This patch addresses two issues with NBAs in non-inlined functions/tasks:
- If the NBA writes to a local automatic var, the var could cease to exist before the NBA executes. This is normally addressed by fork dynscopes (#4356), but NBA-to-fork transformation happens way after `V3Fork` (in `V3Timing`). To solve this, we put NBAs that write to locals under forks in `V3Fork` already. This way, such locals will be put in dynscopes, and will still exist after the task containing the NBA exits.
- The above change means that any writes in forks other than `fork..join` should be handled by `V3Fork`. Thus, in `V3SchedTiming`, we only have to worry about read references, so we can simply copy all remaining locals. Because we copy, lifetimes are not an issue. This fixes a bug that allowed assignment intravals to be overwritten if they go out of scope in the containing function.
Given nested forks, if the inner fork had a `join` or `join_any` at the end,
`V3Sched::transformForks()` would decide that the fork's `VlForkSync` variable
should be passed in from the outside. This resulted in the `VlForkSync` getting
redeclared as a function argument. Ultimately, it led to C++ compilation errors
due to variable redeclaration.
Fixed by rearranging the `if`s that decide whether a variable should be passed
in or left as-is.
Event-triggered coroutines live in two stages: 'uncommitted' and 'ready'. First
they land in 'uncommitted', meaning they can't be resumed yet. Only after
coroutines from the 'ready' queue are resumed, the 'uncommitted' ones are moved
to the 'ready' queue, and can be resumed. This is to avoid self-triggering in
situations like waiting for an event immediately after triggering it.
However, there is an issue with `wait` statements. If you have a `wait(b)`, it's
being translated into a loop that awaits a change in `b` as long as `b` is
false. If `b` is false at first, the coroutine is put into the `uncommitted`
queue. If `b` is set to true before it's committed, the coroutine won't get
resumed.
This patch fixes that by immediately committing event controls created from
`wait` statements. That means the coroutine from the example above will get
resumed from now on.
`VlNow{}` is completely unnecessary, as coroutines are always on the
heap (unless optimized out). Also fix access of var ref passed to forked processes.
Apart from the representational changes below, this patch renames
AstNodeMath to AstNodeExpr, and AstCMath to AstCExpr.
Now every expression (i.e.: those AstNodes that represent a [possibly
void] value, with value being interpreted in a very general sense) has
AstNodeExpr as a super class. This necessitates the introduction of an
AstStmtExpr, which represents an expression in statement position, e.g :
'foo();' would be represented as AstStmtExpr(AstCCall(foo)). In exchange
we can get rid of isStatement() in AstNodeStmt, which now really always
represent a statement
Peak memory consumption and verilation speed are not measurably changed.
Partial step towards #3420
In non-static contexts like class objects or stack frames, the use of
global trigger evaluation is not feasible. The concept of dynamic
triggers allows for trigger evaluation in such cases. These triggers are
simply local variables, and coroutines are themselves responsible for
evaluating them. They await the global dynamic trigger scheduler object,
which is responsible for resuming them during the trigger evaluation
step in the 'act' eval region. Once the trigger is set, they await the
dynamic trigger scheduler once again, and then get resumed during the
resumption step in the 'act' eval region.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
`V3SchedTiming` currently assumes that if a fork still exists, it must
have statements within it (otherwise it would have been deleted by
`V3Timing`). However, in a case like this:
```
module t;
reg a;
initial fork a = 1; join
endmodule
```
the assignment in the fork is optimized out by `V3Dead` after
`V3Timing`. This leads to `V3SchedTiming` accessing fork's `stmtsp`
pointer, which at this point is null. This patch addresses that issue.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
This change introduces a custom reference-counting pointer class that
allows creating such pointers from 'this'. This lets us keep the
receiver object around even if all references to it outside of a class
method no longer exist. Useful for coroutine methods, which may outlive
all external references to the object.
The deletion of objects is deferred until the next time slot. This is to
make clearing the triggered flag on named events in classes safe
(otherwise freed memory could be accessed).
Introduce the @astgen directives parsed by astgen, currently used for
the generation child node (operand) accessors. Please see the updated
internal documentation for details.
Before this change, some forked processes were being inlined in
`V3Timing` because they contained no `CAwait`s. This only works under
the assumption that no `CAwait`s will be added there later, which is not
true, as a function called by a forked process could be turned into a
coroutine later. The call would be wrapped in a new `CAwait`, but the
process itself would have already been inlined at this point.
This commit moves the inlining to `transformForks` in `V3SchedTiming`,
which is called at a point when all `CAwait`s are already in place.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>
Adds timing support to Verilator. It makes it possible to use delays,
event controls within processes (not just at the start), wait
statements, and forks.
Building a design with those constructs requires a compiler that
supports C++20 coroutines (GCC 10, Clang 5).
The basic idea is to have processes and tasks with delays/event controls
implemented as C++20 coroutines. This allows us to suspend and resume
them at any time.
There are five main runtime classes responsible for managing suspended
coroutines:
* `VlCoroutineHandle`, a wrapper over C++20's `std::coroutine_handle`
with move semantics and automatic cleanup.
* `VlDelayScheduler`, for coroutines suspended by delays. It resumes
them at a proper simulation time.
* `VlTriggerScheduler`, for coroutines suspended by event controls. It
resumes them if its corresponding trigger was set.
* `VlForkSync`, used for syncing `fork..join` and `fork..join_any`
blocks.
* `VlCoroutine`, the return type of all verilated coroutines. It allows
for suspending a stack of coroutines (normally, C++ coroutines are
stackless).
There is a new visitor in `V3Timing.cpp` which:
* scales delays according to the timescale,
* simplifies intra-assignment timing controls and net delays into
regular timing controls and assignments,
* simplifies wait statements into loops with event controls,
* marks processes and tasks with timing controls in them as
suspendable,
* creates delay, trigger scheduler, and fork sync variables,
* transforms timing controls and fork joins into C++ awaits
There are new functions in `V3SchedTiming.cpp` (used by `V3Sched.cpp`)
that integrate static scheduling with timing. This involves providing
external domains for variables, so that the necessary combinational
logic gets triggered after coroutine resumption, as well as statements
that need to be injected into the design eval function to perform this
resumption at the correct time.
There is also a function that transforms forked processes into separate
functions.
See the comments in `verilated_timing.h`, `verilated_timing.cpp`,
`V3Timing.cpp`, and `V3SchedTiming.cpp`, as well as the internals
documentation for more details.
Signed-off-by: Krzysztof Bieganski <kbieganski@antmicro.com>