All parameters that are required in the output are now emitted as
'static constexpr, except for string or array of strings parameters,
which are still emitted as 'static const' (required as std::string is
not a literal type, so cannot be constexpr). This simplifies handling
of parameters and supports 'real' parameters.
Other sub-classes of AstNodeCCall do not need the self pointer. Moving
it into the specific sub-class that needs it clarifies V3Descope and
Emit. No functional change intended.
The -G option now correctly parses simple integer literals as signed
numbers, which is in line with the standard and is significant when
overriding parameters without a type specifier.
Fixes#3060
This patch implements #3032. Verilator creates a module representing the
SystemVerilog $root scope (V3LinkLevel::wrapTop). Until now, this was
called the "TOP" module, which also acted as the user instantiated model
class. Syms used to hold a pointer to this root module, but hold
instances of any submodule. This patch renames this root scope module
from "TOP" to "$root", and introduces a separate model class which is
now an interface class. As the root module is no longer the user
interface class, it can now be made an instance of Syms, just like any
other submodule. This allows absolute references into the root module to
avoid an additional pointer indirection resulting in a potential speedup
(about 1.5% on OpenTitan). The model class now also contains all non
design specific generated code (e.g.: eval loops, trace config, etc),
which additionally simplifies Verilator internals.
Please see the updated documentation for the model interface changes.
emitVarCmtChg used to emit MTask affinity of variables in comments in
the generated header. This causes unnecessary changes in the output when
scheduling changes slightly between compilation, hindering ccache reuse.
If needing this info for debugging Verilator, add a separate dump file
instead of emitting it in the generated code.
The goal of this patch is to move functionality related to constructing
the thread entry points and then invoking them out of V3EmitC (and into
V3Partition). The long term goal being enabling V3EmitC to emit
functions partitioned based on header dependencies. V3EmitC having to
deal with only AstCFunc instances and no other magic will facilitate
this.
In this patch:
- We construct AstCFuncs for each thread entry point in
V3Partition::finalize and move AstMTaskBody nodes under these functions.
- Add the invocation of the threads as text statements within the
AstExecGraph, so they are still invoked where the exec graph is located.
(the entry point functions are still referenced via AstCCall or
AstAddOrCFunc, so lazy declarations of referenced functions are created
automatically).
- Explicitly handle MTask state variables (VlMTaskVertex in
verilated_threads.h) within Verilator, so no need to text bash a lot of
these any more (some text refs still remain but they are all created
next to each other within V3Partition.cpp).
The effect of all this on the emitted code should be nothing but some
identifier/ordering changes. No functional change intended.
What previously used to be per module static constants created in
V3Table and V3Prelim are now merged globally within the whole model and
emitted as part of a separate constant pool. Members of the constant
pool are global variables which are declared lazily when used (similar to
loose methods).
This patch introduces the concept of 'loose' methods, which semantically
are methods, but are declared as global functions, and are passed an
explicit 'self' pointer. This enables these methods to be declared
outside the class, only when they are needed, therefore removing the
header dependency. The bulk of the emitted model implementation now uses
loose methods.
astgen now generates ASTGEN_SUPER_* macros, instead of expanding the
ASTGEN_SUPER itself. This means that V3AstNodes.h itself can be included
in V3Ast.h, which helps IDEs (namely CLion) find definitions in
V3AstNodes.h a lot better. Albeit this is a little bit more boilerplate,
writing constructors of Ast nodes should be a lot rarer than trying to
find their definitions, so hopefully this is an improvement overall.
astgen will error if the developer calls the wrong superclass
constructor.
* Add tests for unpacked array in DPI-C
* Add more generic parameter generator to AstNodes
* Supports multi dimensional array in DPI ( DPI argmuments <=> Verilator internal type conversion)
consider typedef in V3Task
fix export test
fix inout for scalar
support export func of time
* V3Premit does not show an error for wide words nor ArraySel
* Unnecessary pack func for unapcked array does not appear anymore
* Support unpacked array in runtime header
- Add an overload for lvalue VL_CVT_PACK_STR_NN
- Allow conversion from void *
* touch up tests for codacy advices
* resolve free functions. no functional change intended.
- Allow arbitrary number of open array dimensions, not just 3. Note
right now this only works with the array querying functions specified
in IEEE 1800-2017 H.12.2
- Issue error when passing dynamic array or queue as DPI open array
(currently unsupported)
- Also tweaked AstVar::vlArgTypeRecurse, which should now error or fail
for unsupported types.
Includes `timescale, $printtimescale, $timeformat.
VL_TIME_MULTIPLIER, VL_TIME_PRECISION, VL_TIME_UNIT have been removed
and the time precision must now match the SystemC time precision.
To get closer behavior to older versions, use e.g. --timescale-override
"1ps/1ps".
Replace the virtual type() method on AstNode with a non-virtual, inlined
accessor to a const member variable m_type. This means that in order to be
able to use this for type testing, it needs to be initialized based on the
final type of the node. This is achieved by passing the relevant AstType
value back through the constructor call chain. Most of the boilerplate
involved is auto generated by first feeding V3AstNodes.h through astgen to
get V3AstNodes__gen.h, which is then included in V3Ast.h. No client code
needs to be aware and there is no functional change intended.
Eliminating the virtual function call to fetch the node type identifier
results in measured compilation speed improvement of 5-10% as it
eliminates up to 20% of all mispredicted branches from the execution.