verilator/src/V3Dfg.cpp

785 lines
28 KiB
C++
Raw Normal View History

Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Data flow graph (DFG) representation of logic
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
2025-01-01 14:30:25 +01:00
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
#include "V3Dfg.h"
#include "V3File.h"
VL_DEFINE_DEBUG_FUNCTIONS;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
//------------------------------------------------------------------------------
// DfgGraph
//------------------------------------------------------------------------------
2025-07-01 23:55:08 +02:00
DfgGraph::DfgGraph(AstModule* modulep, const string& name)
: m_modulep{modulep}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
, m_name{name} {}
DfgGraph::~DfgGraph() {
forEachVertex([](DfgVertex& vtxp) { delete &vtxp; });
}
std::unique_ptr<DfgGraph> DfgGraph::clone() const {
const bool scoped = !modulep();
DfgGraph* const clonep = new DfgGraph{modulep(), name()};
// Map from original vertex to clone
std::unordered_map<const DfgVertex*, DfgVertex*> vtxp2clonep(size() * 2);
// Clone constVertices
for (const DfgConst& vtx : m_constVertices) {
DfgConst* const cp = new DfgConst{*clonep, vtx.fileline(), vtx.num()};
vtxp2clonep.emplace(&vtx, cp);
}
// Clone variable vertices
for (const DfgVertexVar& vtx : m_varVertices) {
const DfgVertexVar* const vp = vtx.as<DfgVertexVar>();
DfgVertexVar* cp = nullptr;
switch (vtx.type()) {
case VDfgType::atVarArray: {
if (scoped) {
cp = new DfgVarArray{*clonep, vp->varScopep()};
} else {
cp = new DfgVarArray{*clonep, vp->varp()};
}
vtxp2clonep.emplace(&vtx, cp);
break;
}
case VDfgType::atVarPacked: {
if (scoped) {
cp = new DfgVarPacked{*clonep, vp->varScopep()};
} else {
cp = new DfgVarPacked{*clonep, vp->varp()};
}
vtxp2clonep.emplace(&vtx, cp);
break;
}
default: {
vtx.v3fatalSrc("Unhandled variable vertex type: " + vtx.typeName());
VL_UNREACHABLE;
break;
}
}
}
// Clone operation vertices
for (const DfgVertex& vtx : m_opVertices) {
switch (vtx.type()) {
#include "V3Dfg__gen_clone_cases.h" // From ./astgen
case VDfgType::atSel: {
DfgSel* const cp = new DfgSel{*clonep, vtx.fileline(), vtx.dtypep()};
cp->lsb(vtx.as<DfgSel>()->lsb());
vtxp2clonep.emplace(&vtx, cp);
break;
}
case VDfgType::atMux: {
DfgMux* const cp = new DfgMux{*clonep, vtx.fileline(), vtx.dtypep()};
vtxp2clonep.emplace(&vtx, cp);
break;
}
case VDfgType::atSpliceArray: {
DfgSpliceArray* const cp = new DfgSpliceArray{*clonep, vtx.fileline(), vtx.dtypep()};
vtxp2clonep.emplace(&vtx, cp);
break;
}
case VDfgType::atSplicePacked: {
DfgSplicePacked* const cp = new DfgSplicePacked{*clonep, vtx.fileline(), vtx.dtypep()};
vtxp2clonep.emplace(&vtx, cp);
break;
}
default: {
vtx.v3fatalSrc("Unhandled operation vertex type: " + vtx.typeName());
VL_UNREACHABLE;
break;
}
}
}
UASSERT(size() == clonep->size(), "Size of clone should be the same");
// Constants have no inputs
// Hook up inputs of cloned variables
for (const DfgVertexVar& vtx : m_varVertices) {
// All variable vertices are unary
if (DfgVertex* const srcp = vtx.srcp()) {
vtxp2clonep.at(&vtx)->as<DfgVertexVar>()->srcp(vtxp2clonep.at(srcp));
}
}
// Hook up inputs of cloned operation vertices
for (const DfgVertex& vtx : m_opVertices) {
if (vtx.is<DfgVertexVariadic>()) {
switch (vtx.type()) {
case VDfgType::atSpliceArray: {
const DfgSpliceArray* const vp = vtx.as<DfgSpliceArray>();
DfgSpliceArray* const cp = vtxp2clonep.at(vp)->as<DfgSpliceArray>();
vp->forEachSourceEdge([&](const DfgEdge& edge, size_t i) {
if (DfgVertex* const srcp = edge.sourcep()) {
cp->addDriver(vp->driverFileLine(i), //
vp->driverIndex(i), //
vtxp2clonep.at(srcp));
}
});
break;
}
case VDfgType::atSplicePacked: {
const DfgSplicePacked* const vp = vtx.as<DfgSplicePacked>();
DfgSplicePacked* const cp = vtxp2clonep.at(vp)->as<DfgSplicePacked>();
vp->forEachSourceEdge([&](const DfgEdge& edge, size_t i) {
if (DfgVertex* const srcp = edge.sourcep()) {
cp->addDriver(vp->driverFileLine(i), //
vp->driverLsb(i), //
vtxp2clonep.at(srcp));
}
});
break;
}
default: {
vtx.v3fatalSrc("Unhandled DfgVertexVariadic sub type: " + vtx.typeName());
VL_UNREACHABLE;
break;
}
}
} else {
DfgVertex* const cp = vtxp2clonep.at(&vtx);
const auto oSourceEdges = vtx.sourceEdges();
auto cSourceEdges = cp->sourceEdges();
UASSERT_OBJ(oSourceEdges.second == cSourceEdges.second, &vtx,
"Mismatched source count");
for (size_t i = 0; i < oSourceEdges.second; ++i) {
if (DfgVertex* const srcp = oSourceEdges.first[i].sourcep()) {
cSourceEdges.first[i].relinkSource(vtxp2clonep.at(srcp));
}
}
}
}
return std::unique_ptr<DfgGraph>{clonep};
}
void DfgGraph::mergeGraphs(std::vector<std::unique_ptr<DfgGraph>>&& otherps) {
if (otherps.empty()) return;
// NODE STATE
// AstVar/AstVarScope::user2p() -> corresponding DfgVertexVar* in 'this' graph
const VNUser2InUse user2InUse;
// Set up Ast Variable -> DfgVertexVar map for 'this' graph
for (DfgVertexVar& vtx : m_varVertices) vtx.nodep()->user2p(&vtx);
// Merge in each of the other graphs
for (const std::unique_ptr<DfgGraph>& otherp : otherps) {
// Process variables
for (DfgVertexVar* const vtxp : otherp->m_varVertices.unlinkable()) {
// Variabels that are present in 'this', make them use the DfgVertexVar in 'this'.
if (DfgVertexVar* const altp = vtxp->nodep()->user2u().to<DfgVertexVar*>()) {
DfgVertex* const srcp = vtxp->srcp();
UASSERT_OBJ(!srcp || !altp->srcp(), vtxp, "At most one alias should be driven");
vtxp->replaceWith(altp);
if (srcp) altp->srcp(srcp);
VL_DO_DANGLING(vtxp->unlinkDelete(*otherp), vtxp);
continue;
}
// Otherwise they will be moved
vtxp->nodep()->user2p(vtxp);
vtxp->m_userCnt = 0;
vtxp->m_graphp = this;
}
m_varVertices.splice(m_varVertices.end(), otherp->m_varVertices);
// Process constants
for (DfgConst& vtx : otherp->m_constVertices) {
vtx.m_userCnt = 0;
vtx.m_graphp = this;
}
m_constVertices.splice(m_constVertices.end(), otherp->m_constVertices);
// Process operations
for (DfgVertex& vtx : otherp->m_opVertices) {
vtx.m_userCnt = 0;
vtx.m_graphp = this;
}
m_opVertices.splice(m_opVertices.end(), otherp->m_opVertices);
// Update graph sizes
m_size += otherp->m_size;
otherp->m_size = 0;
2024-03-26 00:06:25 +01:00
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
std::string DfgGraph::makeUniqueName(const std::string& prefix, size_t n) {
// Construct the tmpNameStub if we have not done so yet
if (m_tmpNameStub.empty()) {
// Use the hash of the graph name (avoid long names and non-identifiers)
const std::string name = V3Hash{m_name}.toString();
// We need to keep every variable globally unique, and graph hashed
// names might not be, so keep a static table to track multiplicity
static std::unordered_map<std::string, uint32_t> s_multiplicity;
m_tmpNameStub += '_' + name + '_' + std::to_string(s_multiplicity[name]++) + '_';
}
// Assemble the globally unique name
return "__Vdfg" + prefix + m_tmpNameStub + std::to_string(n);
}
2025-07-01 23:55:08 +02:00
DfgVertexVar* DfgGraph::makeNewVar(FileLine* flp, const std::string& name, AstNodeDType* dtypep,
AstScope* scopep) {
UASSERT_OBJ(!!scopep != !!modulep(), flp,
"makeNewVar scopep should only be provided for a scoped DfgGraph");
// Create AstVar
AstVar* const varp = new AstVar{flp, VVarType::MODULETEMP, name, dtypep};
2025-07-01 23:55:08 +02:00
if (scopep) {
// Add AstVar to the scope's module
scopep->modp()->addStmtsp(varp);
// Create AstVarScope
AstVarScope* const vscp = new AstVarScope{flp, scopep, varp};
// Add to scope
scopep->addVarsp(vscp);
// Create and return the corresponding variable vertex
if (VN_IS(varp->dtypeSkipRefp(), UnpackArrayDType)) return new DfgVarArray{*this, vscp};
return new DfgVarPacked{*this, vscp};
} else {
// Add AstVar to containing module
modulep()->addStmtsp(varp);
// Create and return the corresponding variable vertex
if (VN_IS(varp->dtypeSkipRefp(), UnpackArrayDType)) return new DfgVarArray{*this, varp};
return new DfgVarPacked{*this, varp};
}
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
static const string toDotId(const DfgVertex& vtx) { return '"' + cvtToHex(&vtx) + '"'; }
// Dump one DfgVertex in Graphviz format
static void dumpDotVertex(std::ostream& os, const DfgVertex& vtx) {
if (const DfgVarPacked* const varVtxp = vtx.cast<DfgVarPacked>()) {
2025-07-01 23:55:08 +02:00
AstNode* const nodep = varVtxp->nodep();
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
AstVar* const varp = varVtxp->varp();
2022-09-30 17:19:21 +02:00
os << toDotId(vtx);
os << " [label=\"" << nodep->name() << '\n';
os << cvtToHex(varVtxp) << '\n';
varVtxp->dtypep()->dumpSmall(os);
os << " / F" << varVtxp->fanout() << '"';
if (varp->direction() == VDirection::INPUT) {
os << ", shape=box, style=filled, fillcolor=chartreuse2"; // Green
} else if (varp->direction() == VDirection::OUTPUT) {
os << ", shape=box, style=filled, fillcolor=cyan2"; // Cyan
} else if (varp->direction() == VDirection::INOUT) {
os << ", shape=box, style=filled, fillcolor=darkorchid2"; // Purple
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else if (varVtxp->hasExtRefs()) {
os << ", shape=box, style=filled, fillcolor=firebrick2"; // Red
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else if (varVtxp->hasModRefs()) {
os << ", shape=box, style=filled, fillcolor=darkorange1"; // Orange
} else if (varVtxp->hasDfgRefs()) {
os << ", shape=box, style=filled, fillcolor=gold2"; // Yellow
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else {
os << ", shape=box";
}
os << "]\n";
return;
}
if (const DfgVarArray* const arrVtxp = vtx.cast<DfgVarArray>()) {
2025-07-01 23:55:08 +02:00
AstNode* const nodep = arrVtxp->nodep();
AstVar* const varp = arrVtxp->varp();
2022-09-30 17:19:21 +02:00
os << toDotId(vtx);
os << " [label=\"" << nodep->name() << '\n';
os << cvtToHex(arrVtxp) << '\n';
arrVtxp->dtypep()->dumpSmall(os);
os << " / F" << arrVtxp->fanout() << '"';
if (varp->direction() == VDirection::INPUT) {
os << ", shape=box3d, style=filled, fillcolor=chartreuse2"; // Green
} else if (varp->direction() == VDirection::OUTPUT) {
os << ", shape=box3d, style=filled, fillcolor=cyan2"; // Cyan
} else if (varp->direction() == VDirection::INOUT) {
os << ", shape=box3d, style=filled, fillcolor=darkorchid2"; // Purple
} else if (arrVtxp->hasExtRefs()) {
os << ", shape=box3d, style=filled, fillcolor=firebrick2"; // Red
} else if (arrVtxp->hasModRefs()) {
os << ", shape=box3d, style=filled, fillcolor=darkorange1"; // Orange
} else if (arrVtxp->hasDfgRefs()) {
os << ", shape=box3d, style=filled, fillcolor=gold2"; // Yellow
} else {
os << ", shape=box3d";
}
os << "]\n";
return;
}
if (const DfgConst* const constVtxp = vtx.cast<DfgConst>()) {
const V3Number& num = constVtxp->num();
2022-09-30 17:19:21 +02:00
os << toDotId(vtx);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
os << " [label=\"";
if (num.width() <= 32 && !num.isSigned()) {
os << constVtxp->width() << "'d" << num.toUInt() << '\n';
os << constVtxp->width() << "'h" << std::hex << num.toUInt() << std::dec << '\n';
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else {
os << num.ascii() << '\n';
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
os << cvtToHex(constVtxp) << '\n';
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
os << '"';
os << ", shape=plain";
os << "]\n";
return;
}
2022-09-30 17:19:21 +02:00
if (const DfgSel* const selVtxp = vtx.cast<DfgSel>()) {
const uint32_t lsb = selVtxp->lsb();
const uint32_t msb = lsb + selVtxp->width() - 1;
os << toDotId(vtx);
os << " [label=\"SEL _[" << msb << ":" << lsb << "]\n";
os << cvtToHex(selVtxp) << '\n';
vtx.dtypep()->dumpSmall(os);
os << " / F" << vtx.fanout() << '"';
if (vtx.hasMultipleSinks()) {
os << ", shape=doublecircle";
} else {
os << ", shape=circle";
2022-09-30 17:19:21 +02:00
}
os << "]\n";
return;
2022-09-30 17:19:21 +02:00
}
if (vtx.is<DfgVertexSplice>()) {
os << toDotId(vtx);
os << " [label=\"" << vtx.typeName() << '\n';
os << cvtToHex(&vtx) << '\n';
vtx.dtypep()->dumpSmall(os);
os << " / F" << vtx.fanout() << '"';
if (vtx.hasMultipleSinks()) {
os << ", shape=doubleoctagon";
} else {
os << ", shape=octagon";
}
os << "]\n";
return;
}
2022-09-30 17:19:21 +02:00
os << toDotId(vtx);
os << " [label=\"" << vtx.typeName() << '\n';
os << cvtToHex(&vtx) << '\n';
vtx.dtypep()->dumpSmall(os);
os << " / F" << vtx.fanout() << '"';
if (vtx.hasMultipleSinks()) {
os << ", shape=doublecircle";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else {
os << ", shape=circle";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
os << "]\n";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
// Dump one DfgEdge in Graphviz format
static void dumpDotEdge(std::ostream& os, const DfgEdge& edge, const string& headlabel) {
os << toDotId(*edge.sourcep()) << " -> " << toDotId(*edge.sinkp());
if (!headlabel.empty()) os << " [headlabel=\"" << headlabel << "\"]";
os << '\n';
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
// Dump one DfgVertex and all of its source DfgEdges in Graphviz format
static void dumpDotVertexAndSourceEdges(std::ostream& os, const DfgVertex& vtx) {
dumpDotVertex(os, vtx);
vtx.forEachSourceEdge([&](const DfgEdge& edge, size_t idx) { //
if (edge.sourcep()) {
string headLabel;
if (vtx.arity() > 1 || vtx.is<DfgVertexSplice>()) headLabel = vtx.srcName(idx);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
dumpDotEdge(os, edge, headLabel);
}
});
}
void DfgGraph::dumpDot(std::ostream& os, const string& label) const {
// Header
os << "digraph dfg {\n";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
os << "graph [label=\"" << name();
if (!label.empty()) os << "-" << label;
os << "\", labelloc=t, labeljust=l]\n";
os << "graph [rankdir=LR]\n";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Emit all vertices
forEachVertex([&](const DfgVertex& vtx) { dumpDotVertexAndSourceEdges(os, vtx); });
// Footer
os << "}\n";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
void DfgGraph::dumpDotFile(const string& filename, const string& label) const {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// This generates a file used by graphviz, https://www.graphviz.org
// "hardcoded" parameters:
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(filename)};
2025-03-24 00:51:54 +01:00
if (os->fail()) v3fatal("Can't write file: " << filename);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
dumpDot(*os.get(), label);
os->close();
}
void DfgGraph::dumpDotFilePrefixed(const string& label) const {
string filename = name();
if (!label.empty()) filename += "-" + label;
dumpDotFile(v3Global.debugFilename(filename) + ".dot", label);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
2025-08-05 06:05:31 +02:00
// LCOV_EXCL_START // Debug function for developer use only
void DfgGraph::dumpDotUpstreamCone(const string& fileName, const DfgVertex& vtx,
const string& name) const {
// Open output file
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(fileName)};
if (os->fail()) v3fatal("Can't write file: " << fileName);
// Header
*os << "digraph dfg {\n";
if (!name.empty()) *os << "graph [label=\"" << name << "\", labelloc=t, labeljust=l]\n";
*os << "graph [rankdir=LR]\n";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Work queue for depth first traversal starting from this vertex
std::vector<const DfgVertex*> queue{&vtx};
// Set of already visited vertices
std::unordered_set<const DfgVertex*> visited;
// Depth first traversal
while (!queue.empty()) {
// Pop next work item
2025-08-05 06:05:31 +02:00
const DfgVertex* const vtxp = queue.back();
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
queue.pop_back();
// Mark vertex as visited
2025-08-05 06:05:31 +02:00
const bool isFirstEncounter = visited.insert(vtxp).second;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// If we have already visited this vertex during the traversal, then move on.
if (!isFirstEncounter) continue;
// Enqueue all sources of this vertex.
2025-08-05 06:05:31 +02:00
vtxp->forEachSource([&](const DfgVertex& src) { queue.push_back(&src); });
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Emit this vertex and all of its source edges
2025-08-05 06:05:31 +02:00
dumpDotVertexAndSourceEdges(*os, *vtxp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
// Footer
*os << "}\n";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Done
os->close();
}
// LCOV_EXCL_STOP
//------------------------------------------------------------------------------
// DfgEdge
//------------------------------------------------------------------------------
void DfgEdge::unlinkSource() {
if (!m_sourcep) return;
#ifdef VL_DEBUG
{
DfgEdge* sinkp = m_sourcep->m_sinksp;
while (sinkp) {
if (sinkp == this) break;
sinkp = sinkp->m_nextp;
}
UASSERT(sinkp, "'m_sourcep' does not have this edge as sink");
}
#endif
// Relink pointers of predecessor and successor
if (m_prevp) m_prevp->m_nextp = m_nextp;
if (m_nextp) m_nextp->m_prevp = m_prevp;
// If head of list in source, update source's head pointer
if (m_sourcep->m_sinksp == this) m_sourcep->m_sinksp = m_nextp;
// Mark source as unconnected
m_sourcep = nullptr;
// Clear links. This is not strictly necessary, but might catch bugs.
m_prevp = nullptr;
m_nextp = nullptr;
}
void DfgEdge::relinkSource(DfgVertex* newSourcep) {
// Unlink current source, if any
unlinkSource();
// Link new source
m_sourcep = newSourcep;
// Prepend to sink list in source
m_nextp = newSourcep->m_sinksp;
if (m_nextp) m_nextp->m_prevp = this;
newSourcep->m_sinksp = this;
}
//------------------------------------------------------------------------------
// DfgVertex
//------------------------------------------------------------------------------
DfgVertex::DfgVertex(DfgGraph& dfg, VDfgType type, FileLine* flp, AstNodeDType* dtypep)
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
: m_filelinep{flp}
, m_dtypep{dtypep}
, m_type{type} {
dfg.addVertex(*this);
}
2024-03-23 23:12:43 +01:00
DfgVertex::~DfgVertex() {}
bool DfgVertex::selfEquals(const DfgVertex& that) const { return true; }
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
V3Hash DfgVertex::selfHash() const { return V3Hash{}; }
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
bool DfgVertex::equals(const DfgVertex& that, EqualsCache& cache) const {
// If same vertex, then equal
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (this == &that) return true;
// If different type, then not equal
if (this->type() != that.type()) return false;
// If different data type, then not equal
if (this->dtypep() != that.dtypep()) return false;
// If different number of inputs, then not equal
auto thisPair = this->sourceEdges();
const DfgEdge* const thisSrcEdgesp = thisPair.first;
const size_t thisArity = thisPair.second;
auto thatPair = that.sourceEdges();
const DfgEdge* const thatSrcEdgesp = thatPair.first;
const size_t thatArity = thatPair.second;
if (thisArity != thatArity) return false;
// Check vertex specifics
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (!this->selfEquals(that)) return false;
// Check sources
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
const auto key = (this < &that) ? EqualsCache::key_type{this, &that} //
: EqualsCache::key_type{&that, this};
// Note: the recursive invocation can cause a re-hash but that will not invalidate references
uint8_t& result = cache[key];
if (!result) {
result = 2; // Assume equals
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
for (size_t i = 0; i < thisArity; ++i) {
const DfgVertex* const thisSrcVtxp = thisSrcEdgesp[i].m_sourcep;
const DfgVertex* const thatSrcVtxp = thatSrcEdgesp[i].m_sourcep;
if (thisSrcVtxp == thatSrcVtxp) continue;
if (!thisSrcVtxp || !thatSrcVtxp || !thisSrcVtxp->equals(*thatSrcVtxp, cache)) {
result = 1; // Mark not equal
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
break;
}
}
}
return result >> 1;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
V3Hash DfgVertex::hash() {
V3Hash& result = user<V3Hash>();
if (!result.value()) {
V3Hash hash{selfHash()};
// Variables are defined by themselves, so there is no need to hash them further
// (especially the sources). This enables sound hashing of graphs circular only through
// variables, which we rely on.
if (!is<DfgVertexVar>()) {
hash += m_type;
if (AstUnpackArrayDType* const adtypep = VN_CAST(dtypep(), UnpackArrayDType)) {
hash += adtypep->elementsConst();
// TODO: maybe include sub-dtype, but not hugely important at the moment
} else {
hash += width();
}
const auto pair = sourceEdges();
const DfgEdge* const edgesp = pair.first;
const size_t arity = pair.second;
// Sources must always be connected in well-formed graphs
for (size_t i = 0; i < arity; ++i) hash += edgesp[i].m_sourcep->hash();
}
result = hash;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
return result;
}
uint32_t DfgVertex::fanout() const {
uint32_t result = 0;
forEachSinkEdge([&](const DfgEdge&) { ++result; });
return result;
}
DfgVertexVar* DfgVertex::getResultVar() {
// It's easy if the vertex is already a variable ...
if (DfgVertexVar* const varp = this->cast<DfgVertexVar>()) return varp;
// Inspect existing variables written by this vertex, and choose one
DfgVertexVar* resp = nullptr;
// cppcheck-has-bug-suppress constParameter
this->forEachSink([&resp](DfgVertex& sink) {
DfgVertexVar* const varp = sink.cast<DfgVertexVar>();
if (!varp) return;
// First variable found
if (!resp) {
resp = varp;
return;
}
// Prefer those variables that must be kept anyway
if (resp->hasExtRefs() != varp->hasExtRefs()) {
if (!resp->hasExtRefs()) resp = varp;
return;
}
if (resp->hasModWrRefs() != varp->hasModWrRefs()) {
if (!resp->hasModWrRefs()) resp = varp;
return;
}
if (resp->hasDfgRefs() != varp->hasDfgRefs()) {
if (!resp->hasDfgRefs()) resp = varp;
return;
}
// Prefer those that already have module references
if (resp->hasModRdRefs() != varp->hasModRdRefs()) {
if (!resp->hasModRdRefs()) resp = varp;
return;
}
// Prefer the earlier one in source order
const FileLine& oldFlp = *(resp->fileline());
const FileLine& newFlp = *(varp->fileline());
if (const int cmp = oldFlp.operatorCompare(newFlp)) {
if (cmp > 0) resp = varp;
return;
}
// Prefer the one with the lexically smaller name
2025-07-01 23:55:08 +02:00
if (const int cmp = resp->nodep()->name().compare(varp->nodep()->name())) {
if (cmp > 0) resp = varp;
return;
}
// 'resp' and 'varp' are all the same, keep using the existing 'resp'
});
return resp;
}
2025-07-01 23:55:08 +02:00
AstScope* DfgVertex::scopep(ScopeCache& cache, bool tryResultVar) VL_MT_DISABLED {
// If this is a variable, we are done
if (DfgVertexVar* const varp = this->cast<DfgVertexVar>()) return varp->varScopep()->scopep();
// Try the result var first if instructed (usully only in the recursive case)
if (tryResultVar) {
if (DfgVertexVar* const varp = this->getResultVar()) return varp->varScopep()->scopep();
}
// Note: the recursive invocation can cause a re-hash but that will not invalidate references
AstScope*& resultr = cache[this];
if (!resultr) {
// Mark to prevent infinite recursion on circular graphs - should never be called on such
resultr = reinterpret_cast<AstScope*>(1);
2025-07-01 23:55:08 +02:00
// Find scope based on sources, falling back on the root scope
AstScope* const rootp = v3Global.rootp()->topScopep()->scopep();
AstScope* foundp = rootp;
const auto edges = sourceEdges();
for (size_t i = 0; i < edges.second; ++i) {
DfgEdge& edge = edges.first[i];
foundp = edge.sourcep()->scopep(cache, true);
if (foundp != rootp) break;
}
resultr = foundp;
2025-07-01 23:55:08 +02:00
}
// Die on a graph circular through operation vertices
UASSERT_OBJ(resultr != reinterpret_cast<AstScope*>(1), this,
2025-07-01 23:55:08 +02:00
"DfgVertex::scopep called on graph with circular operations");
// Done
return resultr;
2025-07-01 23:55:08 +02:00
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
void DfgVertex::unlinkDelete(DfgGraph& dfg) {
// Unlink source edges
forEachSourceEdge([](DfgEdge& edge, size_t) { edge.unlinkSource(); });
// Unlink sink edges
forEachSinkEdge([](DfgEdge& edge) { edge.unlinkSource(); });
// Remove from graph
dfg.removeVertex(*this);
// Delete
delete this;
}
void DfgVertex::replaceWith(DfgVertex* newSorucep) {
while (m_sinksp) m_sinksp->relinkSource(newSorucep);
}
//------------------------------------------------------------------------------
// Vertex classes
//------------------------------------------------------------------------------
// DfgConst ----------
bool DfgConst::selfEquals(const DfgVertex& that) const {
return num().isCaseEq(that.as<DfgConst>()->num());
}
V3Hash DfgConst::selfHash() const { return num().toHash(); }
// DfgSel ----------
bool DfgSel::selfEquals(const DfgVertex& that) const { return lsb() == that.as<DfgSel>()->lsb(); }
V3Hash DfgSel::selfHash() const { return V3Hash{lsb()}; }
// DfgSpliceArray ----------
bool DfgSpliceArray::selfEquals(const DfgVertex& that) const {
const DfgSpliceArray* const thatp = that.as<DfgSpliceArray>();
const size_t arity = this->arity();
for (size_t i = 0; i < arity; ++i) {
if (driverIndex(i) != thatp->driverIndex(i)) return false;
}
return true;
}
V3Hash DfgSpliceArray::selfHash() const {
V3Hash hash;
const size_t arity = this->arity();
for (size_t i = 0; i < arity; ++i) hash += driverIndex(i);
return hash;
}
// DfgSplicePacked ----------
bool DfgSplicePacked::selfEquals(const DfgVertex& that) const {
const DfgSplicePacked* const thatp = that.as<DfgSplicePacked>();
const size_t arity = this->arity();
for (size_t i = 0; i < arity; ++i) {
if (driverLsb(i) != thatp->driverLsb(i)) return false;
}
return true;
}
V3Hash DfgSplicePacked::selfHash() const {
V3Hash hash;
const size_t arity = this->arity();
for (size_t i = 0; i < arity; ++i) hash += driverLsb(i);
return hash;
}
// DfgVertexVar ----------
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
bool DfgVertexVar::selfEquals(const DfgVertex& that) const {
2025-07-01 23:55:08 +02:00
UASSERT_OBJ(nodep()->type() == that.as<DfgVertexVar>()->nodep()->type(), this,
"Both DfgVertexVar should be scoped or unscoped");
UASSERT_OBJ(nodep() != that.as<DfgVertexVar>()->nodep(), this,
"There should only be one DfgVertexVar for a given AstVar or AstVarScope");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return false;
}
V3Hash DfgVertexVar::selfHash() const {
V3Hash hash;
2025-07-01 23:55:08 +02:00
hash += nodep()->name();
hash += varp()->varType();
return hash;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
//------------------------------------------------------------------------------
// DfgVisitor
//------------------------------------------------------------------------------
#include "V3Dfg__gen_visitor_defns.h" // From ./astgen