,self.rect[0],self.rect[1])
def __repr__(self):
""" override print function output """
return "({} layer={} ll={} ur={})".format(self.name,self.layer,self.rect[0],self.rect[1])
def __eq__(self, other):
""" Check if these are the same pins for duplicate checks """
if isinstance(other, self.__class__):
return (self.layer==other.layer and self.rect == other.rect)
else:
return False
def height(self):
""" Return height. Abs is for pre-normalized value."""
return abs(self.rect[1].y-self.rect[0].y)
def width(self):
""" Return width. Abs is for pre-normalized value."""
return abs(self.rect[1].x-self.rect[0].x)
def normalize(self):
""" Re-find the LL and UR points after a transform """
(first,second)=self.rect
ll = vector(min(first[0],second[0]),min(first[1],second[1]))
ur = vector(max(first[0],second[0]),max(first[1],second[1]))
self.rect=[ll,ur]
def transform(self,offset,mirror,rotate):
""" Transform with offset, mirror and rotation to get the absolute pin location.
We must then re-find the ll and ur. The master is the cell instance. """
(ll,ur) = self.rect
if mirror=="MX":
ll=ll.scale(1,-1)
ur=ur.scale(1,-1)
elif mirror=="MY":
ll=ll.scale(-1,1)
ur=ur.scale(-1,1)
elif mirror=="XY":
ll=ll.scale(-1,-1)
ur=ur.scale(-1,-1)
if rotate==90:
ll=ll.rotate_scale(-1,1)
ur=ur.rotate_scale(-1,1)
elif rotate==180:
ll=ll.scale(-1,-1)
ur=ur.scale(-1,-1)
elif rotate==270:
ll=ll.rotate_scale(1,-1)
ur=ur.rotate_scale(1,-1)
self.rect=[offset+ll,offset+ur]
self.normalize()
def center(self):
return vector(0.5*(self.rect[0].x+self.rect[1].x),0.5*(self.rect[0].y+self.rect[1].y))
def cx(self):
""" Center x """
return 0.5*(self.rect[0].x+self.rect[1].x)
def cy(self):
""" Center y """
return 0.5*(self.rect[0].y+self.rect[1].y)
# The four possible corners
def ll(self):
""" Lower left point """
return self.rect[0]
def ul(self):
""" Upper left point """
return vector(self.rect[0].x,self.rect[1].y)
def br(self):
""" Bottom right point """
return vector(self.rect[1].x,self.rect[0].y)
def ur(self):
""" Upper right point """
return self.rect[1]
# The possible y edge values
def uy(self):
""" Upper y value """
return self.rect[1].y
def by(self):
""" Bottom y value """
return self.rect[0].y
# The possible x edge values
def lx(self):
""" Left x value """
return self.rect[0].x
def rx(self):
""" Right x value """
return self.rect[1].x
# The edge centers
def rc(self):
""" Right center point """
return vector(self.rect[1].x,0.5*(self.rect[0].y+self.rect[1].y))
def lc(self):
""" Left center point """
return vector(self.rect[0].x,0.5*(self.rect[0].y+self.rect[1].y))
def uc(self):
""" Upper center point """
return vector(0.5*(self.rect[0].x+self.rect[1].x),self.rect[1].y)
def bc(self):
""" Bottom center point """
return vector(0.5*(self.rect[0].x+self.rect[1].x),self.rect[0].y)