// DESCRIPTION: Verilator: Verilog Test module // // This file ONLY is placed under the Creative Commons Public Domain, for // any use, without warranty, 2025 by Geza Lore. // SPDX-License-Identifier: CC0-1.0 `define signal(name, width) wire [width-1:0] name module t ( `include "portlist.vh" // Boilerplate generated by t_dfg_break_cycles.py rand_a, rand_b, srand_a, srand_b ); `include "portdecl.vh" // Boilerplate generated by t_dfg_break_cycles.py input rand_a; input rand_b; input srand_a; input srand_b; wire logic [63:0] rand_a; wire logic [63:0] rand_b; wire logic signed [63:0] srand_a; wire logic signed [63:0] srand_b; ////////////////////////////////////////////////////////////////////////// // Interesting user code to cover ////////////////////////////////////////////////////////////////////////// `signal(GRAY_SEL, 3); // UNOPTFLAT assign GRAY_SEL = rand_a[2:0] ^ 3'(GRAY_SEL[2:1]); `signal(GRAY_SHIFT, 3); // UNOPTFLAT assign GRAY_SHIFT = rand_a[2:0] ^ (GRAY_SHIFT >> 1); `signal(GRAY_REV_SEL, 3); // UNOPTFLAT assign GRAY_REV_SEL = rand_a[2:0] ^ {GRAY_REV_SEL[1:0], 1'b0}; `signal(GRAY_REV_SHIFT, 3); // UNOPTFLAT assign GRAY_REV_SHIFT = rand_a[2:0] ^ (GRAY_REV_SHIFT << 1); ////////////////////////////////////////////////////////////////////////// // Fill coverage ////////////////////////////////////////////////////////////////////////// `signal(CONCAT_RHS, 2); // UNOPTFLAT assign CONCAT_RHS[0] = rand_a[0]; assign CONCAT_RHS[1] = CONCAT_RHS[0]; `signal(CONCAT_LHS, 2); // UNOPTFLAT assign CONCAT_LHS[0] = CONCAT_LHS[1]; assign CONCAT_LHS[1] = rand_a[1]; `signal(CONCAT_MID, 3); // UNOPTFLAT assign CONCAT_MID[0] = |CONCAT_MID[2:1]; assign CONCAT_MID[2:1] = {rand_a[2], ~rand_a[2]}; `signal(SEL, 3); // UNOPTFLAT assign SEL[0] = rand_a[4]; assign SEL[1] = SEL[0]; assign SEL[2] = SEL[1]; `signal(EXTEND, 8); // UNOPTFLAT assign EXTEND[0] = rand_a[3]; assign EXTEND[3:1] = 3'(EXTEND[0]); assign EXTEND[4] = EXTEND[1]; assign EXTEND[6:5] = EXTEND[2:1]; assign EXTEND[7] = EXTEND[3]; `signal(NOT, 3); // UNOPTFLAT assign NOT = ~(rand_a[2:0] ^ 3'(NOT[2:1])); `signal(AND, 3); // UNOPTFLAT assign AND = rand_a[2:0] & 3'(AND[2:1]); `signal(OR, 3); // UNOPTFLAT assign OR = rand_a[2:0] | 3'(OR[2:1]); `signal(SHIFTR, 14); // UNOPTFLAT assign SHIFTR = { SHIFTR[6:5], // 13:12 SHIFTR[7:6], // 11:10 SHIFTR[5:4], // 9:8 SHIFTR[3:0] >> 2, // 7:4 rand_a[3:0] // 3:0 }; `signal(SHIFTR_VARIABLE, 2); // UNOPTFLAT assign SHIFTR_VARIABLE = rand_a[1:0] ^ ({1'b0, SHIFTR_VARIABLE[1]} >> rand_b[0]); `signal(SHIFTL, 14); // UNOPTFLAT assign SHIFTL = { SHIFTL[6:5], // 13:12 SHIFTL[7:6], // 11:10 SHIFTL[5:4], // 9:8 SHIFTL[3:0] << 2, // 7:4 rand_a[3:0] // 3:0 }; `signal(SHIFTL_VARIABLE, 2); // UNOPTFLAT assign SHIFTL_VARIABLE = rand_a[1:0] ^ ({SHIFTL_VARIABLE[0], 1'b0} << rand_b[0]); `signal(VAR_A, 2); // UNOPTFLAT wire logic [1:0] VAR_B; assign VAR_A = {rand_a[0], VAR_B[0]}; assign VAR_B = (VAR_A >> 1) ^ 2'(VAR_B[1]); `signal(REPLICATE, 4); // UNOPTFLAT assign REPLICATE = rand_a[3:0] ^ ({2{REPLICATE[3:2]}} >> 2); `signal(PARTIAL, 4); // UNOPTFLAT assign PARTIAL[0] = rand_a[0]; // PARTIAL[1] intentionally unconnected assign PARTIAL[3:2] = rand_a[3:2] ^ {PARTIAL[2], PARTIAL[0]}; wire [2:0] array_0 [2]; assign array_0[0] = rand_a[2:0]; assign array_0[1] = array_0[0]; `signal(ARRAY_0, 3); // UNOPTFLAT assign ARRAY_0 = array_0[1]; wire [2:0] array_1 [1]; assign array_1[0][0] = rand_a[0]; assign array_1[0][1] = array_1[0][0]; assign array_1[0][2] = array_1[0][1]; `signal(ARRAY_1, 3); // UNOPTFLAT assign ARRAY_1 = array_1[0]; wire [2:0] array_2a [2]; wire [2:0] array_2b [2]; assign array_2a[0][0] = rand_a[0]; assign array_2a[0][1] = array_2b[1][0]; assign array_2a[0][2] = array_2b[1][1]; assign array_2a[1] = array_2a[0]; assign array_2b = array_2a; `signal(ARRAY_2, 3); // UNOPTFLAT assign ARRAY_2 = array_2a[0]; wire [2:0] array_3 [2]; assign array_3[0] = rand_a[2:0] ^ array_3[1] >> 1; assign array_3[1] = array_3[0]; `signal(ARRAY_3, 3); // UNOPTFLAT assign ARRAY_3 = array_3[0]; `signal(ADD_A, 8); // UNOPTFLAT `signal(ADD_B, 8); `signal(ADD_C, 8); assign ADD_C = rand_b[7:0] + ADD_B; assign ADD_B = (ADD_A << 4) + rand_a[7:0]; assign ADD_A = {ADD_C[7], 7'd0}; `signal(SUB_A, 8); // UNOPTFLAT `signal(SUB_B, 8); `signal(SUB_C, 8); assign SUB_C = rand_b[7:0] - SUB_B; assign SUB_B = (SUB_A << 4) - rand_a[7:0]; assign SUB_A = {SUB_C[7], 7'd0}; `signal(EQ_A, 1); // UNOPTFLAT `signal(EQ_B, 3); assign EQ_A = EQ_B >> 1 == rand_b[2:0]; assign EQ_B = {rand_a[1:0], EQ_A}; `signal(NEQ_A, 1); // UNOPTFLAT `signal(NEQ_B, 3); assign NEQ_A = NEQ_B >> 1 != rand_b[2:0]; assign NEQ_B = {rand_a[1:0], NEQ_A}; `signal(LT_A, 1); // UNOPTFLAT `signal(LT_B, 3); assign LT_A = LT_B >> 1 < rand_b[2:0]; assign LT_B = {rand_a[1:0], LT_A}; `signal(LTE_A, 1); // UNOPTFLAT `signal(LTE_B, 3); assign LTE_A = LTE_B >> 1 <= rand_b[2:0]; assign LTE_B = {rand_a[1:0], LTE_A}; `signal(GT_A, 1); // UNOPTFLAT `signal(GT_B, 3); assign GT_A = GT_B >> 1 > rand_b[2:0]; assign GT_B = {rand_a[1:0], GT_A}; `signal(GTE_A, 1); // UNOPTFLAT `signal(GTE_B, 3); assign GTE_A = GTE_B >> 1 >= rand_b[2:0]; assign GTE_B = {rand_a[1:0], GTE_A}; `signal(COND_THEN, 3); // UNOPTFLAT assign COND_THEN = {rand_a[0], rand_a[0] ? 2'(COND_THEN << 2) : rand_b[1:0]}; `signal(COND_ELSE, 3); // UNOPTFLAT assign COND_ELSE = {rand_a[0], rand_a[0] ? rand_b[1:0] : 2'(COND_ELSE << 2)}; `signal(COND_COND, 3); // UNOPTFLAT assign COND_COND = {rand_a[0], (COND_COND >> 2) == 3'b001 ? rand_b[3:2] : rand_b[1:0]}; // verilator lint_off ALWCOMBORDER logic [3:0] always_0; always_comb begin always_0[3] = ~always_0[1]; always_0[2] = always_0[1]; always_0[0] = rand_a[0]; end assign always_0[1] = ~always_0[0]; `signal(ALWAYS_0, 4); // UNOPTFLAT assign ALWAYS_0 = always_0; // verilator lint_on ALWCOMBORDER // verilator lint_off ALWCOMBORDER logic [4:0] always_1; always_comb begin always_1[4] = always_1[0]; always_1[0] = rand_a[0]; always_1[3:2] = always_1[1:0]; end assign always_1[1] = always_1[0]; `signal(ALWAYS_1, 5); // UNOPTFLAT assign ALWAYS_1 = always_1; // verilator lint_on ALWCOMBORDER // verilator lint_off ALWCOMBORDER logic [3:0] always_2; always_comb begin always_2[2:0] = 3'((always_2 << 1) | 4'(rand_a[0])); always_2[3] = rand_a[0]; end `signal(ALWAYS_2, 4); // UNOPTFLAT assign ALWAYS_2 = always_2; // verilator lint_on ALWCOMBORDER logic [31:0] array_4[3]; // UNOPTFLAT // Input assign array_4[0] = rand_a[31:0]; // Sums 1 assign array_4[1][ 0 +: 3] = array_4[0][ 2 +: 2] + array_4[0][ 0 +: 2]; assign array_4[1][ 3 +: 3] = array_4[0][ 6 +: 2] + array_4[0][ 4 +: 2]; assign array_4[1][ 6 +: 3] = array_4[0][10 +: 2] + array_4[0][ 8 +: 2]; assign array_4[1][ 9 +: 3] = array_4[0][14 +: 2] + array_4[0][12 +: 2]; assign array_4[1][12 +: 3] = array_4[0][18 +: 2] + array_4[0][16 +: 2]; assign array_4[1][15 +: 3] = array_4[0][22 +: 2] + array_4[0][20 +: 2]; assign array_4[1][18 +: 3] = array_4[0][26 +: 2] + array_4[0][24 +: 2]; assign array_4[1][21 +: 3] = array_4[0][30 +: 2] + array_4[0][28 +: 2]; // Sums 2 assign array_4[2][ 0 +: 4] = array_4[1][ 3 +: 3] + array_4[1][ 0 +: 3]; assign array_4[2][ 4 +: 4] = array_4[1][ 9 +: 3] + array_4[1][ 6 +: 3]; assign array_4[2][ 8 +: 4] = array_4[1][15 +: 3] + array_4[1][12 +: 3]; assign array_4[2][12 +: 4] = array_4[1][21 +: 3] + array_4[1][18 +: 3]; // Outupt `signal(ARRAY_4, 32); assign ARRAY_4 = array_4[2]; logic [1:0] packed_0; // UNOPTFLAT logic packed_0_lsb; always_comb begin packed_0[1] = rand_b[1]; packed_0_lsb = packed_0[0]; end always_comb packed_0[0] = rand_b[0]; assign PACKED_0 = packed_0; `signal(PACKED_0, 2); `signal(PACKED_0_LSB, 1); assign PACKED_0_LSB = packed_0_lsb; endmodule