// -*- mode: C++; c-file-style: "cc-mode" -*- //************************************************************************* // DESCRIPTION: Verilator: Ast node structure // // Code available from: https://verilator.org // //************************************************************************* // // Copyright 2003-2021 by Wilson Snyder. This program is free software; you // can redistribute it and/or modify it under the terms of either the GNU // Lesser General Public License Version 3 or the Perl Artistic License // Version 2.0. // SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0 // //************************************************************************* #ifndef VERILATOR_V3AST_H_ #define VERILATOR_V3AST_H_ #include "config_build.h" #include "verilatedos.h" #include "V3Error.h" #include "V3FileLine.h" #include "V3Number.h" #include "V3Global.h" #include "V3Broken.h" #include #include #include #include "V3Ast__gen_classes.h" // From ./astgen // Things like: // class V3AstNode; // Forward declarations class V3Graph; class ExecMTask; // Hint class so we can choose constructors class VFlagLogicPacked {}; class VFlagBitPacked {}; class VFlagChildDType {}; // Used by parser.y to select constructor that sets childDType // Used as key for another map, needs operator<, hence not an unordered_set using MTaskIdSet = std::set; // Set of mtaskIds for Var sorting //###################################################################### // For broken() function, return error string if have a match #define BROKEN_RTN(test) \ do { \ if (VL_UNCOVERABLE(test)) return "'" #test "' @ " __FILE__ ":" VL_STRINGIFY(__LINE__); \ } while (false) // For broken() function, return error string if a base of this class has a match #define BROKEN_BASE_RTN(test) \ do { \ const char* const reasonp = (test); \ if (VL_UNCOVERABLE(reasonp)) return reasonp; \ } while (false) // (V)erilator (N)ode is: Returns true if and only if AstNode is of the given AstNode subtype, // and not nullptr. #define VN_IS(nodep, nodetypename) (AstNode::privateIs(nodep)) // (V)erilator (N)ode cast: Similar to dynamic_cast, but more efficient, use this instead. // Cast to given type if node is of such type, otherwise returns nullptr. If 'nodep' is nullptr, // return nullptr. Pointer constness is preserved, i.e.: given a 'const AstNode*', // a 'const Ast*' is returned. #define VN_CAST(nodep, nodetypename) \ (AstNode::privateCast(nodep)) // (V)erilator (N)ode as: Assert node is of given type then cast to that type. Use this to // downcast instead of VN_CAST when you know the true type of the node. If 'nodep' is nullptr, // return nullptr. Pointer constness is preserved, i.e.: given a 'const AstNode*', a 'const // Ast*' is returned. #define VN_AS(nodep, nodetypename) (AstNode::privateAs(nodep)) // (V)erilator (N)ode deleted: Pointer to deleted AstNode (for assertions only) #define VN_DELETED(nodep) VL_UNLIKELY((vluint64_t)(nodep) == 0x1) //###################################################################### class AstType final { public: #include "V3Ast__gen_types.h" // From ./astgen // Above include has: // enum en {...}; // const char* ascii() const {...}; enum en m_e; // cppcheck-suppress uninitVar // responsibility of each subclass inline AstType() {} // cppcheck-suppress noExplicitConstructor inline AstType(en _e) : m_e{_e} {} explicit inline AstType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } }; inline bool operator==(const AstType& lhs, const AstType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const AstType& lhs, AstType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(AstType::en lhs, const AstType& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const AstType& rhs) { return os << rhs.ascii(); } //###################################################################### class VLifetime final { public: enum en : uint8_t { NONE, AUTOMATIC, STATIC }; enum en m_e; const char* ascii() const { static const char* const names[] = {"NONE", "VAUTOM", "VSTATIC"}; return names[m_e]; } inline VLifetime() : m_e{NONE} {} // cppcheck-suppress noExplicitConstructor inline VLifetime(en _e) : m_e{_e} {} explicit inline VLifetime(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } bool isNone() const { return m_e == NONE; } bool isAutomatic() const { return m_e == AUTOMATIC; } bool isStatic() const { return m_e == STATIC; } }; inline bool operator==(const VLifetime& lhs, const VLifetime& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VLifetime& lhs, VLifetime::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VLifetime::en lhs, const VLifetime& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VLifetime& rhs) { return os << rhs.ascii(); } //###################################################################### class VAccess final { public: enum en : uint8_t { READ, // Read/Consumed, variable not changed WRITE, // Written/Updated, variable might be updated, but not consumed // // so variable might be removable if not consumed elsewhere READWRITE, // Read/Consumed and written/updated, variable both set and // // also consumed, cannot remove usage of variable. // // For non-simple data types only e.g. no tristates/delayed vars. NOCHANGE // No change to previous state, used only in V3LinkLValue }; enum en m_e; const char* ascii() const { static const char* const names[] = {"RD", "WR", "RW", "--"}; return names[m_e]; } const char* arrow() const { static const char* const names[] = {"[RV] <-", "[LV] =>", "[LV] <=>", "--"}; return names[m_e]; } inline VAccess() : m_e{READ} {} // cppcheck-suppress noExplicitConstructor inline VAccess(en _e) : m_e{_e} {} explicit inline VAccess(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } VAccess invert() const { return (m_e == READWRITE) ? VAccess(m_e) : (m_e == WRITE ? VAccess(READ) : VAccess(WRITE)); } bool isReadOnly() const { return m_e == READ; } // False with READWRITE bool isWriteOnly() const { return m_e == WRITE; } // False with READWRITE bool isReadOrRW() const { return m_e == READ || m_e == READWRITE; } bool isWriteOrRW() const { return m_e == WRITE || m_e == READWRITE; } bool isRW() const { return m_e == READWRITE; } }; inline bool operator==(const VAccess& lhs, const VAccess& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VAccess& lhs, VAccess::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VAccess::en lhs, const VAccess& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VAccess& rhs) { return os << rhs.ascii(); } //###################################################################### class VSigning final { public: enum en : uint8_t { UNSIGNED, SIGNED, NOSIGN, _ENUM_MAX // Leave last }; enum en m_e; const char* ascii() const { static const char* const names[] = {"UNSIGNED", "SIGNED", "NOSIGN"}; return names[m_e]; } inline VSigning() : m_e{UNSIGNED} {} // cppcheck-suppress noExplicitConstructor inline VSigning(en _e) : m_e{_e} {} static inline VSigning fromBool(bool isSigned) { // Factory method return isSigned ? VSigning(SIGNED) : VSigning(UNSIGNED); } explicit inline VSigning(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } inline bool isSigned() const { return m_e == SIGNED; } inline bool isNosign() const { return m_e == NOSIGN; } // No isUnsigned() as it's ambiguous if NOSIGN should be included or not. }; inline bool operator==(const VSigning& lhs, const VSigning& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VSigning& lhs, VSigning::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VSigning::en lhs, const VSigning& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VSigning& rhs) { return os << rhs.ascii(); } //###################################################################### class AstPragmaType final { public: enum en : uint8_t { ILLEGAL, COVERAGE_BLOCK_OFF, HIER_BLOCK, INLINE_MODULE, NO_INLINE_MODULE, NO_INLINE_TASK, PUBLIC_MODULE, PUBLIC_TASK, FULL_CASE, PARALLEL_CASE, ENUM_SIZE }; enum en m_e; inline AstPragmaType() : m_e{ILLEGAL} {} // cppcheck-suppress noExplicitConstructor inline AstPragmaType(en _e) : m_e{_e} {} explicit inline AstPragmaType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } }; inline bool operator==(const AstPragmaType& lhs, const AstPragmaType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const AstPragmaType& lhs, AstPragmaType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(AstPragmaType::en lhs, const AstPragmaType& rhs) { return lhs == rhs.m_e; } //###################################################################### class VEdgeType final { public: // REMEMBER to edit the strings below too enum en : uint8_t { // These must be in general -> most specific order, as we sort by it // in V3Const::visit AstSenTree ET_ILLEGAL, // Involving a variable ET_ANYEDGE, // Default for sensitivities; rip them out ET_BOTHEDGE, // POSEDGE | NEGEDGE ET_POSEDGE, ET_NEGEDGE, ET_HIGHEDGE, // Is high now (latches) ET_LOWEDGE, // Is low now (latches) // Not involving anything ET_COMBO, // Sensitive to all combo inputs to this block ET_INITIAL, // User initial statements ET_SETTLE, // Like combo but for initial wire resolutions after initial statement ET_NEVER // Never occurs (optimized away) }; enum en m_e; bool clockedStmt() const { static const bool clocked[] = {false, false, true, true, true, true, true, false, false, false}; return clocked[m_e]; } VEdgeType invert() const { switch (m_e) { case ET_ANYEDGE: return ET_ANYEDGE; case ET_BOTHEDGE: return ET_BOTHEDGE; case ET_POSEDGE: return ET_NEGEDGE; case ET_NEGEDGE: return ET_POSEDGE; case ET_HIGHEDGE: return ET_LOWEDGE; case ET_LOWEDGE: return ET_HIGHEDGE; default: UASSERT_STATIC(0, "Inverting bad edgeType()"); } return VEdgeType::ET_ILLEGAL; } const char* ascii() const { static const char* const names[] = {"%E-edge", "ANY", "BOTH", "POS", "NEG", "HIGH", "LOW", "COMBO", "INITIAL", "SETTLE", "NEVER"}; return names[m_e]; } const char* verilogKwd() const { static const char* const names[] = {"%E-edge", "[any]", "edge", "posedge", "negedge", "[high]", "[low]", "*", "[initial]", "[settle]", "[never]"}; return names[m_e]; } // Return true iff this and the other have mutually exclusive transitions bool exclusiveEdge(const VEdgeType& other) const { switch (m_e) { case VEdgeType::ET_POSEDGE: switch (other.m_e) { case VEdgeType::ET_NEGEDGE: // FALLTHRU case VEdgeType::ET_LOWEDGE: return true; default:; } break; case VEdgeType::ET_NEGEDGE: switch (other.m_e) { case VEdgeType::ET_POSEDGE: // FALLTHRU case VEdgeType::ET_HIGHEDGE: return true; default:; } break; default:; } return false; } inline VEdgeType() : m_e{ET_ILLEGAL} {} // cppcheck-suppress noExplicitConstructor inline VEdgeType(en _e) : m_e{_e} {} explicit inline VEdgeType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } }; inline bool operator==(const VEdgeType& lhs, const VEdgeType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VEdgeType& lhs, VEdgeType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VEdgeType::en lhs, const VEdgeType& rhs) { return lhs == rhs.m_e; } //###################################################################### class AstAttrType final { public: // clang-format off enum en: uint8_t { ILLEGAL, // DIM_BITS, // V3Const converts to constant DIM_DIMENSIONS, // V3Width converts to constant DIM_HIGH, // V3Width processes DIM_INCREMENT, // V3Width processes DIM_LEFT, // V3Width processes DIM_LOW, // V3Width processes DIM_RIGHT, // V3Width processes DIM_SIZE, // V3Width processes DIM_UNPK_DIMENSIONS, // V3Width converts to constant // DT_PUBLIC, // V3LinkParse moves to AstTypedef::attrPublic // ENUM_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes ENUM_FIRST, // V3Width processes ENUM_LAST, // V3Width processes ENUM_NUM, // V3Width processes ENUM_NEXT, // V3Width processes ENUM_PREV, // V3Width processes ENUM_NAME, // V3Width processes ENUM_VALID, // V3Width processes // MEMBER_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes // TYPENAME, // V3Width processes // VAR_BASE, // V3LinkResolve creates for AstPreSel, V3LinkParam removes VAR_CLOCK_ENABLE, // V3LinkParse moves to AstVar::attrClockEn VAR_PUBLIC, // V3LinkParse moves to AstVar::sigPublic VAR_PUBLIC_FLAT, // V3LinkParse moves to AstVar::sigPublic VAR_PUBLIC_FLAT_RD, // V3LinkParse moves to AstVar::sigPublic VAR_PUBLIC_FLAT_RW, // V3LinkParse moves to AstVar::sigPublic VAR_ISOLATE_ASSIGNMENTS, // V3LinkParse moves to AstVar::attrIsolateAssign VAR_SC_BV, // V3LinkParse moves to AstVar::attrScBv VAR_SFORMAT, // V3LinkParse moves to AstVar::attrSFormat VAR_CLOCKER, // V3LinkParse moves to AstVar::attrClocker VAR_NO_CLOCKER, // V3LinkParse moves to AstVar::attrClocker VAR_SPLIT_VAR // V3LinkParse moves to AstVar::attrSplitVar }; // clang-format on enum en m_e; const char* ascii() const { // clang-format off static const char* const names[] = { "%E-AT", "DIM_BITS", "DIM_DIMENSIONS", "DIM_HIGH", "DIM_INCREMENT", "DIM_LEFT", "DIM_LOW", "DIM_RIGHT", "DIM_SIZE", "DIM_UNPK_DIMENSIONS", "DT_PUBLIC", "ENUM_BASE", "ENUM_FIRST", "ENUM_LAST", "ENUM_NUM", "ENUM_NEXT", "ENUM_PREV", "ENUM_NAME", "ENUM_VALID", "MEMBER_BASE", "TYPENAME", "VAR_BASE", "VAR_CLOCK_ENABLE", "VAR_PUBLIC", "VAR_PUBLIC_FLAT", "VAR_PUBLIC_FLAT_RD", "VAR_PUBLIC_FLAT_RW", "VAR_ISOLATE_ASSIGNMENTS", "VAR_SC_BV", "VAR_SFORMAT", "VAR_CLOCKER", "VAR_NO_CLOCKER", "VAR_SPLIT_VAR" }; // clang-format on return names[m_e]; } inline AstAttrType() : m_e{ILLEGAL} {} // cppcheck-suppress noExplicitConstructor inline AstAttrType(en _e) : m_e{_e} {} explicit inline AstAttrType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } }; inline bool operator==(const AstAttrType& lhs, const AstAttrType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const AstAttrType& lhs, AstAttrType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(AstAttrType::en lhs, const AstAttrType& rhs) { return lhs == rhs.m_e; } //###################################################################### class AstBasicDTypeKwd final { public: enum en : uint8_t { UNKNOWN, BIT, BYTE, CHANDLE, EVENTVALUE, // See comments in t_event_copy as to why this is EVENTVALUE INT, INTEGER, LOGIC, LONGINT, DOUBLE, SHORTINT, TIME, // Closer to a class type, but limited usage STRING, // Internal types for mid-steps SCOPEPTR, CHARPTR, MTASKSTATE, // Unsigned and two state; fundamental types UINT32, UINT64, // Internal types, eliminated after parsing LOGIC_IMPLICIT, // Leave last _ENUM_MAX }; enum en m_e; const char* ascii() const { static const char* const names[] = {"%E-unk", "bit", "byte", "chandle", "event", "int", "integer", "logic", "longint", "real", "shortint", "time", "string", "VerilatedScope*", "char*", "VlMTaskState", "IData", "QData", "LOGIC_IMPLICIT", " MAX"}; return names[m_e]; } const char* dpiType() const { static const char* const names[] = {"%E-unk", "svBit", "char", "void*", "char", "int", "%E-integer", "svLogic", "long long", "double", "short", "%E-time", "const char*", "dpiScope", "const char*", "%E-mtaskstate", "IData", "QData", "%E-logic-implct", " MAX"}; return names[m_e]; } static void selfTest() { UASSERT(0 == strcmp(AstBasicDTypeKwd(_ENUM_MAX).ascii(), " MAX"), "SelfTest: Enum mismatch"); UASSERT(0 == strcmp(AstBasicDTypeKwd(_ENUM_MAX).dpiType(), " MAX"), "SelfTest: Enum mismatch"); } inline AstBasicDTypeKwd() : m_e{UNKNOWN} {} // cppcheck-suppress noExplicitConstructor inline AstBasicDTypeKwd(en _e) : m_e{_e} {} explicit inline AstBasicDTypeKwd(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } int width() const { switch (m_e) { case BIT: return 1; // scalar, can't bit extract unless ranged case BYTE: return 8; case CHANDLE: return 64; case EVENTVALUE: return 1; case INT: return 32; case INTEGER: return 32; case LOGIC: return 1; // scalar, can't bit extract unless ranged case LONGINT: return 64; case DOUBLE: return 64; // opaque case SHORTINT: return 16; case TIME: return 64; case STRING: return 64; // opaque // Just the pointer, for today case SCOPEPTR: return 0; // opaque case CHARPTR: return 0; // opaque case MTASKSTATE: return 0; // opaque case UINT32: return 32; case UINT64: return 64; default: return 0; } } bool isSigned() const { return m_e == BYTE || m_e == SHORTINT || m_e == INT || m_e == LONGINT || m_e == INTEGER || m_e == DOUBLE; } bool isUnsigned() const { return m_e == CHANDLE || m_e == EVENTVALUE || m_e == STRING || m_e == SCOPEPTR || m_e == CHARPTR || m_e == UINT32 || m_e == UINT64 || m_e == BIT || m_e == LOGIC || m_e == TIME; } bool isFourstate() const { return m_e == INTEGER || m_e == LOGIC || m_e == LOGIC_IMPLICIT || m_e == TIME; } bool isZeroInit() const { // Otherwise initializes to X return (m_e == BIT || m_e == BYTE || m_e == CHANDLE || m_e == EVENTVALUE || m_e == INT || m_e == LONGINT || m_e == SHORTINT || m_e == STRING || m_e == DOUBLE); } bool isIntNumeric() const { // Enum increment supported return (m_e == BIT || m_e == BYTE || m_e == INT || m_e == INTEGER || m_e == LOGIC || m_e == LONGINT || m_e == SHORTINT || m_e == UINT32 || m_e == UINT64); } bool isBitLogic() const { // Bit/logic vector types; can form a packed array return (m_e == LOGIC || m_e == BIT); } bool isDpiUnsignable() const { // Can add "unsigned" to DPI return (m_e == BYTE || m_e == SHORTINT || m_e == INT || m_e == LONGINT || m_e == INTEGER); } bool isDpiCLayout() const { // Uses standard C layout, for DPI runtime access return (m_e == BIT || m_e == BYTE || m_e == CHANDLE || m_e == INT || m_e == LONGINT || m_e == DOUBLE || m_e == SHORTINT || m_e == UINT32 || m_e == UINT64); } bool isOpaque() const { // IE not a simple number we can bit optimize return (m_e == STRING || m_e == SCOPEPTR || m_e == CHARPTR || m_e == MTASKSTATE || m_e == DOUBLE); } bool isDouble() const { return m_e == DOUBLE; } bool isEventValue() const { return m_e == EVENTVALUE; } bool isString() const { return m_e == STRING; } bool isMTaskState() const { return m_e == MTASKSTATE; } // Does this represent a C++ LiteralType? (can be constexpr) bool isLiteralType() const { switch (m_e) { case BIT: case BYTE: case CHANDLE: case INT: case INTEGER: case LOGIC: case LONGINT: case DOUBLE: case SHORTINT: case SCOPEPTR: case CHARPTR: case UINT32: case UINT64: return true; default: return false; } } }; inline bool operator==(const AstBasicDTypeKwd& lhs, const AstBasicDTypeKwd& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const AstBasicDTypeKwd& lhs, AstBasicDTypeKwd::en rhs) { return lhs.m_e == rhs; } inline bool operator==(AstBasicDTypeKwd::en lhs, const AstBasicDTypeKwd& rhs) { return lhs == rhs.m_e; } //###################################################################### class VDirection final { public: enum en : uint8_t { NONE, INPUT, OUTPUT, INOUT, REF, CONSTREF }; enum en m_e; inline VDirection() : m_e{NONE} {} // cppcheck-suppress noExplicitConstructor inline VDirection(en _e) : m_e{_e} {} explicit inline VDirection(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } const char* ascii() const { static const char* const names[] = {"NONE", "INPUT", "OUTPUT", "INOUT", "REF", "CONSTREF"}; return names[m_e]; } string verilogKwd() const { static const char* const names[] = {"", "input", "output", "inout", "ref", "const ref"}; return names[m_e]; } string xmlKwd() const { // For historical reasons no "put" suffix static const char* const names[] = {"", "in", "out", "inout", "ref", "const ref"}; return names[m_e]; } string prettyName() const { return verilogKwd(); } bool isAny() const { return m_e != NONE; } // Looks like inout - "ish" because not identical to being an INOUT bool isInoutish() const { return m_e == INOUT; } bool isNonOutput() const { return m_e == INPUT || m_e == INOUT || m_e == REF || m_e == CONSTREF; } bool isReadOnly() const { return m_e == INPUT || m_e == CONSTREF; } bool isWritable() const { return m_e == OUTPUT || m_e == INOUT || m_e == REF; } bool isRefOrConstRef() const { return m_e == REF || m_e == CONSTREF; } }; inline bool operator==(const VDirection& lhs, const VDirection& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VDirection& lhs, VDirection::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VDirection::en lhs, const VDirection& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VDirection& rhs) { return os << rhs.ascii(); } //###################################################################### /// Boolean or unknown class VBoolOrUnknown final { public: enum en : uint8_t { BU_FALSE = 0, BU_TRUE = 1, BU_UNKNOWN = 2, _ENUM_END }; enum en m_e; // CONSTRUCTOR - note defaults to *UNKNOWN* inline VBoolOrUnknown() : m_e{BU_UNKNOWN} {} // cppcheck-suppress noExplicitConstructor inline VBoolOrUnknown(en _e) : m_e{_e} {} explicit inline VBoolOrUnknown(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning const char* ascii() const { static const char* const names[] = {"FALSE", "TRUE", "UNK"}; return names[m_e]; } bool trueKnown() const { return m_e == BU_TRUE; } bool trueUnknown() const { return m_e == BU_TRUE || m_e == BU_UNKNOWN; } bool falseKnown() const { return m_e == BU_FALSE; } bool falseUnknown() const { return m_e == BU_FALSE || m_e == BU_UNKNOWN; } bool unknown() const { return m_e == BU_UNKNOWN; } void setTrueOrFalse(bool flag) { m_e = flag ? BU_TRUE : BU_FALSE; } }; inline bool operator==(const VBoolOrUnknown& lhs, const VBoolOrUnknown& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VBoolOrUnknown& lhs, VBoolOrUnknown::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VBoolOrUnknown::en lhs, const VBoolOrUnknown& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VBoolOrUnknown& rhs) { return os << rhs.ascii(); } //###################################################################### /// Join type class VJoinType final { public: enum en : uint8_t { JOIN = 0, JOIN_ANY = 1, JOIN_NONE = 2 }; enum en m_e; // CONSTRUCTOR - note defaults to *UNKNOWN* inline VJoinType() : m_e{JOIN} {} // cppcheck-suppress noExplicitConstructor inline VJoinType(en _e) : m_e{_e} {} explicit inline VJoinType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning const char* ascii() const { static const char* const names[] = {"JOIN", "JOIN_ANY", "JOIN_NONE"}; return names[m_e]; } const char* verilogKwd() const { static const char* const names[] = {"join", "join_any", "join_none"}; return names[m_e]; } bool join() const { return m_e == JOIN; } bool joinAny() const { return m_e == JOIN_ANY; } bool joinNone() const { return m_e == JOIN_NONE; } }; inline bool operator==(const VJoinType& lhs, const VJoinType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VJoinType& lhs, VJoinType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VJoinType::en lhs, const VJoinType& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VJoinType& rhs) { return os << rhs.ascii(); } //###################################################################### class AstVarType final { public: enum en : uint8_t { UNKNOWN, GPARAM, LPARAM, GENVAR, VAR, // Reg, integer, logic, etc SUPPLY0, SUPPLY1, WIRE, WREAL, IMPLICITWIRE, TRIWIRE, TRI0, TRI1, PORT, // Temp type used in parser only BLOCKTEMP, MODULETEMP, STMTTEMP, XTEMP, IFACEREF, // Used to link Interfaces between modules MEMBER }; enum en m_e; inline AstVarType() : m_e{UNKNOWN} {} // cppcheck-suppress noExplicitConstructor inline AstVarType(en _e) : m_e{_e} {} explicit inline AstVarType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } const char* ascii() const { static const char* const names[] = { "?", "GPARAM", "LPARAM", "GENVAR", "VAR", "SUPPLY0", "SUPPLY1", "WIRE", "WREAL", "IMPLICITWIRE", "TRIWIRE", "TRI0", "TRI1", "PORT", "BLOCKTEMP", "MODULETEMP", "STMTTEMP", "XTEMP", "IFACEREF", "MEMBER"}; return names[m_e]; } bool isSignal() const { return (m_e == WIRE || m_e == WREAL || m_e == IMPLICITWIRE || m_e == TRIWIRE || m_e == TRI0 || m_e == TRI1 || m_e == PORT || m_e == SUPPLY0 || m_e == SUPPLY1 || m_e == VAR); } bool isContAssignable() const { // In Verilog, always ok in SystemVerilog return (m_e == SUPPLY0 || m_e == SUPPLY1 || m_e == WIRE || m_e == WREAL || m_e == IMPLICITWIRE || m_e == TRIWIRE || m_e == TRI0 || m_e == TRI1 || m_e == PORT || m_e == BLOCKTEMP || m_e == MODULETEMP || m_e == STMTTEMP || m_e == XTEMP || m_e == IFACEREF); } bool isProcAssignable() const { return (m_e == GPARAM || m_e == LPARAM || m_e == GENVAR || m_e == VAR || m_e == BLOCKTEMP || m_e == MODULETEMP || m_e == STMTTEMP || m_e == XTEMP || m_e == IFACEREF || m_e == MEMBER); } bool isTemp() const { return (m_e == BLOCKTEMP || m_e == MODULETEMP || m_e == STMTTEMP || m_e == XTEMP); } }; inline bool operator==(const AstVarType& lhs, const AstVarType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const AstVarType& lhs, AstVarType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(AstVarType::en lhs, const AstVarType& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const AstVarType& rhs) { return os << rhs.ascii(); } //###################################################################### class VBranchPred final { public: enum en : uint8_t { BP_UNKNOWN = 0, BP_LIKELY, BP_UNLIKELY, _ENUM_END }; enum en m_e; // CONSTRUCTOR - note defaults to *UNKNOWN* inline VBranchPred() : m_e{BP_UNKNOWN} {} // cppcheck-suppress noExplicitConstructor inline VBranchPred(en _e) : m_e{_e} {} explicit inline VBranchPred(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } bool unknown() const { return m_e == BP_UNKNOWN; } bool likely() const { return m_e == BP_LIKELY; } bool unlikely() const { return m_e == BP_UNLIKELY; } VBranchPred invert() const { if (m_e == BP_UNLIKELY) { return BP_LIKELY; } else if (m_e == BP_LIKELY) { return BP_UNLIKELY; } else { return m_e; } } const char* ascii() const { static const char* const names[] = {"", "VL_LIKELY", "VL_UNLIKELY"}; return names[m_e]; } }; inline bool operator==(const VBranchPred& lhs, const VBranchPred& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VBranchPred& lhs, VBranchPred::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VBranchPred::en lhs, const VBranchPred& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VBranchPred& rhs) { return os << rhs.ascii(); } //###################################################################### class VVarAttrClocker final { public: enum en : uint8_t { CLOCKER_UNKNOWN = 0, CLOCKER_YES, CLOCKER_NO, _ENUM_END }; enum en m_e; // CONSTRUCTOR - note defaults to *UNKNOWN* inline VVarAttrClocker() : m_e{CLOCKER_UNKNOWN} {} // cppcheck-suppress noExplicitConstructor inline VVarAttrClocker(en _e) : m_e{_e} {} explicit inline VVarAttrClocker(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } bool unknown() const { return m_e == CLOCKER_UNKNOWN; } VVarAttrClocker invert() const { if (m_e == CLOCKER_YES) { return CLOCKER_NO; } else if (m_e == CLOCKER_NO) { return CLOCKER_YES; } else { return m_e; } } const char* ascii() const { static const char* const names[] = {"", "clker", "non_clker"}; return names[m_e]; } }; inline bool operator==(const VVarAttrClocker& lhs, const VVarAttrClocker& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VVarAttrClocker& lhs, VVarAttrClocker::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VVarAttrClocker::en lhs, const VVarAttrClocker& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VVarAttrClocker& rhs) { return os << rhs.ascii(); } //###################################################################### class VAlwaysKwd final { public: enum en : uint8_t { ALWAYS, ALWAYS_FF, ALWAYS_LATCH, ALWAYS_COMB }; enum en m_e; inline VAlwaysKwd() : m_e{ALWAYS} {} // cppcheck-suppress noExplicitConstructor inline VAlwaysKwd(en _e) : m_e{_e} {} explicit inline VAlwaysKwd(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } const char* ascii() const { static const char* const names[] = {"always", "always_ff", "always_latch", "always_comb"}; return names[m_e]; } }; inline bool operator==(const VAlwaysKwd& lhs, const VAlwaysKwd& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VAlwaysKwd& lhs, VAlwaysKwd::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VAlwaysKwd::en lhs, const VAlwaysKwd& rhs) { return lhs == rhs.m_e; } //###################################################################### class VCaseType final { public: enum en : uint8_t { CT_CASE, CT_CASEX, CT_CASEZ, CT_CASEINSIDE }; enum en m_e; inline VCaseType() : m_e{CT_CASE} {} // cppcheck-suppress noExplicitConstructor inline VCaseType(en _e) : m_e{_e} {} explicit inline VCaseType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } }; inline bool operator==(const VCaseType& lhs, const VCaseType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VCaseType& lhs, VCaseType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VCaseType::en lhs, const VCaseType& rhs) { return lhs == rhs.m_e; } //###################################################################### class AstDisplayType final { public: enum en : uint8_t { DT_DISPLAY, DT_WRITE, DT_MONITOR, DT_STROBE, DT_INFO, DT_ERROR, DT_WARNING, DT_FATAL }; enum en m_e; AstDisplayType() : m_e{DT_DISPLAY} {} // cppcheck-suppress noExplicitConstructor AstDisplayType(en _e) : m_e{_e} {} explicit inline AstDisplayType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } bool addNewline() const { return m_e != DT_WRITE; } bool needScopeTracking() const { return m_e != DT_DISPLAY && m_e != DT_WRITE; } const char* ascii() const { static const char* const names[] = {"display", "write", "monitor", "strobe", "info", "error", "warning", "fatal"}; return names[m_e]; } }; inline bool operator==(const AstDisplayType& lhs, const AstDisplayType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const AstDisplayType& lhs, AstDisplayType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(AstDisplayType::en lhs, const AstDisplayType& rhs) { return lhs == rhs.m_e; } //###################################################################### class VDumpCtlType final { public: enum en : uint8_t { FILE, VARS, ALL, FLUSH, LIMIT, OFF, ON }; enum en m_e; inline VDumpCtlType() : m_e{ON} {} // cppcheck-suppress noExplicitConstructor inline VDumpCtlType(en _e) : m_e{_e} {} explicit inline VDumpCtlType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } const char* ascii() const { static const char* const names[] = {"$dumpfile", "$dumpvars", "$dumpall", "$dumpflush", "$dumplimit", "$dumpoff", "$dumpon"}; return names[m_e]; } }; inline bool operator==(const VDumpCtlType& lhs, const VDumpCtlType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VDumpCtlType& lhs, VDumpCtlType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VDumpCtlType::en lhs, const VDumpCtlType& rhs) { return lhs == rhs.m_e; } //###################################################################### class VParseRefExp final { public: enum en : uint8_t { PX_NONE, // Used in V3LinkParse only PX_ROOT, PX_TEXT // Unknown ID component }; enum en m_e; inline VParseRefExp() : m_e{PX_NONE} {} // cppcheck-suppress noExplicitConstructor inline VParseRefExp(en _e) : m_e{_e} {} explicit inline VParseRefExp(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning operator en() const { return m_e; } const char* ascii() const { static const char* const names[] = {"", "$root", "TEXT", "PREDOT"}; return names[m_e]; } }; inline bool operator==(const VParseRefExp& lhs, const VParseRefExp& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VParseRefExp& lhs, VParseRefExp::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VParseRefExp::en lhs, const VParseRefExp& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VParseRefExp& rhs) { return os << rhs.ascii(); } //###################################################################### // VNumRange - Structure containing numeric range information // See also AstRange, which is a symbolic version of this class VNumRange final { public: int m_left = 0; int m_right = 0; bool m_ranged = false; // Has a range bool operator==(const VNumRange& rhs) const { return m_left == rhs.m_left && m_right == rhs.m_right && m_ranged == rhs.m_ranged; } bool operator<(const VNumRange& rhs) const { if ((m_left < rhs.m_left)) return true; if (!(m_left == rhs.m_left)) return false; // lhs > rhs if ((m_right < rhs.m_right)) return true; if (!(m_right == rhs.m_right)) return false; // lhs > rhs if ((m_ranged < rhs.m_ranged)) return true; if (!(m_ranged == rhs.m_ranged)) return false; // lhs > rhs return false; } // VNumRange() {} VNumRange(int hi, int lo, bool littleEndian) { init(hi, lo, littleEndian); } VNumRange(int left, int right) : m_left{left} , m_right{right} , m_ranged{true} {} ~VNumRange() = default; // MEMBERS void init(int hi, int lo, bool littleEndian) { if (lo > hi) { const int t = hi; hi = lo; lo = t; } m_left = littleEndian ? lo : hi; m_right = littleEndian ? hi : lo; m_ranged = true; } int left() const { return m_left; } int right() const { return m_right; } int hi() const { return m_left > m_right ? m_left : m_right; } // How to show a declaration int lo() const { return m_left > m_right ? m_right : m_left; } // How to show a declaration int leftToRightInc() const { return littleEndian() ? 1 : -1; } int elements() const { return hi() - lo() + 1; } bool ranged() const { return m_ranged; } bool littleEndian() const { return m_left < m_right; } int hiMaxSelect() const { return (lo() < 0 ? hi() - lo() : hi()); } // Maximum value a [] select may index void dump(std::ostream& str) const { if (ranged()) { str << "[" << left() << ":" << right() << "]"; } else { str << "[norg]"; } } }; inline std::ostream& operator<<(std::ostream& os, const VNumRange& rhs) { rhs.dump(os); return os; } //###################################################################### class VUseType final { public: enum en : uint8_t { IMP_INCLUDE, // Implementation (.cpp) needs an include INT_INCLUDE, // Interface (.h) needs an include IMP_FWD_CLASS, // Implementation (.cpp) needs a forward class declaration INT_FWD_CLASS, // Interface (.h) needs a forward class declaration }; enum en m_e; inline VUseType() : m_e{IMP_FWD_CLASS} {} // cppcheck-suppress noExplicitConstructor inline VUseType(en _e) : m_e{_e} {} explicit inline VUseType(int _e) : m_e(static_cast(_e)) {} // Need () or GCC 4.8 false warning bool isInclude() const { return m_e == IMP_INCLUDE || m_e == INT_INCLUDE; } bool isFwdClass() const { return m_e == IMP_FWD_CLASS || m_e == INT_FWD_CLASS; } operator en() const { return m_e; } const char* ascii() const { static const char* const names[] = {"IMP_INC", "INT_INC", "IMP_FWD", "INT_FWD"}; return names[m_e]; } }; inline bool operator==(const VUseType& lhs, const VUseType& rhs) { return lhs.m_e == rhs.m_e; } inline bool operator==(const VUseType& lhs, VUseType::en rhs) { return lhs.m_e == rhs; } inline bool operator==(VUseType::en lhs, const VUseType& rhs) { return lhs == rhs.m_e; } inline std::ostream& operator<<(std::ostream& os, const VUseType& rhs) { return os << rhs.ascii(); } //###################################################################### class VBasicTypeKey final { public: const int m_width; // From AstNodeDType: Bit width of operation const int m_widthMin; // From AstNodeDType: If unsized, bitwidth of minimum implementation const VSigning m_numeric; // From AstNodeDType: Node is signed const AstBasicDTypeKwd m_keyword; // From AstBasicDType: What keyword created basic type const VNumRange m_nrange; // From AstBasicDType: Numeric msb/lsb (if non-opaque keyword) bool operator==(const VBasicTypeKey& rhs) const { return m_width == rhs.m_width && m_widthMin == rhs.m_widthMin && m_numeric == rhs.m_numeric && m_keyword == rhs.m_keyword && m_nrange == rhs.m_nrange; } bool operator<(const VBasicTypeKey& rhs) const { if ((m_width < rhs.m_width)) return true; if (!(m_width == rhs.m_width)) return false; // lhs > rhs if ((m_widthMin < rhs.m_widthMin)) return true; if (!(m_widthMin == rhs.m_widthMin)) return false; // lhs > rhs if ((m_numeric < rhs.m_numeric)) return true; if (!(m_numeric == rhs.m_numeric)) return false; // lhs > rhs if ((m_keyword < rhs.m_keyword)) return true; if (!(m_keyword == rhs.m_keyword)) return false; // lhs > rhs if ((m_nrange < rhs.m_nrange)) return true; if (!(m_nrange == rhs.m_nrange)) return false; // lhs > rhs return false; } VBasicTypeKey(int width, int widthMin, VSigning numeric, AstBasicDTypeKwd kwd, const VNumRange& nrange) : m_width{width} , m_widthMin{widthMin} , m_numeric{numeric} , m_keyword{kwd} , m_nrange{nrange} {} ~VBasicTypeKey() = default; }; //###################################################################### // AstNUser - Generic base class for AST User nodes. // - Also used to allow parameter passing up/down iterate calls class WidthVP; class V3GraphVertex; class VSymEnt; class VNUser final { union { void* up; int ui; } m_u; public: VNUser() {} // non-explicit: // cppcheck-suppress noExplicitConstructor VNUser(int i) { m_u.up = 0; m_u.ui = i; } explicit VNUser(void* p) { m_u.up = p; } ~VNUser() = default; // Casters template // typename std::enable_if::value, T>::type to() const { return reinterpret_cast(m_u.up); } WidthVP* c() const { return to(); } VSymEnt* toSymEnt() const { return to(); } AstNode* toNodep() const { return to(); } V3GraphVertex* toGraphVertex() const { return to(); } int toInt() const { return m_u.ui; } static VNUser fromInt(int i) { return VNUser(i); } }; //###################################################################### // AstUserResource - Generic pointer base class for tracking usage of user() // // Where AstNode->user2() is going to be used, for example, you write: // // AstUser2InUse m_userres; // // This will clear the tree, and prevent another visitor from clobbering // user2. When the member goes out of scope it will be automagically // freed up. class AstUserInUseBase VL_NOT_FINAL { protected: static void allocate(int id, uint32_t& cntGblRef, bool& userBusyRef) { // Perhaps there's still a AstUserInUse in scope for this? UASSERT_STATIC(!userBusyRef, "Conflicting user use; AstUser" + cvtToStr(id) + "InUse request when under another AstUserInUse"); userBusyRef = true; clearcnt(id, cntGblRef, userBusyRef); } static void free(int id, uint32_t& cntGblRef, bool& userBusyRef) { UASSERT_STATIC(userBusyRef, "Free of User" + cvtToStr(id) + "() not under AstUserInUse"); clearcnt(id, cntGblRef, userBusyRef); // Includes a checkUse for us userBusyRef = false; } static void clearcnt(int id, uint32_t& cntGblRef, const bool& userBusyRef) { UASSERT_STATIC(userBusyRef, "Clear of User" + cvtToStr(id) + "() not under AstUserInUse"); // If this really fires and is real (after 2^32 edits???) // we could just walk the tree and clear manually ++cntGblRef; UASSERT_STATIC(cntGblRef, "User*() overflowed!"); } static void checkcnt(int id, uint32_t&, const bool& userBusyRef) { UASSERT_STATIC(userBusyRef, "Check of User" + cvtToStr(id) + "() failed, not under AstUserInUse"); } }; // For each user() declare the in use structure // We let AstNode peek into here, because when under low optimization even // an accessor would be way too slow. // clang-format off class AstUser1InUse final : AstUserInUseBase { protected: friend class AstNode; static uint32_t s_userCntGbl; // Count of which usage of userp() this is static bool s_userBusy; // Count is in use public: AstUser1InUse() { allocate(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } ~AstUser1InUse() { free (1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void clear() { clearcnt(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void check() { checkcnt(1, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } }; class AstUser2InUse final : AstUserInUseBase { protected: friend class AstNode; static uint32_t s_userCntGbl; // Count of which usage of userp() this is static bool s_userBusy; // Count is in use public: AstUser2InUse() { allocate(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } ~AstUser2InUse() { free (2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void clear() { clearcnt(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void check() { checkcnt(2, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } }; class AstUser3InUse final : AstUserInUseBase { protected: friend class AstNode; static uint32_t s_userCntGbl; // Count of which usage of userp() this is static bool s_userBusy; // Count is in use public: AstUser3InUse() { allocate(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } ~AstUser3InUse() { free (3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void clear() { clearcnt(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void check() { checkcnt(3, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } }; class AstUser4InUse final : AstUserInUseBase { protected: friend class AstNode; static uint32_t s_userCntGbl; // Count of which usage of userp() this is static bool s_userBusy; // Count is in use public: AstUser4InUse() { allocate(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } ~AstUser4InUse() { free (4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void clear() { clearcnt(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void check() { checkcnt(4, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } }; class AstUser5InUse final : AstUserInUseBase { protected: friend class AstNode; static uint32_t s_userCntGbl; // Count of which usage of userp() this is static bool s_userBusy; // Count is in use public: AstUser5InUse() { allocate(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } ~AstUser5InUse() { free (5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void clear() { clearcnt(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } static void check() { checkcnt(5, s_userCntGbl/*ref*/, s_userBusy/*ref*/); } }; // clang-format on //###################################################################### // Node deleter, deletes all enqueued AstNode* on destruction, or when // explicitly told to do so. This is useful when the deletion of removed // nodes needs to be deferred to a later time, because pointers to the // removed nodes might still exist. class AstNDeleter VL_NOT_FINAL { // MEMBERS std::vector m_deleteps; // Nodes to delete public: // METHODS // Enqueue node for deletion on next 'doDelete' (or destruction) void pushDeletep(AstNode* nodep) { UASSERT_STATIC(nodep, "Cannot delete nullptr node"); m_deleteps.push_back(nodep); } // Delete all previously pushed nodes (by callint deleteTree) void doDeletes(); // Do the deletions on destruction virtual ~AstNDeleter() { doDeletes(); } }; //###################################################################### // AstNVisitor -- Allows new functions to be called on each node // type without changing the base classes. See "Modern C++ Design". class AstNVisitor VL_NOT_FINAL : public AstNDeleter { friend class AstNode; public: /// Call visit()s on nodep void iterate(AstNode* nodep); /// Call visit()s on nodep void iterateNull(AstNode* nodep); /// Call visit()s on nodep's children void iterateChildren(AstNode* nodep); /// Call visit()s on nodep's children in backp() order void iterateChildrenBackwards(AstNode* nodep); /// Call visit()s on const nodep's children void iterateChildrenConst(AstNode* nodep); /// Call visit()s on nodep (maybe nullptr) and nodep's nextp() list void iterateAndNextNull(AstNode* nodep); /// Call visit()s on const nodep (maybe nullptr) and nodep's nextp() list void iterateAndNextConstNull(AstNode* nodep); /// Return edited nodep; see comments in V3Ast.cpp AstNode* iterateSubtreeReturnEdits(AstNode* nodep); #include "V3Ast__gen_visitor.h" // From ./astgen // Things like: // virtual void visit(AstBreak* nodep) { visit((AstNodeStmt*)(nodep)); } // virtual void visit(AstNodeStmt* nodep) { visit((AstNode*)(nodep)); } }; //###################################################################### // AstNRelinker -- Holds the state of a unlink so a new node can be // added at the same point. class AstNRelinker final { protected: friend class AstNode; enum RelinkWhatEn : uint8_t { RELINK_BAD, RELINK_NEXT, RELINK_OP1, RELINK_OP2, RELINK_OP3, RELINK_OP4 }; AstNode* m_oldp = nullptr; // The old node that was linked to this point in the tree AstNode* m_backp = nullptr; RelinkWhatEn m_chg = RELINK_BAD; AstNode** m_iterpp = nullptr; public: AstNRelinker() = default; void relink(AstNode* newp); AstNode* oldp() const { return m_oldp; } void dump(std::ostream& str = std::cout) const; }; inline std::ostream& operator<<(std::ostream& os, const AstNRelinker& rhs) { rhs.dump(os); return os; } //###################################################################### // Callback base class to determine if node matches some formula class VNodeMatcher VL_NOT_FINAL { public: virtual bool nodeMatch(const AstNode* nodep) const { return true; } }; //###################################################################### // AstNode -- Base type of all Ast types // Prefetch a node. // The if() makes it faster, even though prefetch won't fault on null pointers #define ASTNODE_PREFETCH(nodep) \ do { \ if (nodep) { \ VL_PREFETCH_RD(&((nodep)->m_nextp)); \ VL_PREFETCH_RD(&((nodep)->m_type)); \ } \ } while (false) class AstNode VL_NOT_FINAL { // v ASTNODE_PREFETCH depends on below ordering of members AstNode* m_nextp; // Next peer in the parent's list AstNode* m_backp; // Node that points to this one (via next/op1/op2/...) AstNode* m_op1p; // Generic pointer 1 AstNode* m_op2p; // Generic pointer 2 AstNode* m_op3p; // Generic pointer 3 AstNode* m_op4p; // Generic pointer 4 AstNode** m_iterpp; // Pointer to node iterating on, change it if we replace this node. const AstType m_type; // Node sub-type identifier // ^ ASTNODE_PREFETCH depends on above ordering of members // AstType is 2 bytes, so we can stick another 6 bytes after it to utilize what would // otherwise be padding (on a 64-bit system). We stick the attribute flags, broken state, // and the clone count here. struct { bool didWidth : 1; // Did V3Width computation bool doingWidth : 1; // Inside V3Width bool protect : 1; // Protect name if protection is on // Space for more flags here (there must be 8 bits in total) uint8_t unused : 5; } m_flags; // Attribute flags // State variable used by V3Broken for consistency checking. The top bit of this is byte is a // flag, representing V3Broken is currently proceeding under this node. The bottom 7 bits are // a generation number. This is hot when --debug-checks so we access as a whole to avoid bit // field masking resulting in unnecessary read-modify-write ops. uint8_t m_brokenState = 0; int m_cloneCnt; // Sequence number for when last clone was made #if defined(__x86_64__) && defined(__gnu_linux__) // Only assert this on known platforms, as it only affects performance, not correctness static_assert(sizeof(m_type) + sizeof(m_flags) + sizeof(m_brokenState) + sizeof(m_cloneCnt) <= sizeof(void*), "packing requires padding"); #endif AstNodeDType* m_dtypep; // Data type of output or assignment (etc) AstNode* m_headtailp; // When at begin/end of list, the opposite end of the list FileLine* m_fileline; // Where it was declared vluint64_t m_editCount; // When it was last edited static vluint64_t s_editCntGbl; // Global edit counter // Global edit counter, last value for printing * near node #s static vluint64_t s_editCntLast; AstNode* m_clonep; // Pointer to clone of/ source of this module (for *LAST* cloneTree() ONLY) static int s_cloneCntGbl; // Count of which userp is set // This member ordering both allows 64 bit alignment and puts associated data together VNUser m_user1u; // Contains any information the user iteration routine wants uint32_t m_user1Cnt; // Mark of when userp was set uint32_t m_user2Cnt; // Mark of when userp was set VNUser m_user2u; // Contains any information the user iteration routine wants VNUser m_user3u; // Contains any information the user iteration routine wants uint32_t m_user3Cnt; // Mark of when userp was set uint32_t m_user4Cnt; // Mark of when userp was set VNUser m_user4u; // Contains any information the user iteration routine wants VNUser m_user5u; // Contains any information the user iteration routine wants uint32_t m_user5Cnt; // Mark of when userp was set // METHODS void op1p(AstNode* nodep) { m_op1p = nodep; if (nodep) nodep->m_backp = this; } void op2p(AstNode* nodep) { m_op2p = nodep; if (nodep) nodep->m_backp = this; } void op3p(AstNode* nodep) { m_op3p = nodep; if (nodep) nodep->m_backp = this; } void op4p(AstNode* nodep) { m_op4p = nodep; if (nodep) nodep->m_backp = this; } private: AstNode* cloneTreeIter(); AstNode* cloneTreeIterList(); void checkTreeIter(AstNode* backp); void checkTreeIterList(AstNode* backp); bool gateTreeIter() const; static bool sameTreeIter(const AstNode* node1p, const AstNode* node2p, bool ignNext, bool gateOnly); void deleteTreeIter(); void deleteNode(); string locationStr() const; public: static void relinkOneLink(AstNode*& pointpr, AstNode* newp); // cppcheck-suppress functionConst static void debugTreeChange(const AstNode* nodep, const char* prefix, int lineno, bool next); protected: // CONSTRUCTORS AstNode(AstType t, FileLine* fl); virtual AstNode* clone() = 0; // Generally, cloneTree is what you want instead virtual void cloneRelink() {} void cloneRelinkTree(); // METHODS void setOp1p(AstNode* newp); // Set non-list-type op1 to non-list element void setOp2p(AstNode* newp); // Set non-list-type op2 to non-list element void setOp3p(AstNode* newp); // Set non-list-type op3 to non-list element void setOp4p(AstNode* newp); // Set non-list-type op4 to non-list element void addOp1p(AstNode* newp); // Append newp to end of op1 void addOp2p(AstNode* newp); // Append newp to end of op2 void addOp3p(AstNode* newp); // Append newp to end of op3 void addOp4p(AstNode* newp); // Append newp to end of op4 // clang-format off void setNOp1p(AstNode* newp) { if (newp) setOp1p(newp); } void setNOp2p(AstNode* newp) { if (newp) setOp2p(newp); } void setNOp3p(AstNode* newp) { if (newp) setOp3p(newp); } void setNOp4p(AstNode* newp) { if (newp) setOp4p(newp); } void addNOp1p(AstNode* newp) { if (newp) addOp1p(newp); } void addNOp2p(AstNode* newp) { if (newp) addOp2p(newp); } void addNOp3p(AstNode* newp) { if (newp) addOp3p(newp); } void addNOp4p(AstNode* newp) { if (newp) addOp4p(newp); } // clang-format on void clonep(AstNode* nodep) { m_clonep = nodep; m_cloneCnt = s_cloneCntGbl; } static void cloneClearTree() { s_cloneCntGbl++; UASSERT_STATIC(s_cloneCntGbl, "Rollover"); } public: // ACCESSORS inline AstType type() const { return m_type; } const char* typeName() const { return type().ascii(); } // See also prettyTypeName AstNode* nextp() const { return m_nextp; } AstNode* backp() const { return m_backp; } AstNode* abovep() const; // Parent node above, only when no nextp() as otherwise slow AstNode* op1p() const { return m_op1p; } AstNode* op2p() const { return m_op2p; } AstNode* op3p() const { return m_op3p; } AstNode* op4p() const { return m_op4p; } AstNodeDType* dtypep() const { return m_dtypep; } AstNode* clonep() const { return ((m_cloneCnt == s_cloneCntGbl) ? m_clonep : nullptr); } AstNode* firstAbovep() const { // Returns nullptr when second or later in list return ((backp() && backp()->nextp() != this) ? backp() : nullptr); } uint8_t brokenState() const { return m_brokenState; } void brokenState(uint8_t value) { m_brokenState = value; } // Used by AstNode::broken() bool brokeExists() const { return V3Broken::isLinkable(this); } bool brokeExistsAbove() const { return brokeExists() && (m_brokenState >> 7); } bool brokeExistsBelow() const { return brokeExists() && !(m_brokenState >> 7); } // Note: brokeExistsBelow is not quite precise, as it is true for sibling nodes as well // CONSTRUCTORS virtual ~AstNode() = default; #ifdef VL_LEAK_CHECKS static void* operator new(size_t size); static void operator delete(void* obj, size_t size); #endif // CONSTANTS // The following are relative dynamic costs (~ execution cycle count) of various operations. // They are used by V3InstCount to estimate the relative execution time of code fragments. static constexpr int INSTR_COUNT_BRANCH = 4; // Branch static constexpr int INSTR_COUNT_CALL = INSTR_COUNT_BRANCH + 10; // Subroutine call static constexpr int INSTR_COUNT_LD = 2; // Load memory static constexpr int INSTR_COUNT_INT_MUL = 3; // Integer multiply static constexpr int INSTR_COUNT_INT_DIV = 10; // Integer divide static constexpr int INSTR_COUNT_DBL = 8; // Convert or do float ops static constexpr int INSTR_COUNT_DBL_DIV = 40; // Double divide static constexpr int INSTR_COUNT_DBL_TRIG = 200; // Double trigonometric ops static constexpr int INSTR_COUNT_STR = 100; // String ops static constexpr int INSTR_COUNT_TIME = INSTR_COUNT_CALL + 5; // Determine simulation time static constexpr int INSTR_COUNT_PLI = 20; // PLI routines // ACCESSORS virtual string name() const { return ""; } virtual string origName() const { return ""; } virtual void name(const string& name) { this->v3fatalSrc("name() called on object without name() method"); } virtual void tag(const string& text) {} virtual string tag() const { return ""; } virtual string verilogKwd() const { return ""; } string nameProtect() const; // Name with --protect-id applied string origNameProtect() const; // origName with --protect-id applied string shortName() const; // Name with __PVT__ removed for concatenating scopes static string dedotName(const string& namein); // Name with dots removed static string prettyName(const string& namein); // Name for printing out to the user static string prettyNameQ(const string& namein) { // Quoted pretty name (for errors) return string("'") + prettyName(namein) + "'"; } static string encodeName(const string& namein); // Encode user name into internal C representation static string encodeNumber(vlsint64_t num); // Encode number into internal C representation static string vcdName(const string& namein); // Name for printing out to vcd files string prettyName() const { return prettyName(name()); } string prettyNameQ() const { return prettyNameQ(name()); } string prettyTypeName() const; // "VARREF" for error messages (NOT dtype's pretty name) virtual string prettyOperatorName() const { return "operator " + prettyTypeName(); } FileLine* fileline() const { return m_fileline; } void fileline(FileLine* fl) { m_fileline = fl; } bool width1() const; int widthInstrs() const; void didWidth(bool flag) { m_flags.didWidth = flag; } bool didWidth() const { return m_flags.didWidth; } bool didWidthAndSet() { if (didWidth()) return true; didWidth(true); return false; } bool doingWidth() const { return m_flags.doingWidth; } void doingWidth(bool flag) { m_flags.doingWidth = flag; } bool protect() const { return m_flags.protect; } void protect(bool flag) { m_flags.protect = flag; } // TODO stomp these width functions out, and call via dtypep() instead int width() const; int widthMin() const; int widthMinV() const { return v3Global.widthMinUsage() == VWidthMinUsage::VERILOG_WIDTH ? widthMin() : width(); } int widthWords() const { return VL_WORDS_I(width()); } bool isQuad() const { return (width() > VL_IDATASIZE && width() <= VL_QUADSIZE); } bool isWide() const { return (width() > VL_QUADSIZE); } bool isDouble() const; bool isSigned() const; bool isString() const; // clang-format off VNUser user1u() const { // Slows things down measurably, so disabled by default //UASSERT_STATIC(AstUser1InUse::s_userBusy, "userp set w/o busy"); return ((m_user1Cnt==AstUser1InUse::s_userCntGbl) ? m_user1u : VNUser(0)); } AstNode* user1p() const { return user1u().toNodep(); } void user1u(const VNUser& user) { m_user1u=user; m_user1Cnt=AstUser1InUse::s_userCntGbl; } void user1p(void* userp) { user1u(VNUser(userp)); } int user1() const { return user1u().toInt(); } void user1(int val) { user1u(VNUser(val)); } int user1Inc(int val=1) { int v=user1(); user1(v+val); return v; } int user1SetOnce() { int v=user1(); if (!v) user1(1); return v; } // Better for cache than user1Inc() static void user1ClearTree() { AstUser1InUse::clear(); } // Clear userp()'s across the entire tree VNUser user2u() const { // Slows things down measurably, so disabled by default //UASSERT_STATIC(AstUser2InUse::s_userBusy, "userp set w/o busy"); return ((m_user2Cnt==AstUser2InUse::s_userCntGbl) ? m_user2u : VNUser(0)); } AstNode* user2p() const { return user2u().toNodep(); } void user2u(const VNUser& user) { m_user2u=user; m_user2Cnt=AstUser2InUse::s_userCntGbl; } void user2p(void* userp) { user2u(VNUser(userp)); } int user2() const { return user2u().toInt(); } void user2(int val) { user2u(VNUser(val)); } int user2Inc(int val=1) { int v=user2(); user2(v+val); return v; } int user2SetOnce() { int v=user2(); if (!v) user2(1); return v; } // Better for cache than user2Inc() static void user2ClearTree() { AstUser2InUse::clear(); } // Clear userp()'s across the entire tree VNUser user3u() const { // Slows things down measurably, so disabled by default //UASSERT_STATIC(AstUser3InUse::s_userBusy, "userp set w/o busy"); return ((m_user3Cnt==AstUser3InUse::s_userCntGbl) ? m_user3u : VNUser(0)); } AstNode* user3p() const { return user3u().toNodep(); } void user3u(const VNUser& user) { m_user3u=user; m_user3Cnt=AstUser3InUse::s_userCntGbl; } void user3p(void* userp) { user3u(VNUser(userp)); } int user3() const { return user3u().toInt(); } void user3(int val) { user3u(VNUser(val)); } int user3Inc(int val=1) { int v=user3(); user3(v+val); return v; } int user3SetOnce() { int v=user3(); if (!v) user3(1); return v; } // Better for cache than user3Inc() static void user3ClearTree() { AstUser3InUse::clear(); } // Clear userp()'s across the entire tree VNUser user4u() const { // Slows things down measurably, so disabled by default //UASSERT_STATIC(AstUser4InUse::s_userBusy, "userp set w/o busy"); return ((m_user4Cnt==AstUser4InUse::s_userCntGbl) ? m_user4u : VNUser(0)); } AstNode* user4p() const { return user4u().toNodep(); } void user4u(const VNUser& user) { m_user4u=user; m_user4Cnt=AstUser4InUse::s_userCntGbl; } void user4p(void* userp) { user4u(VNUser(userp)); } int user4() const { return user4u().toInt(); } void user4(int val) { user4u(VNUser(val)); } int user4Inc(int val=1) { int v=user4(); user4(v+val); return v; } int user4SetOnce() { int v=user4(); if (!v) user4(1); return v; } // Better for cache than user4Inc() static void user4ClearTree() { AstUser4InUse::clear(); } // Clear userp()'s across the entire tree VNUser user5u() const { // Slows things down measurably, so disabled by default //UASSERT_STATIC(AstUser5InUse::s_userBusy, "userp set w/o busy"); return ((m_user5Cnt==AstUser5InUse::s_userCntGbl) ? m_user5u : VNUser(0)); } AstNode* user5p() const { return user5u().toNodep(); } void user5u(const VNUser& user) { m_user5u=user; m_user5Cnt=AstUser5InUse::s_userCntGbl; } void user5p(void* userp) { user5u(VNUser(userp)); } int user5() const { return user5u().toInt(); } void user5(int val) { user5u(VNUser(val)); } int user5Inc(int val=1) { int v=user5(); user5(v+val); return v; } int user5SetOnce() { int v=user5(); if (!v) user5(1); return v; } // Better for cache than user5Inc() static void user5ClearTree() { AstUser5InUse::clear(); } // Clear userp()'s across the entire tree // clang-format on vluint64_t editCount() const { return m_editCount; } void editCountInc() { m_editCount = ++s_editCntGbl; // Preincrement, so can "watch AstNode::s_editCntGbl=##" } static vluint64_t editCountLast() { return s_editCntLast; } static vluint64_t editCountGbl() { return s_editCntGbl; } static void editCountSetLast() { s_editCntLast = editCountGbl(); } // ACCESSORS for specific types // Alas these can't be virtual or they break when passed a nullptr bool isZero() const; bool isOne() const; bool isNeqZero() const; bool isAllOnes() const; bool isAllOnesV() const; // Verilog width rules apply // METHODS - data type changes especially for initial creation void dtypep(AstNodeDType* nodep) { if (m_dtypep != nodep) { m_dtypep = nodep; editCountInc(); } } void dtypeFrom(AstNode* fromp) { if (fromp) dtypep(fromp->dtypep()); } void dtypeChgSigned(bool flag = true); void dtypeChgWidth(int width, int widthMin); void dtypeChgWidthSigned(int width, int widthMin, VSigning numeric); void dtypeSetBitUnsized(int width, int widthMin, VSigning numeric) { dtypep(findBitDType(width, widthMin, numeric)); } void dtypeSetBitSized(int width, VSigning numeric) { dtypep(findBitDType(width, width, numeric)); // Since sized, widthMin is width } void dtypeSetLogicUnsized(int width, int widthMin, VSigning numeric) { dtypep(findLogicDType(width, widthMin, numeric)); } void dtypeSetLogicSized(int width, VSigning numeric) { dtypep(findLogicDType(width, width, numeric)); // Since sized, widthMin is width } void dtypeSetBit() { dtypep(findBitDType()); } void dtypeSetDouble() { dtypep(findDoubleDType()); } void dtypeSetString() { dtypep(findStringDType()); } void dtypeSetSigned32() { dtypep(findSigned32DType()); } void dtypeSetUInt32() { dtypep(findUInt32DType()); } // Twostate void dtypeSetUInt64() { dtypep(findUInt64DType()); } // Twostate void dtypeSetEmptyQueue() { dtypep(findEmptyQueueDType()); } void dtypeSetVoid() { dtypep(findVoidDType()); } // Data type locators AstNodeDType* findBitDType() { return findBasicDType(AstBasicDTypeKwd::LOGIC); } AstNodeDType* findDoubleDType() { return findBasicDType(AstBasicDTypeKwd::DOUBLE); } AstNodeDType* findStringDType() { return findBasicDType(AstBasicDTypeKwd::STRING); } AstNodeDType* findSigned32DType() { return findBasicDType(AstBasicDTypeKwd::INTEGER); } AstNodeDType* findUInt32DType() { return findBasicDType(AstBasicDTypeKwd::UINT32); } AstNodeDType* findUInt64DType() { return findBasicDType(AstBasicDTypeKwd::UINT64); } AstNodeDType* findCHandleDType() { return findBasicDType(AstBasicDTypeKwd::CHANDLE); } AstNodeDType* findEmptyQueueDType() const; AstNodeDType* findVoidDType() const; AstNodeDType* findQueueIndexDType() const; AstNodeDType* findBitDType(int width, int widthMin, VSigning numeric) const; AstNodeDType* findLogicDType(int width, int widthMin, VSigning numeric) const; AstNodeDType* findLogicRangeDType(const VNumRange& range, int widthMin, VSigning numeric) const; AstNodeDType* findBitRangeDType(const VNumRange& range, int widthMin, VSigning numeric) const; AstNodeDType* findBasicDType(AstBasicDTypeKwd kwd) const; static AstBasicDType* findInsertSameDType(AstBasicDType* nodep); // METHODS - dump and error void v3errorEnd(std::ostringstream& str) const; void v3errorEndFatal(std::ostringstream& str) const VL_ATTR_NORETURN; string warnContextPrimary() const { return fileline()->warnContextPrimary(); } string warnContextSecondary() const { return fileline()->warnContextSecondary(); } string warnMore() const { return fileline()->warnMore(); } string warnOther() const { return fileline()->warnOther(); } virtual void dump(std::ostream& str = std::cout) const; static void dumpGdb(const AstNode* nodep); // For GDB only void dumpGdbHeader() const; // METHODS - Tree modifications // Returns nodep, adds newp to end of nodep's list static AstNode* addNext(AstNode* nodep, AstNode* newp); // Returns nodep, adds newp (maybe nullptr) to end of nodep's list static AstNode* addNextNull(AstNode* nodep, AstNode* newp); inline AstNode* addNext(AstNode* newp) { return addNext(this, newp); } inline AstNode* addNextNull(AstNode* newp) { return addNextNull(this, newp); } void addNextHere(AstNode* newp); // Insert newp at this->nextp void addPrev(AstNode* newp) { replaceWith(newp); newp->addNext(this); } void addHereThisAsNext(AstNode* newp); // Adds at old place of this, this becomes next void replaceWith(AstNode* newp); // Replace current node in tree with new node AstNode* unlinkFrBack(AstNRelinker* linkerp = nullptr); // Unlink this from whoever points to it. // Unlink this from whoever points to it, keep entire next list with unlinked node AstNode* unlinkFrBackWithNext(AstNRelinker* linkerp = nullptr); void swapWith(AstNode* bp); void relink(AstNRelinker* linkerp); // Generally use linker->relink() instead void cloneRelinkNode() { cloneRelink(); } // Iterate and insert - assumes tree format virtual void addNextStmt(AstNode* newp, AstNode* belowp); // When calling, "this" is second argument virtual void addBeforeStmt(AstNode* newp, AstNode* belowp); // When calling, "this" is second argument // METHODS - Iterate on a tree // Clone or return nullptr if nullptr static AstNode* cloneTreeNull(AstNode* nodep, bool cloneNextLink) { return nodep ? nodep->cloneTree(cloneNextLink) : nullptr; } AstNode* cloneTree(bool cloneNextLink); // Not const, as sets clonep() on original nodep bool gateTree() { return gateTreeIter(); } // Is tree isGateOptimizable? bool sameTree(const AstNode* node2p) const; // Does tree of this == node2p? // Does tree of this == node2p?, not allowing non-isGateOptimizable bool sameGateTree(const AstNode* node2p) const; void deleteTree(); // Always deletes the next link void checkTree(); // User Interface version void checkIter() const; void clearIter() { m_iterpp = nullptr; } void dumpPtrs(std::ostream& os = std::cout) const; void dumpTree(std::ostream& os = std::cout, const string& indent = " ", int maxDepth = 0) const; void dumpTree(const string& indent, int maxDepth = 0) const { dumpTree(cout, indent, maxDepth); } static void dumpTreeGdb(const AstNode* nodep); // For GDB only void dumpTreeAndNext(std::ostream& os = std::cout, const string& indent = " ", int maxDepth = 0) const; void dumpTreeFile(const string& filename, bool append = false, bool doDump = true, bool doCheck = true); static void dumpTreeFileGdb(const AstNode* nodep, const char* filenamep = nullptr); // METHODS - queries // Changes control flow, disable some optimizations virtual bool isBrancher() const { return false; } // Else a AstTime etc that can't be pushed out virtual bool isGateOptimizable() const { return true; } // GateDedupable is a slightly larger superset of GateOptimzable (eg, AstNodeIf) virtual bool isGateDedupable() const { return isGateOptimizable(); } // Else creates output or exits, etc, not unconsumed virtual bool isOutputter() const { return false; } // Else a AstTime etc which output can't be predicted from input virtual bool isPredictOptimizable() const { return true; } // Else a $display, etc, that must be ordered with other displays virtual bool isPure() const { return true; } // Else a AstTime etc that can't be substituted out virtual bool isSubstOptimizable() const { return true; } // isUnlikely handles $stop or similar statement which means an above IF // statement is unlikely to be taken virtual bool isUnlikely() const { return false; } virtual int instrCount() const { return 0; } virtual bool same(const AstNode*) const { return true; } // Iff has a data type; dtype() must be non null virtual bool hasDType() const { return false; } // Iff has a non-null childDTypep(), as generic node function virtual AstNodeDType* getChildDTypep() const { return nullptr; } // Iff has a non-null child2DTypep(), as generic node function virtual AstNodeDType* getChild2DTypep() const { return nullptr; } // Another AstNode* may have a pointer into this node, other then normal front/back/etc. virtual bool maybePointedTo() const { return false; } virtual const char* broken() const { return nullptr; } // INVOKERS virtual void accept(AstNVisitor& v) = 0; protected: // All AstNVisitor related functions are called as methods off the visitor friend class AstNVisitor; // Use instead AstNVisitor::iterateChildren void iterateChildren(AstNVisitor& v); // Use instead AstNVisitor::iterateChildrenBackwards void iterateChildrenBackwards(AstNVisitor& v); // Use instead AstNVisitor::iterateChildrenConst void iterateChildrenConst(AstNVisitor& v); // Use instead AstNVisitor::iterateAndNextNull void iterateAndNext(AstNVisitor& v); // Use instead AstNVisitor::iterateAndNextConstNull void iterateAndNextConst(AstNVisitor& v); // Use instead AstNVisitor::iterateSubtreeReturnEdits AstNode* iterateSubtreeReturnEdits(AstNVisitor& v); private: void iterateListBackwards(AstNVisitor& v); // For internal use only. template inline static bool privateTypeTest(const AstNode* nodep); template constexpr static bool uselessCast() { using NonRef = typename std::remove_reference::type; using NonPtr = typename std::remove_pointer::type; using NonCV = typename std::remove_cv::type; return std::is_base_of::value; } template constexpr static bool impossibleCast() { using NonRef = typename std::remove_reference::type; using NonPtr = typename std::remove_pointer::type; using NonCV = typename std::remove_cv::type; return !std::is_base_of::value; } public: // For use via the VN_IS macro only template inline static bool privateIs(const AstNode* nodep) { static_assert(!uselessCast(), "Unnecessary VN_IS, node known to have target type."); static_assert(!impossibleCast(), "Unnecessary VN_IS, node cannot be this type."); return nodep && privateTypeTest(nodep); } // For use via the VN_CAST macro only template inline static T* privateCast(AstNode* nodep) { static_assert(!uselessCast(), "Unnecessary VN_CAST, node known to have target type."); static_assert(!impossibleCast(), "Unnecessary VN_CAST, node cannot be this type."); return nodep && privateTypeTest(nodep) ? reinterpret_cast(nodep) : nullptr; } template inline static const T* privateCast(const AstNode* nodep) { static_assert(!uselessCast(), "Unnecessary VN_CAST, node known to have target type."); static_assert(!impossibleCast(), "Unnecessary VN_CAST, node cannot be this type."); return nodep && privateTypeTest(nodep) ? reinterpret_cast(nodep) : nullptr; } // For use via the VN_AS macro only template inline static T* privateAs(AstNode* nodep) { static_assert(!uselessCast(), "Unnecessary VN_AS, node known to have target type."); static_assert(!impossibleCast(), "Unnecessary VN_AS, node cannot be this type."); UASSERT_OBJ(!nodep || privateTypeTest(nodep), nodep, "AstNode is not of expected type, but instead has type '" << nodep->typeName() << "'"); return reinterpret_cast(nodep); } template inline static const T* privateAs(const AstNode* nodep) { static_assert(!uselessCast(), "Unnecessary VN_AS, node known to have target type."); static_assert(!impossibleCast(), "Unnecessary VN_AS, node cannot be this type."); UASSERT_OBJ(!nodep || privateTypeTest(nodep), nodep, "AstNode is not of expected type, but instead has type '" << nodep->typeName() << "'"); return reinterpret_cast(nodep); } }; // Specialisations of privateIs/privateCast #include "V3Ast__gen_impl.h" // From ./astgen inline std::ostream& operator<<(std::ostream& os, const AstNode* rhs) { if (!rhs) { os << "nullptr"; } else { rhs->dump(os); } return os; } inline void AstNRelinker::relink(AstNode* newp) { newp->AstNode::relink(this); } //###################################################################### //###################################################################### //=== AstNode* : Derived generic node types #define ASTNODE_BASE_FUNCS(name) \ virtual ~Ast##name() override = default; \ static Ast##name* cloneTreeNull(Ast##name* nodep, bool cloneNextLink) { \ return nodep ? nodep->cloneTree(cloneNextLink) : nullptr; \ } \ Ast##name* cloneTree(bool cloneNext) { \ return static_cast(AstNode::cloneTree(cloneNext)); \ } \ Ast##name* clonep() const { return static_cast(AstNode::clonep()); } class AstNodeMath VL_NOT_FINAL : public AstNode { // Math -- anything that's part of an expression tree protected: AstNodeMath(AstType t, FileLine* fl) : AstNode{t, fl} {} public: ASTNODE_BASE_FUNCS(NodeMath) // METHODS virtual void dump(std::ostream& str) const override; virtual bool hasDType() const override { return true; } virtual string emitVerilog() = 0; /// Format string for verilog writing; see V3EmitV // For documentation on emitC format see EmitCFunc::emitOpName virtual string emitC() = 0; virtual string emitSimpleOperator() { return ""; } // "" means not ok to use virtual bool emitCheckMaxWords() { return false; } // Check VL_MULS_MAX_WORDS virtual bool cleanOut() const = 0; // True if output has extra upper bits zero // Someday we will generically support data types on every math node // Until then isOpaque indicates we shouldn't constant optimize this node type bool isOpaque() const { return VN_IS(this, CvtPackString); } }; class AstNodeTermop VL_NOT_FINAL : public AstNodeMath { // Terminal operator -- a operator with no "inputs" protected: AstNodeTermop(AstType t, FileLine* fl) : AstNodeMath{t, fl} {} public: ASTNODE_BASE_FUNCS(NodeTermop) // Know no children, and hot function, so skip iterator for speed // See checkTreeIter also that asserts no children // cppcheck-suppress functionConst void iterateChildren(AstNVisitor& v) {} virtual void dump(std::ostream& str) const override; }; class AstNodeUniop VL_NOT_FINAL : public AstNodeMath { // Unary math protected: AstNodeUniop(AstType t, FileLine* fl, AstNode* lhsp) : AstNodeMath{t, fl} { dtypeFrom(lhsp); setOp1p(lhsp); } public: ASTNODE_BASE_FUNCS(NodeUniop) AstNode* lhsp() const { return op1p(); } void lhsp(AstNode* nodep) { return setOp1p(nodep); } // METHODS virtual void dump(std::ostream& str) const override; // Set out to evaluation of a AstConst'ed lhs virtual void numberOperate(V3Number& out, const V3Number& lhs) = 0; virtual bool cleanLhs() const = 0; virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size virtual bool doubleFlavor() const { return false; } // D flavor of nodes with both flavors? // Signed flavor of nodes with both flavors? virtual bool signedFlavor() const { return false; } virtual bool stringFlavor() const { return false; } // N flavor of nodes with both flavors? virtual int instrCount() const override { return widthInstrs(); } virtual bool same(const AstNode*) const override { return true; } }; class AstNodeBiop VL_NOT_FINAL : public AstNodeMath { // Binary math protected: AstNodeBiop(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs) : AstNodeMath{t, fl} { setOp1p(lhs); setOp2p(rhs); } public: ASTNODE_BASE_FUNCS(NodeBiop) // Clone single node, just get same type back. virtual AstNode* cloneType(AstNode* lhsp, AstNode* rhsp) = 0; // ACCESSORS AstNode* lhsp() const { return op1p(); } AstNode* rhsp() const { return op2p(); } void lhsp(AstNode* nodep) { return setOp1p(nodep); } void rhsp(AstNode* nodep) { return setOp2p(nodep); } // METHODS // Set out to evaluation of a AstConst'ed virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs) = 0; virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size virtual bool doubleFlavor() const { return false; } // D flavor of nodes with both flavors? // Signed flavor of nodes with both flavors? virtual bool signedFlavor() const { return false; } virtual bool stringFlavor() const { return false; } // N flavor of nodes with both flavors? virtual int instrCount() const override { return widthInstrs(); } virtual bool same(const AstNode*) const override { return true; } }; class AstNodeTriop VL_NOT_FINAL : public AstNodeMath { // Trinary math protected: AstNodeTriop(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths) : AstNodeMath{t, fl} { setOp1p(lhs); setOp2p(rhs); setOp3p(ths); } public: ASTNODE_BASE_FUNCS(NodeTriop) AstNode* lhsp() const { return op1p(); } AstNode* rhsp() const { return op2p(); } AstNode* thsp() const { return op3p(); } void lhsp(AstNode* nodep) { return setOp1p(nodep); } void rhsp(AstNode* nodep) { return setOp2p(nodep); } void thsp(AstNode* nodep) { return setOp3p(nodep); } // METHODS virtual void dump(std::ostream& str) const override; // Set out to evaluation of a AstConst'ed virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs, const V3Number& ths) = 0; virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero virtual bool cleanThs() const = 0; // True if THS must have extra upper bits zero virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size virtual bool sizeMattersThs() const = 0; // True if output result depends on ths size virtual int instrCount() const override { return widthInstrs(); } virtual bool same(const AstNode*) const override { return true; } }; class AstNodeQuadop VL_NOT_FINAL : public AstNodeMath { // Quaternary math protected: AstNodeQuadop(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs, AstNode* ths, AstNode* fhs) : AstNodeMath{t, fl} { setOp1p(lhs); setOp2p(rhs); setOp3p(ths); setOp4p(fhs); } public: ASTNODE_BASE_FUNCS(NodeQuadop) AstNode* lhsp() const { return op1p(); } AstNode* rhsp() const { return op2p(); } AstNode* thsp() const { return op3p(); } AstNode* fhsp() const { return op4p(); } void lhsp(AstNode* nodep) { return setOp1p(nodep); } void rhsp(AstNode* nodep) { return setOp2p(nodep); } void thsp(AstNode* nodep) { return setOp3p(nodep); } void fhsp(AstNode* nodep) { return setOp4p(nodep); } // METHODS // Set out to evaluation of a AstConst'ed virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs, const V3Number& ths, const V3Number& fhs) = 0; virtual bool cleanLhs() const = 0; // True if LHS must have extra upper bits zero virtual bool cleanRhs() const = 0; // True if RHS must have extra upper bits zero virtual bool cleanThs() const = 0; // True if THS must have extra upper bits zero virtual bool cleanFhs() const = 0; // True if THS must have extra upper bits zero virtual bool sizeMattersLhs() const = 0; // True if output result depends on lhs size virtual bool sizeMattersRhs() const = 0; // True if output result depends on rhs size virtual bool sizeMattersThs() const = 0; // True if output result depends on ths size virtual bool sizeMattersFhs() const = 0; // True if output result depends on ths size virtual int instrCount() const override { return widthInstrs(); } virtual bool same(const AstNode*) const override { return true; } }; class AstNodeBiCom VL_NOT_FINAL : public AstNodeBiop { // Binary math with commutative properties protected: AstNodeBiCom(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs) : AstNodeBiop{t, fl, lhs, rhs} {} public: ASTNODE_BASE_FUNCS(NodeBiCom) }; class AstNodeBiComAsv VL_NOT_FINAL : public AstNodeBiCom { // Binary math with commutative & associative properties protected: AstNodeBiComAsv(AstType t, FileLine* fl, AstNode* lhs, AstNode* rhs) : AstNodeBiCom{t, fl, lhs, rhs} {} public: ASTNODE_BASE_FUNCS(NodeBiComAsv) }; class AstNodeCond VL_NOT_FINAL : public AstNodeTriop { protected: AstNodeCond(AstType t, FileLine* fl, AstNode* condp, AstNode* expr1p, AstNode* expr2p) : AstNodeTriop{t, fl, condp, expr1p, expr2p} { if (expr1p) { dtypeFrom(expr1p); } else if (expr2p) { dtypeFrom(expr2p); } } public: ASTNODE_BASE_FUNCS(NodeCond) virtual void numberOperate(V3Number& out, const V3Number& lhs, const V3Number& rhs, const V3Number& ths) override; AstNode* condp() const { return op1p(); } // op1 = Condition AstNode* expr1p() const { return op2p(); } // op2 = If true... AstNode* expr2p() const { return op3p(); } // op3 = If false... virtual string emitVerilog() override { return "%k(%l %f? %r %k: %t)"; } virtual string emitC() override { return "VL_COND_%nq%lq%rq%tq(%nw, %P, %li, %ri, %ti)"; } virtual bool cleanOut() const override { return false; } // clean if e1 & e2 clean virtual bool cleanLhs() const override { return true; } virtual bool cleanRhs() const override { return false; } virtual bool cleanThs() const override { return false; } // Propagates up virtual bool sizeMattersLhs() const override { return false; } virtual bool sizeMattersRhs() const override { return false; } virtual bool sizeMattersThs() const override { return false; } virtual int instrCount() const override { return INSTR_COUNT_BRANCH; } virtual AstNode* cloneType(AstNode* condp, AstNode* expr1p, AstNode* expr2p) = 0; }; class AstNodeBlock VL_NOT_FINAL : public AstNode { // A Begin/fork block // Parents: statement // Children: statements private: string m_name; // Name of block bool m_unnamed; // Originally unnamed (name change does not affect this) protected: AstNodeBlock(AstType t, FileLine* fl, const string& name, AstNode* stmtsp) : AstNode{t, fl} , m_name{name} { addNOp1p(stmtsp); m_unnamed = (name == ""); } public: ASTNODE_BASE_FUNCS(NodeBlock) virtual void dump(std::ostream& str) const override; virtual string name() const override { return m_name; } // * = Block name virtual void name(const string& name) override { m_name = name; } // op1 = Statements AstNode* stmtsp() const { return op1p(); } // op1 = List of statements void addStmtsp(AstNode* nodep) { addNOp1p(nodep); } bool unnamed() const { return m_unnamed; } }; class AstNodePreSel VL_NOT_FINAL : public AstNode { // Something that becomes an AstSel protected: AstNodePreSel(AstType t, FileLine* fl, AstNode* fromp, AstNode* rhs, AstNode* ths) : AstNode{t, fl} { setOp1p(fromp); setOp2p(rhs); setNOp3p(ths); } public: ASTNODE_BASE_FUNCS(NodePreSel) AstNode* fromp() const { return op1p(); } AstNode* rhsp() const { return op2p(); } AstNode* thsp() const { return op3p(); } AstAttrOf* attrp() const { return VN_AS(op4p(), AttrOf); } void fromp(AstNode* nodep) { return setOp1p(nodep); } void rhsp(AstNode* nodep) { return setOp2p(nodep); } void thsp(AstNode* nodep) { return setOp3p(nodep); } void attrp(AstAttrOf* nodep) { return setOp4p((AstNode*)nodep); } // METHODS virtual bool same(const AstNode*) const override { return true; } }; class AstNodeProcedure VL_NOT_FINAL : public AstNode { // IEEE procedure: initial, final, always protected: AstNodeProcedure(AstType t, FileLine* fl, AstNode* bodysp) : AstNode{t, fl} { addNOp2p(bodysp); } public: ASTNODE_BASE_FUNCS(NodeProcedure) // METHODS virtual void dump(std::ostream& str) const override; AstNode* bodysp() const { return op2p(); } // op2 = Statements to evaluate void addStmtp(AstNode* nodep) { addOp2p(nodep); } bool isJustOneBodyStmt() const { return bodysp() && !bodysp()->nextp(); } }; class AstNodeStmt VL_NOT_FINAL : public AstNode { // Statement -- anything that's directly under a function bool m_statement; // Really a statement (e.g. not a function with return) protected: AstNodeStmt(AstType t, FileLine* fl, bool statement = true) : AstNode{t, fl} , m_statement{statement} {} public: ASTNODE_BASE_FUNCS(NodeStmt) // METHODS bool isStatement() const { return m_statement; } // Really a statement void statement(bool flag) { m_statement = flag; } virtual void addNextStmt(AstNode* newp, AstNode* belowp) override; // Stop statement searchback here virtual void addBeforeStmt(AstNode* newp, AstNode* belowp) override; // Stop statement searchback here virtual void dump(std::ostream& str = std::cout) const override; }; class AstNodeAssign VL_NOT_FINAL : public AstNodeStmt { protected: AstNodeAssign(AstType t, FileLine* fl, AstNode* lhsp, AstNode* rhsp) : AstNodeStmt{t, fl} { setOp1p(rhsp); setOp2p(lhsp); dtypeFrom(lhsp); } public: ASTNODE_BASE_FUNCS(NodeAssign) // Clone single node, just get same type back. virtual AstNode* cloneType(AstNode* lhsp, AstNode* rhsp) = 0; // So iteration hits the RHS which is "earlier" in execution order, it's op1, not op2 AstNode* rhsp() const { return op1p(); } // op1 = Assign from AstNode* lhsp() const { return op2p(); } // op2 = Assign to void rhsp(AstNode* np) { setOp1p(np); } void lhsp(AstNode* np) { setOp2p(np); } virtual bool hasDType() const override { return true; } virtual bool cleanRhs() const { return true; } virtual int instrCount() const override { return widthInstrs(); } virtual bool same(const AstNode*) const override { return true; } virtual string verilogKwd() const override { return "="; } virtual bool brokeLhsMustBeLvalue() const = 0; }; class AstNodeFor VL_NOT_FINAL : public AstNodeStmt { protected: AstNodeFor(AstType t, FileLine* fl, AstNode* initsp, AstNode* condp, AstNode* incsp, AstNode* bodysp) : AstNodeStmt{t, fl} { addNOp1p(initsp); setOp2p(condp); addNOp3p(incsp); addNOp4p(bodysp); } public: ASTNODE_BASE_FUNCS(NodeFor) AstNode* initsp() const { return op1p(); } // op1 = initial statements AstNode* condp() const { return op2p(); } // op2 = condition to continue AstNode* incsp() const { return op3p(); } // op3 = increment statements AstNode* bodysp() const { return op4p(); } // op4 = body of loop virtual bool isGateOptimizable() const override { return false; } virtual int instrCount() const override { return INSTR_COUNT_BRANCH; } virtual bool same(const AstNode* samep) const override { return true; } }; class AstNodeIf VL_NOT_FINAL : public AstNodeStmt { private: VBranchPred m_branchPred; // Branch prediction as taken/untaken? bool m_isBoundsCheck; // True if this if node was inserted for array bounds checking protected: AstNodeIf(AstType t, FileLine* fl, AstNode* condp, AstNode* ifsp, AstNode* elsesp) : AstNodeStmt{t, fl} { setOp1p(condp); addNOp2p(ifsp); addNOp3p(elsesp); isBoundsCheck(false); } public: ASTNODE_BASE_FUNCS(NodeIf) AstNode* condp() const { return op1p(); } // op1 = condition AstNode* ifsp() const { return op2p(); } // op2 = list of true statements AstNode* elsesp() const { return op3p(); } // op3 = list of false statements void condp(AstNode* newp) { setOp1p(newp); } void addIfsp(AstNode* newp) { addOp2p(newp); } void addElsesp(AstNode* newp) { addOp3p(newp); } virtual bool isGateOptimizable() const override { return false; } virtual bool isGateDedupable() const override { return true; } virtual int instrCount() const override { return INSTR_COUNT_BRANCH; } virtual bool same(const AstNode* samep) const override { return true; } void branchPred(VBranchPred flag) { m_branchPred = flag; } VBranchPred branchPred() const { return m_branchPred; } void isBoundsCheck(bool flag) { m_isBoundsCheck = flag; } bool isBoundsCheck() const { return m_isBoundsCheck; } }; class AstNodeCase VL_NOT_FINAL : public AstNodeStmt { protected: AstNodeCase(AstType t, FileLine* fl, AstNode* exprp, AstNode* casesp) : AstNodeStmt{t, fl} { setOp1p(exprp); addNOp2p(casesp); } public: ASTNODE_BASE_FUNCS(NodeCase) virtual int instrCount() const override { return INSTR_COUNT_BRANCH; } AstNode* exprp() const { return op1p(); } // op1 = case condition AstCaseItem* itemsp() const { return VN_AS(op2p(), CaseItem); } // op2 = list of case expressions AstNode* notParallelp() const { return op3p(); } // op3 = assertion code for non-full case's void addItemsp(AstNode* nodep) { addOp2p(nodep); } void addNotParallelp(AstNode* nodep) { setOp3p(nodep); } }; class AstNodeVarRef VL_NOT_FINAL : public AstNodeMath { // An AstVarRef or AstVarXRef private: VAccess m_access; // Left hand side assignment AstVar* m_varp; // [AfterLink] Pointer to variable itself AstVarScope* m_varScopep = nullptr; // Varscope for hierarchy AstNodeModule* m_classOrPackagep = nullptr; // Package hierarchy string m_name; // Name of variable string m_selfPointer; // Output code object pointer (e.g.: 'this') protected: AstNodeVarRef(AstType t, FileLine* fl, const string& name, const VAccess& access) : AstNodeMath{t, fl} , m_access{access} , m_name{name} { this->varp(nullptr); } AstNodeVarRef(AstType t, FileLine* fl, const string& name, AstVar* varp, const VAccess& access) : AstNodeMath{t, fl} , m_access{access} , m_name{name} { // May have varp==nullptr this->varp(varp); } public: ASTNODE_BASE_FUNCS(NodeVarRef) virtual void dump(std::ostream& str) const override; virtual bool hasDType() const override { return true; } virtual const char* broken() const override; virtual int instrCount() const override { return widthInstrs(); } virtual void cloneRelink() override; virtual string name() const override { return m_name; } // * = Var name virtual void name(const string& name) override { m_name = name; } VAccess access() const { return m_access; } void access(const VAccess& flag) { m_access = flag; } // Avoid using this; Set in constructor AstVar* varp() const { return m_varp; } // [After Link] Pointer to variable void varp(AstVar* varp); AstVarScope* varScopep() const { return m_varScopep; } void varScopep(AstVarScope* varscp) { m_varScopep = varscp; } string selfPointer() const { return m_selfPointer; } void selfPointer(const string& value) { m_selfPointer = value; } string selfPointerProtect(bool useSelfForThis) const; AstNodeModule* classOrPackagep() const { return m_classOrPackagep; } void classOrPackagep(AstNodeModule* nodep) { m_classOrPackagep = nodep; } // Know no children, and hot function, so skip iterator for speed // See checkTreeIter also that asserts no children // cppcheck-suppress functionConst void iterateChildren(AstNVisitor& v) {} }; class AstNodeText VL_NOT_FINAL : public AstNode { private: string m_text; protected: // Node that simply puts text into the output stream AstNodeText(AstType t, FileLine* fl, const string& textp) : AstNode{t, fl} { m_text = textp; // Copy it } public: ASTNODE_BASE_FUNCS(NodeText) virtual void dump(std::ostream& str = std::cout) const override; virtual bool same(const AstNode* samep) const override { const AstNodeText* asamep = static_cast(samep); return text() == asamep->text(); } const string& text() const { return m_text; } }; class AstNodeDType VL_NOT_FINAL : public AstNode { // Ideally width() would migrate to BasicDType as that's where it makes sense, // but it's currently so prevalent in the code we leave it here. // Note the below members are included in AstTypeTable::Key lookups private: int m_width; // (also in AstTypeTable::Key) Bit width of operation int m_widthMin; // (also in AstTypeTable::Key) If unsized, bitwidth of minimum implementation VSigning m_numeric; // (also in AstTypeTable::Key) Node is signed // Other members bool m_generic; // Simple globally referenced type, don't garbage collect // Unique number assigned to each dtype during creation for IEEE matching static int s_uniqueNum; protected: // CONSTRUCTORS AstNodeDType(AstType t, FileLine* fl) : AstNode{t, fl} { m_width = 0; m_widthMin = 0; m_generic = false; } public: ASTNODE_BASE_FUNCS(NodeDType) // ACCESSORS virtual void dump(std::ostream& str) const override; virtual void dumpSmall(std::ostream& str) const; virtual bool hasDType() const override { return true; } /// Require VlUnpacked, instead of [] for POD elements. /// A non-POD object is always compound, but some POD elements /// are compound when methods calls operate on object, or when /// under another compound-requiring object e.g. class virtual bool isCompound() const = 0; // (Slow) recurse down to find basic data type virtual AstBasicDType* basicp() const = 0; // recurses over typedefs/const/enum to next non-typeref type virtual AstNodeDType* skipRefp() const = 0; // recurses over typedefs to next non-typeref-or-const type virtual AstNodeDType* skipRefToConstp() const = 0; // recurses over typedefs/const to next non-typeref-or-enum/struct type virtual AstNodeDType* skipRefToEnump() const = 0; // (Slow) recurses - Structure alignment 1,2,4 or 8 bytes (arrays affect this) virtual int widthAlignBytes() const = 0; // (Slow) recurses - Width in bytes rounding up 1,2,4,8,12,... virtual int widthTotalBytes() const = 0; virtual bool maybePointedTo() const override { return true; } // Iff has a non-null refDTypep(), as generic node function virtual AstNodeDType* virtRefDTypep() const { return nullptr; } // Iff has refDTypep(), set as generic node function virtual void virtRefDTypep(AstNodeDType* nodep) {} // Iff has a non-null second dtypep, as generic node function virtual AstNodeDType* virtRefDType2p() const { return nullptr; } // Iff has second dtype, set as generic node function virtual void virtRefDType2p(AstNodeDType* nodep) {} // Assignable equivalence. Call skipRefp() on this and samep before calling virtual bool similarDType(AstNodeDType* samep) const = 0; // Iff has a non-null subDTypep(), as generic node function virtual AstNodeDType* subDTypep() const { return nullptr; } virtual bool isFourstate() const; // Ideally an IEEE $typename virtual string prettyDTypeName() const { return prettyTypeName(); } string prettyDTypeNameQ() const { return "'" + prettyDTypeName() + "'"; } // // Changing the width may confuse the data type resolution, so must clear // TypeTable cache after use. void widthForce(int width, int widthMin) { m_width = width; m_widthMin = widthMin; } // For backward compatibility inherit width and signing from the subDType/base type void widthFromSub(AstNodeDType* nodep) { m_width = nodep->m_width; m_widthMin = nodep->m_widthMin; m_numeric = nodep->m_numeric; } // int width() const { return m_width; } void numeric(VSigning flag) { m_numeric = flag; } bool isSigned() const { return m_numeric.isSigned(); } bool isNosign() const { return m_numeric.isNosign(); } VSigning numeric() const { return m_numeric; } int widthWords() const { return VL_WORDS_I(width()); } int widthMin() const { // If sized, the size, if unsized the min digits to represent it return m_widthMin ? m_widthMin : m_width; } int widthPow2() const; void widthMinFromWidth() { m_widthMin = m_width; } bool widthSized() const { return !m_widthMin || m_widthMin == m_width; } bool generic() const { return m_generic; } void generic(bool flag) { m_generic = flag; } std::pair dimensions(bool includeBasic); uint32_t arrayUnpackedElements(); // 1, or total multiplication of all dimensions static int uniqueNumInc() { return ++s_uniqueNum; } const char* charIQWN() const { return (isString() ? "N" : isWide() ? "W" : isQuad() ? "Q" : "I"); } string cType(const string& name, bool forFunc, bool isRef) const; bool isLiteralType() const; // Does this represent a C++ LiteralType? (can be constexpr) private: class CTypeRecursed; CTypeRecursed cTypeRecurse(bool compound) const; }; class AstNodeUOrStructDType VL_NOT_FINAL : public AstNodeDType { // A struct or union; common handling private: // TYPES using MemberNameMap = std::map; // MEMBERS string m_name; // Name from upper typedef, if any bool m_packed; bool m_isFourstate; MemberNameMap m_members; const int m_uniqueNum; protected: AstNodeUOrStructDType(AstType t, FileLine* fl, VSigning numericUnpack) : AstNodeDType{t, fl} , m_uniqueNum{uniqueNumInc()} { // VSigning::NOSIGN overloaded to indicate not packed m_packed = (numericUnpack != VSigning::NOSIGN); m_isFourstate = false; // V3Width computes numeric(VSigning::fromBool(numericUnpack.isSigned())); } public: ASTNODE_BASE_FUNCS(NodeUOrStructDType) int uniqueNum() const { return m_uniqueNum; } virtual const char* broken() const override; virtual void dump(std::ostream& str) const override; virtual bool isCompound() const override { return false; } // Because don't support unpacked // For basicp() we reuse the size to indicate a "fake" basic type of same size virtual AstBasicDType* basicp() const override { return (isFourstate() ? VN_AS(findLogicRangeDType(VNumRange{width() - 1, 0}, width(), numeric()), BasicDType) : VN_AS(findBitRangeDType(VNumRange{width() - 1, 0}, width(), numeric()), BasicDType)); } virtual AstNodeDType* skipRefp() const override { return (AstNodeDType*)this; } virtual AstNodeDType* skipRefToConstp() const override { return (AstNodeDType*)this; } virtual AstNodeDType* skipRefToEnump() const override { return (AstNodeDType*)this; } // (Slow) recurses - Structure alignment 1,2,4 or 8 bytes (arrays affect this) virtual int widthAlignBytes() const override; // (Slow) recurses - Width in bytes rounding up 1,2,4,8,12,... virtual int widthTotalBytes() const override; // op1 = members virtual bool similarDType(AstNodeDType* samep) const override { return this == samep; // We don't compare members, require exact equivalence } virtual string name() const override { return m_name; } virtual void name(const string& flag) override { m_name = flag; } AstMemberDType* membersp() const { return VN_AS(op1p(), MemberDType); } // op1 = AstMember list void addMembersp(AstNode* nodep) { addNOp1p(nodep); } bool packed() const { return m_packed; } // packed() but as don't support unpacked, presently all structs static bool packedUnsup() { return true; } void isFourstate(bool flag) { m_isFourstate = flag; } virtual bool isFourstate() const override { return m_isFourstate; } void clearCache() { m_members.clear(); } void repairMemberCache(); AstMemberDType* findMember(const string& name) const { const auto it = m_members.find(name); return (it == m_members.end()) ? nullptr : it->second; } static int lo() { return 0; } int hi() const { return dtypep()->width() - 1; } // Packed classes look like arrays VNumRange declRange() const { return VNumRange{hi(), lo()}; } }; class AstNodeArrayDType VL_NOT_FINAL : public AstNodeDType { // Array data type, ie "some_dtype var_name [2:0]" // Children: DTYPE (moved to refDTypep() in V3Width) // Children: RANGE (array bounds) private: AstNodeDType* m_refDTypep = nullptr; // Elements of this type (after widthing) AstNode* rangenp() const { return op2p(); } // op2 = Array(s) of variable protected: AstNodeArrayDType(AstType t, FileLine* fl) : AstNodeDType{t, fl} {} public: ASTNODE_BASE_FUNCS(NodeArrayDType) virtual void dump(std::ostream& str) const override; virtual void dumpSmall(std::ostream& str) const override; virtual const char* broken() const override { BROKEN_RTN(!((m_refDTypep && !childDTypep() && m_refDTypep->brokeExists()) || (!m_refDTypep && childDTypep()))); return nullptr; } virtual void cloneRelink() override { if (m_refDTypep && m_refDTypep->clonep()) m_refDTypep = m_refDTypep->clonep(); } virtual bool same(const AstNode* samep) const override { const AstNodeArrayDType* const asamep = static_cast(samep); return (hi() == asamep->hi() && subDTypep() == asamep->subDTypep() && rangenp()->sameTree(asamep->rangenp())); } // HashedDT doesn't recurse, so need to check children virtual bool similarDType(AstNodeDType* samep) const override { const AstNodeArrayDType* const asamep = static_cast(samep); return (asamep && type() == samep->type() && hi() == asamep->hi() && rangenp()->sameTree(asamep->rangenp()) && subDTypep()->skipRefp()->similarDType(asamep->subDTypep()->skipRefp())); } virtual AstNodeDType* getChildDTypep() const override { return childDTypep(); } AstNodeDType* childDTypep() const { return VN_AS(op1p(), NodeDType); } void childDTypep(AstNodeDType* nodep) { setOp1p(nodep); } virtual AstNodeDType* subDTypep() const override { return m_refDTypep ? m_refDTypep : childDTypep(); } void refDTypep(AstNodeDType* nodep) { m_refDTypep = nodep; } virtual AstNodeDType* virtRefDTypep() const override { return m_refDTypep; } virtual void virtRefDTypep(AstNodeDType* nodep) override { refDTypep(nodep); } AstRange* rangep() const { return VN_AS(op2p(), Range); } // op2 = Array(s) of variable void rangep(AstRange* nodep); // METHODS virtual AstBasicDType* basicp() const override { return subDTypep()->basicp(); } // (Slow) recurse down to find basic data type virtual AstNodeDType* skipRefp() const override { return (AstNodeDType*)this; } virtual AstNodeDType* skipRefToConstp() const override { return (AstNodeDType*)this; } virtual AstNodeDType* skipRefToEnump() const override { return (AstNodeDType*)this; } virtual int widthAlignBytes() const override { return subDTypep()->widthAlignBytes(); } virtual int widthTotalBytes() const override { return elementsConst() * subDTypep()->widthTotalBytes(); } int left() const; int right() const; int hi() const; int lo() const; int elementsConst() const; VNumRange declRange() const; }; class AstNodeSel VL_NOT_FINAL : public AstNodeBiop { // Single bit range extraction, perhaps with non-constant selection or array selection protected: AstNodeSel(AstType t, FileLine* fl, AstNode* fromp, AstNode* bitp) : AstNodeBiop{t, fl, fromp, bitp} {} public: ASTNODE_BASE_FUNCS(NodeSel) AstNode* fromp() const { return op1p(); } // op1 = Extracting what (nullptr=TBD during parsing) void fromp(AstNode* nodep) { setOp1p(nodep); } AstNode* bitp() const { return op2p(); } // op2 = Msb selection expression void bitp(AstNode* nodep) { setOp2p(nodep); } int bitConst() const; virtual bool hasDType() const override { return true; } }; class AstNodeStream VL_NOT_FINAL : public AstNodeBiop { // Verilog {rhs{lhs}} - Note rhsp() is the slice size, not the lhsp() protected: AstNodeStream(AstType t, FileLine* fl, AstNode* lhsp, AstNode* rhsp) : AstNodeBiop{t, fl, lhsp, rhsp} { if (lhsp->dtypep()) dtypeSetLogicSized(lhsp->dtypep()->width(), VSigning::UNSIGNED); } public: ASTNODE_BASE_FUNCS(NodeStream) }; //###################################################################### // Tasks/functions common handling class AstNodeCCall VL_NOT_FINAL : public AstNodeStmt { // A call of a C++ function, perhaps a AstCFunc or perhaps globally named // Functions are not statements, while tasks are. AstNodeStmt needs isStatement() to deal. AstCFunc* m_funcp; string m_argTypes; protected: AstNodeCCall(AstType t, FileLine* fl, AstCFunc* funcp, AstNode* argsp = nullptr) : AstNodeStmt{t, fl, true} , m_funcp{funcp} { addNOp2p(argsp); } public: ASTNODE_BASE_FUNCS(NodeCCall) virtual void dump(std::ostream& str = std::cout) const override; virtual void cloneRelink() override; virtual const char* broken() const override; virtual int instrCount() const override { return INSTR_COUNT_CALL; } virtual bool same(const AstNode* samep) const override { const AstNodeCCall* const asamep = static_cast(samep); return (funcp() == asamep->funcp() && argTypes() == asamep->argTypes()); } AstNode* exprsp() const { return op2p(); } // op2 = expressions to print virtual bool isGateOptimizable() const override { return false; } virtual bool isPredictOptimizable() const override { return false; } virtual bool isPure() const override; virtual bool isOutputter() const override { return !isPure(); } AstCFunc* funcp() const { return m_funcp; } void argTypes(const string& str) { m_argTypes = str; } string argTypes() const { return m_argTypes; } // op1p reserved for AstCMethodCall AstNode* argsp() const { return op2p(); } void addArgsp(AstNode* nodep) { addOp2p(nodep); } }; class AstNodeFTask VL_NOT_FINAL : public AstNode { private: string m_name; // Name of task string m_cname; // Name of task if DPI import uint64_t m_dpiOpenParent = 0; // DPI import open array, if !=0, how many callees bool m_taskPublic : 1; // Public task bool m_attrIsolateAssign : 1; // User isolate_assignments attribute bool m_classMethod : 1; // Class method bool m_externProto : 1; // Extern prototype bool m_externDef : 1; // Extern definition bool m_prototype : 1; // Just a prototype bool m_dpiExport : 1; // DPI exported bool m_dpiImport : 1; // DPI imported bool m_dpiContext : 1; // DPI import context bool m_dpiOpenChild : 1; // DPI import open array child wrapper bool m_dpiTask : 1; // DPI import task (vs. void function) bool m_dpiTraceInit : 1; // DPI trace_init bool m_isConstructor : 1; // Class constructor bool m_isHideLocal : 1; // Verilog local bool m_isHideProtected : 1; // Verilog protected bool m_pure : 1; // DPI import pure (vs. virtual pure) bool m_pureVirtual : 1; // Pure virtual bool m_underGenerate : 1; // Under generate (for warning) bool m_virtual : 1; // Virtual method in class VLifetime m_lifetime; // Lifetime protected: AstNodeFTask(AstType t, FileLine* fl, const string& name, AstNode* stmtsp) : AstNode{t, fl} , m_name{name} , m_taskPublic{false} , m_attrIsolateAssign{false} , m_classMethod{false} , m_externProto{false} , m_externDef{false} , m_prototype{false} , m_dpiExport{false} , m_dpiImport{false} , m_dpiContext{false} , m_dpiOpenChild{false} , m_dpiTask{false} , m_dpiTraceInit{false} , m_isConstructor{false} , m_isHideLocal{false} , m_isHideProtected{false} , m_pure{false} , m_pureVirtual{false} , m_underGenerate{false} , m_virtual{false} { addNOp3p(stmtsp); cname(name); // Might be overridden by dpi import/export } public: ASTNODE_BASE_FUNCS(NodeFTask) virtual void dump(std::ostream& str = std::cout) const override; virtual string name() const override { return m_name; } // * = Var name virtual bool maybePointedTo() const override { return true; } virtual bool isGateOptimizable() const override { return !((m_dpiExport || m_dpiImport) && !m_pure); } // {AstFunc only} op1 = Range output variable virtual void name(const string& name) override { m_name = name; } string cname() const { return m_cname; } void cname(const string& cname) { m_cname = cname; } // op1 = Output variable (functions only, nullptr for tasks) AstNode* fvarp() const { return op1p(); } void addFvarp(AstNode* nodep) { addNOp1p(nodep); } bool isFunction() const { return fvarp() != nullptr; } // op2 = Class/package scope AstNode* classOrPackagep() const { return op2p(); } void classOrPackagep(AstNode* nodep) { setNOp2p(nodep); } // op3 = Statements/Ports/Vars AstNode* stmtsp() const { return op3p(); } // op3 = List of statements void addStmtsp(AstNode* nodep) { addNOp3p(nodep); } // op4 = scope name AstScopeName* scopeNamep() const { return VN_AS(op4p(), ScopeName); } // MORE ACCESSORS void dpiOpenParentInc() { ++m_dpiOpenParent; } void dpiOpenParentClear() { m_dpiOpenParent = 0; } uint64_t dpiOpenParent() const { return m_dpiOpenParent; } void scopeNamep(AstNode* nodep) { setNOp4p(nodep); } void taskPublic(bool flag) { m_taskPublic = flag; } bool taskPublic() const { return m_taskPublic; } void attrIsolateAssign(bool flag) { m_attrIsolateAssign = flag; } bool attrIsolateAssign() const { return m_attrIsolateAssign; } void classMethod(bool flag) { m_classMethod = flag; } bool classMethod() const { return m_classMethod; } void isExternProto(bool flag) { m_externProto = flag; } bool isExternProto() const { return m_externProto; } void isExternDef(bool flag) { m_externDef = flag; } bool isExternDef() const { return m_externDef; } void prototype(bool flag) { m_prototype = flag; } bool prototype() const { return m_prototype; } void dpiExport(bool flag) { m_dpiExport = flag; } bool dpiExport() const { return m_dpiExport; } void dpiImport(bool flag) { m_dpiImport = flag; } bool dpiImport() const { return m_dpiImport; } void dpiContext(bool flag) { m_dpiContext = flag; } bool dpiContext() const { return m_dpiContext; } void dpiOpenChild(bool flag) { m_dpiOpenChild = flag; } bool dpiOpenChild() const { return m_dpiOpenChild; } void dpiTask(bool flag) { m_dpiTask = flag; } bool dpiTask() const { return m_dpiTask; } void dpiTraceInit(bool flag) { m_dpiTraceInit = flag; } bool dpiTraceInit() const { return m_dpiTraceInit; } void isConstructor(bool flag) { m_isConstructor = flag; } bool isConstructor() const { return m_isConstructor; } bool isHideLocal() const { return m_isHideLocal; } void isHideLocal(bool flag) { m_isHideLocal = flag; } bool isHideProtected() const { return m_isHideProtected; } void isHideProtected(bool flag) { m_isHideProtected = flag; } void pure(bool flag) { m_pure = flag; } bool pure() const { return m_pure; } void pureVirtual(bool flag) { m_pureVirtual = flag; } bool pureVirtual() const { return m_pureVirtual; } void underGenerate(bool flag) { m_underGenerate = flag; } bool underGenerate() const { return m_underGenerate; } void isVirtual(bool flag) { m_virtual = flag; } bool isVirtual() const { return m_virtual; } void lifetime(const VLifetime& flag) { m_lifetime = flag; } VLifetime lifetime() const { return m_lifetime; } }; class AstNodeFTaskRef VL_NOT_FINAL : public AstNodeStmt { // A reference to a task (or function) // Functions are not statements, while tasks are. AstNodeStmt needs isStatement() to deal. private: AstNodeFTask* m_taskp = nullptr; // [AfterLink] Pointer to task referenced AstNodeModule* m_classOrPackagep = nullptr; // Package hierarchy string m_name; // Name of variable string m_dotted; // Dotted part of scope the name()ed task/func is under or "" string m_inlinedDots; // Dotted hierarchy flattened out bool m_pli = false; // Pli system call ($name) protected: AstNodeFTaskRef(AstType t, FileLine* fl, bool statement, AstNode* namep, AstNode* pinsp) : AstNodeStmt{t, fl, statement} { setOp1p(namep); addNOp3p(pinsp); } AstNodeFTaskRef(AstType t, FileLine* fl, bool statement, const string& name, AstNode* pinsp) : AstNodeStmt{t, fl, statement} , m_name{name} { addNOp3p(pinsp); } public: ASTNODE_BASE_FUNCS(NodeFTaskRef) virtual const char* broken() const override; virtual void cloneRelink() override { if (m_taskp && m_taskp->clonep()) m_taskp = m_taskp->clonep(); } virtual void dump(std::ostream& str = std::cout) const override; virtual string name() const override { return m_name; } // * = Var name virtual bool isGateOptimizable() const override { return m_taskp && m_taskp->isGateOptimizable(); } string dotted() const { return m_dotted; } // * = Scope name or "" string inlinedDots() const { return m_inlinedDots; } void inlinedDots(const string& flag) { m_inlinedDots = flag; } AstNodeFTask* taskp() const { return m_taskp; } // [After Link] Pointer to variable void taskp(AstNodeFTask* taskp) { m_taskp = taskp; } virtual void name(const string& name) override { m_name = name; } void dotted(const string& name) { m_dotted = name; } AstNodeModule* classOrPackagep() const { return m_classOrPackagep; } void classOrPackagep(AstNodeModule* nodep) { m_classOrPackagep = nodep; } bool pli() const { return m_pli; } void pli(bool flag) { m_pli = flag; } // op1 = namep AstNode* namep() const { return op1p(); } // op2 = reserved for AstMethodCall // op3 = Pin interconnection list AstNode* pinsp() const { return op3p(); } void addPinsp(AstNode* nodep) { addOp3p(nodep); } // op4 = scope tracking AstScopeName* scopeNamep() const { return VN_AS(op4p(), ScopeName); } void scopeNamep(AstNode* nodep) { setNOp4p(nodep); } }; class AstNodeModule VL_NOT_FINAL : public AstNode { // A module, package, program or interface declaration; // something that can live directly under the TOP, // excluding $unit package stuff private: string m_name; // Name of the module const string m_origName; // Name of the module, ignoring name() changes, for dot lookup string m_hierName; // Hierarchical name for errors, etc. bool m_modPublic : 1; // Module has public references bool m_modTrace : 1; // Tracing this module bool m_inLibrary : 1; // From a library, no error if not used, never top level bool m_dead : 1; // LinkDot believes is dead; will remove in Dead visitors bool m_hierBlock : 1; // Hiearchical Block marked by HIER_BLOCK pragma bool m_internal : 1; // Internally created bool m_recursive : 1; // Recursive module bool m_recursiveClone : 1; // If recursive, what module it clones, otherwise nullptr int m_level = 0; // 1=top module, 2=cell off top module, ... VLifetime m_lifetime; // Lifetime VTimescale m_timeunit; // Global time unit VOptionBool m_unconnectedDrive; // State of `unconnected_drive protected: AstNodeModule(AstType t, FileLine* fl, const string& name) : AstNode{t, fl} , m_name{name} , m_origName{name} , m_modPublic{false} , m_modTrace{false} , m_inLibrary{false} , m_dead{false} , m_hierBlock{false} , m_internal{false} , m_recursive{false} , m_recursiveClone{false} {} public: ASTNODE_BASE_FUNCS(NodeModule) virtual void dump(std::ostream& str) const override; virtual bool maybePointedTo() const override { return true; } virtual string name() const override { return m_name; } virtual bool timescaleMatters() const = 0; AstNode* stmtsp() const { return op2p(); } // op2 = List of statements AstActive* activesp() const { return VN_AS(op3p(), Active); } // op3 = List of i/sblocks // METHODS void addInlinesp(AstNode* nodep) { addOp1p(nodep); } void addStmtp(AstNode* nodep) { addNOp2p(nodep); } void addActivep(AstNode* nodep) { addOp3p(nodep); } // ACCESSORS virtual void name(const string& name) override { m_name = name; } virtual string origName() const override { return m_origName; } string hierName() const { return m_hierName; } void hierName(const string& hierName) { m_hierName = hierName; } bool inLibrary() const { return m_inLibrary; } void inLibrary(bool flag) { m_inLibrary = flag; } void level(int level) { m_level = level; } int level() const { return m_level; } bool isTop() const { return level() == 1; } void modPublic(bool flag) { m_modPublic = flag; } bool modPublic() const { return m_modPublic; } void modTrace(bool flag) { m_modTrace = flag; } bool modTrace() const { return m_modTrace; } void dead(bool flag) { m_dead = flag; } bool dead() const { return m_dead; } void hierBlock(bool flag) { m_hierBlock = flag; } bool hierBlock() const { return m_hierBlock; } void internal(bool flag) { m_internal = flag; } bool internal() const { return m_internal; } void recursive(bool flag) { m_recursive = flag; } bool recursive() const { return m_recursive; } void recursiveClone(bool flag) { m_recursiveClone = flag; } bool recursiveClone() const { return m_recursiveClone; } void lifetime(const VLifetime& flag) { m_lifetime = flag; } VLifetime lifetime() const { return m_lifetime; } void timeunit(const VTimescale& flag) { m_timeunit = flag; } VTimescale timeunit() const { return m_timeunit; } void unconnectedDrive(const VOptionBool flag) { m_unconnectedDrive = flag; } VOptionBool unconnectedDrive() const { return m_unconnectedDrive; } }; class AstNodeRange VL_NOT_FINAL : public AstNode { // A range, sized or unsized protected: AstNodeRange(AstType t, FileLine* fl) : AstNode{t, fl} {} public: ASTNODE_BASE_FUNCS(NodeRange) virtual void dump(std::ostream& str) const override; }; //###################################################################### // Inline AstNVisitor METHODS inline void AstNVisitor::iterate(AstNode* nodep) { nodep->accept(*this); } inline void AstNVisitor::iterateNull(AstNode* nodep) { if (VL_LIKELY(nodep)) nodep->accept(*this); } inline void AstNVisitor::iterateChildren(AstNode* nodep) { nodep->iterateChildren(*this); } inline void AstNVisitor::iterateChildrenBackwards(AstNode* nodep) { nodep->iterateChildrenBackwards(*this); } inline void AstNVisitor::iterateChildrenConst(AstNode* nodep) { nodep->iterateChildrenConst(*this); } inline void AstNVisitor::iterateAndNextNull(AstNode* nodep) { if (VL_LIKELY(nodep)) nodep->iterateAndNext(*this); } inline void AstNVisitor::iterateAndNextConstNull(AstNode* nodep) { if (VL_LIKELY(nodep)) nodep->iterateAndNextConst(*this); } inline AstNode* AstNVisitor::iterateSubtreeReturnEdits(AstNode* nodep) { return nodep->iterateSubtreeReturnEdits(*this); } //###################################################################### #include "V3AstNodes.h" #endif // Guard