// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // DESCRIPTION: Verilator: Convert DfgGraph to AstModule // // Code available from: https://verilator.org // //************************************************************************* // // Copyright 2003-2025 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //************************************************************************* // // Convert DfgGraph back to AstModule. We recursively construct AstNodeExpr expressions for each // DfgVertex which represents a storage location (e.g.: DfgVarPacked), or has multiple sinks // without driving a storage location (and hence needs a temporary variable to duplication). The // recursion stops when we reach a DfgVertex representing a storage location (e.g.: DfgVarPacked), // or a vertex that that has multiple sinks (as these nodes will have a [potentially new temporary] // corresponding// storage location). Redundant variables (those whose source vertex drives // multiple variables) are eliminated when possible. Vertices driving multiple variables are // rendered once, driving an arbitrarily (but deterministically) chosen canonical variable, and the // corresponding redundant variables are assigned from the canonical variable. // //************************************************************************* #include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT #include "V3Dfg.h" #include "V3DfgPasses.h" #include "V3UniqueNames.h" #include VL_DEFINE_DEBUG_FUNCTIONS; namespace { // Create an AstNodeExpr out of a DfgVertex. For most AstNodeExpr subtypes, this can be done // automatically. For the few special cases, we provide specializations below template T_Node* makeNode(const T_Vertex* vtxp, Ops... ops) { T_Node* const nodep = new T_Node{vtxp->fileline(), ops...}; UASSERT_OBJ(nodep->width() == static_cast(vtxp->width()), vtxp, "Incorrect width in AstNode created from DfgVertex " << vtxp->typeName() << ": " << nodep->width() << " vs " << vtxp->width()); return nodep; } //====================================================================== // Vertices needing special conversion template <> AstExtend* makeNode( // const DfgExtend* vtxp, AstNodeExpr* op1) { return new AstExtend{vtxp->fileline(), op1, static_cast(vtxp->width())}; } template <> AstExtendS* makeNode( // const DfgExtendS* vtxp, AstNodeExpr* op1) { return new AstExtendS{vtxp->fileline(), op1, static_cast(vtxp->width())}; } template <> AstShiftL* makeNode( // const DfgShiftL* vtxp, AstNodeExpr* op1, AstNodeExpr* op2) { return new AstShiftL{vtxp->fileline(), op1, op2, static_cast(vtxp->width())}; } template <> AstShiftR* makeNode( // const DfgShiftR* vtxp, AstNodeExpr* op1, AstNodeExpr* op2) { return new AstShiftR{vtxp->fileline(), op1, op2, static_cast(vtxp->width())}; } template <> AstShiftRS* makeNode( // const DfgShiftRS* vtxp, AstNodeExpr* op1, AstNodeExpr* op2) { return new AstShiftRS{vtxp->fileline(), op1, op2, static_cast(vtxp->width())}; } } // namespace template class DfgToAstVisitor final : DfgVisitor { // NODE STATE // AstScope::user2p // The combinational AstActive under this scope const VNUser2InUse m_user2InUse; // TYPES using Variable = std::conditional_t; using Container = std::conditional_t; // STATE AstModule* const m_modp; // The parent/result module - This is nullptr when T_Scoped V3DfgDfgToAstContext& m_ctx; // The context for stats AstNodeExpr* m_resultp = nullptr; // The result node of the current traversal AstAlways* m_alwaysp = nullptr; // Process to add assignments to, if have a default driver Container* m_containerp = nullptr; // The AstNodeModule or AstActive to insert assigns into // METHODS static Variable* getNode(const DfgVertexVar* vtxp) { if VL_CONSTEXPR_CXX17 (T_Scoped) { return reinterpret_cast(vtxp->varScopep()); } else { return reinterpret_cast(vtxp->varp()); } } static AstActive* getCombActive(AstScope* scopep) { if (!scopep->user2p()) { // Try to find the existing combinational AstActive for (AstNode* nodep = scopep->blocksp(); nodep; nodep = nodep->nextp()) { AstActive* const activep = VN_CAST(nodep, Active); if (!activep) continue; if (activep->hasCombo()) { scopep->user2p(activep); break; } } // If there isn't one, create a new one if (!scopep->user2p()) { FileLine* const flp = scopep->fileline(); AstSenTree* const senTreep = new AstSenTree{flp, new AstSenItem{flp, AstSenItem::Combo{}}}; AstActive* const activep = new AstActive{flp, "", senTreep}; activep->senTreeStorep(senTreep); scopep->addBlocksp(activep); scopep->user2p(activep); } } return VN_AS(scopep->user2p(), Active); } AstNodeExpr* convertDfgVertexToAstNodeExpr(DfgVertex* vtxp) { UASSERT_OBJ(!m_resultp, vtxp, "Result already computed"); UASSERT_OBJ(vtxp->is() || vtxp->is() // || !vtxp->hasMultipleSinks() || vtxp->isCheaperThanLoad(), // vtxp, "Intermediate DFG value with multiple uses"); iterate(vtxp); UASSERT_OBJ(m_resultp, vtxp, "Missing result"); AstNodeExpr* const resultp = m_resultp; m_resultp = nullptr; return resultp; } void createAssignment(FileLine* flp, AstNodeExpr* lhsp, DfgVertex* driverp) { // Keep track of statisticss ++m_ctx.m_resultEquations; // Render the driver AstNodeExpr* const rhsp = convertDfgVertexToAstNodeExpr(driverp); // Update LHS locations to reflect the location of the original driver lhsp->foreach([&](AstNode* nodep) { nodep->fileline(flp); }); // If using a process, add Assign there if (m_alwaysp) { m_alwaysp->addStmtsp(new AstAssign{flp, lhsp, rhsp}); return; } // Otherwise create an AssignW AstAssignW* const ap = new AstAssignW{flp, lhsp, rhsp}; m_containerp->addStmtsp(new AstAlways{ap}); } void convertDriver(FileLine* flp, AstNodeExpr* lhsp, DfgVertex* driverp) { if (DfgSplicePacked* const sPackedp = driverp->cast()) { // Partial assignment of packed value sPackedp->foreachDriver([&](DfgVertex& src, uint32_t lo, FileLine* dflp) { // Create Sel AstConst* const lsbp = new AstConst{dflp, lo}; const int width = static_cast(src.width()); AstSel* const nLhsp = new AstSel{dflp, lhsp->cloneTreePure(false), lsbp, width}; // Convert source convertDriver(dflp, nLhsp, &src); // Delete Sel - was cloned VL_DO_DANGLING(nLhsp->deleteTree(), nLhsp); return false; }); return; } if (DfgSpliceArray* const sArrayp = driverp->cast()) { // Partial assignment of array variable sArrayp->foreachDriver([&](DfgVertex& src, uint32_t lo, FileLine* dflp) { UASSERT_OBJ(src.size() == 1, &src, "We only handle single elements"); // Create ArraySel AstConst* const idxp = new AstConst{dflp, lo}; AstArraySel* const nLhsp = new AstArraySel{dflp, lhsp->cloneTreePure(false), idxp}; // Convert source if (const DfgUnitArray* const uap = src.cast()) { convertDriver(dflp, nLhsp, uap->srcp()); } else { convertDriver(dflp, nLhsp, &src); } // Delete ArraySel - was cloned VL_DO_DANGLING(nLhsp->deleteTree(), nLhsp); return false; }); return; } if (const DfgUnitArray* const uap = driverp->cast()) { // Single element array being assigned a unit array. Needs an ArraySel. AstConst* const idxp = new AstConst{flp, 0}; AstArraySel* const nLhsp = new AstArraySel{flp, lhsp->cloneTreePure(false), idxp}; // Convert source convertDriver(flp, nLhsp, uap->srcp()); // Delete ArraySel - was cloned VL_DO_DANGLING(nLhsp->deleteTree(), nLhsp); return; } // Base case: assign vertex to current lhs createAssignment(flp, lhsp->cloneTreePure(false), driverp); } // VISITORS void visit(DfgVertex* vtxp) override { // LCOV_EXCL_START vtxp->v3fatalSrc("Unhandled DfgVertex: " << vtxp->typeName()); } // LCOV_EXCL_STOP void visit(DfgVarPacked* vtxp) override { m_resultp = new AstVarRef{vtxp->fileline(), getNode(vtxp), VAccess::READ}; } void visit(DfgVarArray* vtxp) override { m_resultp = new AstVarRef{vtxp->fileline(), getNode(vtxp), VAccess::READ}; } void visit(DfgConst* vtxp) override { // m_resultp = new AstConst{vtxp->fileline(), vtxp->num()}; } void visit(DfgSel* vtxp) override { FileLine* const flp = vtxp->fileline(); AstNodeExpr* const fromp = convertDfgVertexToAstNodeExpr(vtxp->fromp()); AstConst* const lsbp = new AstConst{flp, vtxp->lsb()}; m_resultp = new AstSel{flp, fromp, lsbp, static_cast(vtxp->width())}; } void visit(DfgMux* vtxp) override { FileLine* const flp = vtxp->fileline(); AstNodeExpr* const fromp = convertDfgVertexToAstNodeExpr(vtxp->fromp()); AstNodeExpr* const lsbp = convertDfgVertexToAstNodeExpr(vtxp->lsbp()); m_resultp = new AstSel{flp, fromp, lsbp, static_cast(vtxp->width())}; } // The rest of the 'visit' methods are generated by 'astgen' #include "V3Dfg__gen_dfg_to_ast.h" // Constructor DfgToAstVisitor(DfgGraph& dfg, V3DfgDfgToAstContext& ctx) : m_modp{dfg.modulep()} , m_ctx{ctx} { if (v3Global.opt.debugCheck()) V3DfgPasses::typeCheck(dfg); // Convert the graph back to combinational assignments // The graph must have been regularized, so we only need to render assignments for (DfgVertexVar& vtx : dfg.varVertices()) { // If there is no driver (this vertex is an input to the graph), then nothing to do. if (!vtx.srcp()) { UASSERT_OBJ(!vtx.defaultp(), &vtx, "Only default driver on variable"); continue; } ++m_ctx.m_outputVariables; // Render variable assignments FileLine* const flp = vtx.driverFileLine() ? vtx.driverFileLine() : vtx.fileline(); AstVarRef* const lhsp = new AstVarRef{flp, getNode(&vtx), VAccess::WRITE}; VL_RESTORER(m_containerp); if VL_CONSTEXPR_CXX17 (T_Scoped) { // Add it to the scope holding the target variable AstActive* const activep = getCombActive(vtx.varScopep()->scopep()); m_containerp = reinterpret_cast(activep); } else { // Add it to the parent module of the DfgGraph m_containerp = reinterpret_cast(m_modp); } // If there is a default value, render all drivers under an AstAlways VL_RESTORER(m_alwaysp); if (DfgVertex* const defaultp = vtx.defaultp()) { ++m_ctx.m_outputVariablesWithDefault; m_alwaysp = new AstAlways{vtx.fileline(), VAlwaysKwd::ALWAYS_COMB, nullptr}; m_containerp->addStmtsp(m_alwaysp); // The default assignment needs to go first createAssignment(vtx.fileline(), lhsp->cloneTreePure(false), defaultp); } // Render the drivers convertDriver(flp, lhsp, vtx.srcp()); // convetDriver always clones lhsp VL_DO_DANGLING(lhsp->deleteTree(), lhsp); } } public: static void apply(DfgGraph& dfg, V3DfgDfgToAstContext& ctx) { DfgToAstVisitor{dfg, ctx}; } }; void V3DfgPasses::dfgToAst(DfgGraph& dfg, V3DfgContext& ctx) { if (dfg.modulep()) { DfgToAstVisitor::apply(dfg, ctx.m_dfg2AstContext); } else { DfgToAstVisitor::apply(dfg, ctx.m_dfg2AstContext); } }