verilator/src/V3Dfg.cpp

734 lines
26 KiB
C++
Raw Normal View History

Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Data flow graph (DFG) representation of logic
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
2025-01-01 14:30:25 +01:00
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
#include "V3Dfg.h"
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
#include "V3EmitV.h"
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
#include "V3File.h"
VL_DEFINE_DEBUG_FUNCTIONS;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
//------------------------------------------------------------------------------
// V3Dfg
// predicate for supported data types
static bool dfgGraphIsSupportedDTypePacked(const AstNodeDType* dtypep) {
dtypep = dtypep->skipRefp();
if (const AstBasicDType* const typep = VN_CAST(dtypep, BasicDType)) {
return typep->keyword().isIntNumeric();
}
if (const AstPackArrayDType* const typep = VN_CAST(dtypep, PackArrayDType)) {
return dfgGraphIsSupportedDTypePacked(typep->subDTypep());
}
if (const AstNodeUOrStructDType* const typep = VN_CAST(dtypep, NodeUOrStructDType)) {
return typep->packed();
}
return false;
}
bool V3Dfg::isSupported(const AstNodeDType* dtypep) {
dtypep = dtypep->skipRefp();
// Support 1 dimensional unpacked arrays of packed types
if (const AstUnpackArrayDType* const typep = VN_CAST(dtypep, UnpackArrayDType)) {
return dfgGraphIsSupportedDTypePacked(typep->subDTypep());
}
// Support packed types
return dfgGraphIsSupportedDTypePacked(dtypep);
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
//------------------------------------------------------------------------------
// DfgGraph
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
2025-07-01 23:55:08 +02:00
DfgGraph::DfgGraph(AstModule* modulep, const string& name)
: m_modulep{modulep}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
, m_name{name} {}
DfgGraph::~DfgGraph() {
forEachVertex([&](DfgVertex& vtx) { vtx.unlinkDelete(*this); });
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
std::unique_ptr<DfgGraph> DfgGraph::clone() const {
const bool scoped = !modulep();
DfgGraph* const clonep = new DfgGraph{modulep(), name()};
// Map from original vertex to clone
std::unordered_map<const DfgVertex*, DfgVertex*> vtxp2clonep(size() * 2);
// Clone constVertices
for (const DfgConst& vtx : m_constVertices) {
DfgConst* const cp = new DfgConst{*clonep, vtx.fileline(), vtx.num()};
vtxp2clonep.emplace(&vtx, cp);
}
// Clone variable vertices
for (const DfgVertexVar& vtx : m_varVertices) {
const DfgVertexVar* const vp = vtx.as<DfgVertexVar>();
DfgVertexVar* cp = nullptr;
switch (vtx.type()) {
case VDfgType::atVarArray: {
if (scoped) {
cp = new DfgVarArray{*clonep, vp->varScopep()};
} else {
cp = new DfgVarArray{*clonep, vp->varp()};
}
vtxp2clonep.emplace(&vtx, cp);
break;
}
case VDfgType::atVarPacked: {
if (scoped) {
cp = new DfgVarPacked{*clonep, vp->varScopep()};
} else {
cp = new DfgVarPacked{*clonep, vp->varp()};
}
vtxp2clonep.emplace(&vtx, cp);
break;
}
default: {
vtx.v3fatalSrc("Unhandled variable vertex type: " + vtx.typeName());
VL_UNREACHABLE;
break;
}
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (AstNode* const tmpForp = vp->tmpForp()) cp->tmpForp(tmpForp);
}
// Clone operation vertices
for (const DfgVertex& vtx : m_opVertices) {
switch (vtx.type()) {
#include "V3Dfg__gen_clone_cases.h" // From ./astgen
case VDfgType::atSel: {
DfgSel* const cp = new DfgSel{*clonep, vtx.fileline(), vtx.dtypep()};
cp->lsb(vtx.as<DfgSel>()->lsb());
vtxp2clonep.emplace(&vtx, cp);
break;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
case VDfgType::atUnitArray: {
DfgUnitArray* const cp = new DfgUnitArray{*clonep, vtx.fileline(), vtx.dtypep()};
vtxp2clonep.emplace(&vtx, cp);
break;
}
case VDfgType::atMux: {
DfgMux* const cp = new DfgMux{*clonep, vtx.fileline(), vtx.dtypep()};
vtxp2clonep.emplace(&vtx, cp);
break;
}
case VDfgType::atSpliceArray: {
DfgSpliceArray* const cp = new DfgSpliceArray{*clonep, vtx.fileline(), vtx.dtypep()};
vtxp2clonep.emplace(&vtx, cp);
break;
}
case VDfgType::atSplicePacked: {
DfgSplicePacked* const cp = new DfgSplicePacked{*clonep, vtx.fileline(), vtx.dtypep()};
vtxp2clonep.emplace(&vtx, cp);
break;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
case VDfgType::atLogic: {
vtx.v3fatalSrc("DfgLogic cannot be cloned");
VL_UNREACHABLE;
break;
}
case VDfgType::atUnresolved: {
vtx.v3fatalSrc("DfgUnresolved cannot be cloned");
VL_UNREACHABLE;
break;
}
default: {
vtx.v3fatalSrc("Unhandled operation vertex type: " + vtx.typeName());
VL_UNREACHABLE;
break;
}
}
}
UASSERT(size() == clonep->size(), "Size of clone should be the same");
// Constants have no inputs
// Hook up inputs of cloned variables
for (const DfgVertexVar& vtx : m_varVertices) {
DfgVertexVar* const cp = vtxp2clonep.at(&vtx)->as<DfgVertexVar>();
if (const DfgVertex* const srcp = vtx.srcp()) cp->srcp(vtxp2clonep.at(srcp));
if (const DfgVertex* const defp = vtx.defaultp()) cp->defaultp(vtxp2clonep.at(defp));
}
// Hook up inputs of cloned operation vertices
for (const DfgVertex& vtx : m_opVertices) {
if (vtx.is<DfgVertexVariadic>()) {
switch (vtx.type()) {
case VDfgType::atSpliceArray:
case VDfgType::atSplicePacked: {
const DfgVertexSplice* const vp = vtx.as<DfgVertexSplice>();
DfgVertexSplice* const cp = vtxp2clonep.at(vp)->as<DfgVertexSplice>();
vp->foreachDriver([&](const DfgVertex& src, uint32_t lo, FileLine* flp) {
cp->addDriver(vtxp2clonep.at(&src), lo, flp);
return false;
});
break;
}
default: {
vtx.v3fatalSrc("Unhandled DfgVertexVariadic sub type: " + vtx.typeName());
VL_UNREACHABLE;
break;
}
}
} else {
DfgVertex* const cp = vtxp2clonep.at(&vtx);
for (size_t i = 0; i < vtx.nInputs(); ++i) {
cp->inputp(i, vtxp2clonep.at(vtx.inputp(i)));
}
}
}
return std::unique_ptr<DfgGraph>{clonep};
}
void DfgGraph::mergeGraphs(std::vector<std::unique_ptr<DfgGraph>>&& otherps) {
if (otherps.empty()) return;
// NODE STATE
// AstVar/AstVarScope::user2p() -> corresponding DfgVertexVar* in 'this' graph
const VNUser2InUse user2InUse;
// Set up Ast Variable -> DfgVertexVar map for 'this' graph
for (DfgVertexVar& vtx : m_varVertices) vtx.nodep()->user2p(&vtx);
// Merge in each of the other graphs
for (const std::unique_ptr<DfgGraph>& otherp : otherps) {
// Process variables
for (DfgVertexVar* const vtxp : otherp->m_varVertices.unlinkable()) {
// Variabels that are present in 'this', make them use the DfgVertexVar in 'this'.
if (DfgVertexVar* const altp = vtxp->nodep()->user2u().to<DfgVertexVar*>()) {
DfgVertex* const srcp = vtxp->srcp();
DfgVertex* const defaultp = vtxp->defaultp();
UASSERT_OBJ(!(srcp || defaultp) || (!altp->srcp() && !altp->defaultp()), vtxp,
"At most one alias should be driven");
vtxp->replaceWith(altp);
if (srcp) altp->srcp(srcp);
if (defaultp) altp->defaultp(defaultp);
VL_DO_DANGLING(vtxp->unlinkDelete(*otherp), vtxp);
continue;
}
// Otherwise they will be moved
vtxp->nodep()->user2p(vtxp);
vtxp->m_userGeneration = 0;
#ifdef VL_DEBUG
vtxp->m_dfgp = this;
#endif
}
m_varVertices.splice(m_varVertices.end(), otherp->m_varVertices);
// Process constants
for (DfgConst& vtx : otherp->m_constVertices) {
vtx.m_userGeneration = 0;
#ifdef VL_DEBUG
vtx.m_dfgp = this;
#endif
}
m_constVertices.splice(m_constVertices.end(), otherp->m_constVertices);
// Process operations
for (DfgVertex& vtx : otherp->m_opVertices) {
vtx.m_userGeneration = 0;
#ifdef VL_DEBUG
vtx.m_dfgp = this;
#endif
}
m_opVertices.splice(m_opVertices.end(), otherp->m_opVertices);
// Update graph sizes
m_size += otherp->m_size;
otherp->m_size = 0;
2024-03-26 00:06:25 +01:00
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
std::string DfgGraph::makeUniqueName(const std::string& prefix, size_t n) {
// Construct the tmpNameStub if we have not done so yet
if (m_tmpNameStub.empty()) {
// Use the hash of the graph name (avoid long names and non-identifiers)
const std::string hash = V3Hash{m_name}.toString();
// We need to keep every variable globally unique, and graph hashed
// names might not be, so keep a static table to track multiplicity
static std::unordered_map<std::string, uint32_t> s_multiplicity;
m_tmpNameStub += '_' + hash + '_' + std::to_string(s_multiplicity[hash]++) + '_';
}
// Assemble the globally unique name
return "__Vdfg" + prefix + m_tmpNameStub + std::to_string(n);
}
2025-07-01 23:55:08 +02:00
DfgVertexVar* DfgGraph::makeNewVar(FileLine* flp, const std::string& name, AstNodeDType* dtypep,
AstScope* scopep) {
UASSERT_OBJ(!!scopep != !!modulep(), flp,
"makeNewVar scopep should only be provided for a scoped DfgGraph");
// Create AstVar
AstVar* const varp = new AstVar{flp, VVarType::MODULETEMP, name, dtypep};
2025-07-01 23:55:08 +02:00
if (scopep) {
// Add AstVar to the scope's module
scopep->modp()->addStmtsp(varp);
// Create AstVarScope
AstVarScope* const vscp = new AstVarScope{flp, scopep, varp};
// Add to scope
scopep->addVarsp(vscp);
// Create and return the corresponding variable vertex
if (VN_IS(varp->dtypeSkipRefp(), UnpackArrayDType)) return new DfgVarArray{*this, vscp};
return new DfgVarPacked{*this, vscp};
} else {
// Add AstVar to containing module
modulep()->addStmtsp(varp);
// Create and return the corresponding variable vertex
if (VN_IS(varp->dtypeSkipRefp(), UnpackArrayDType)) return new DfgVarArray{*this, varp};
return new DfgVarPacked{*this, varp};
}
}
static const std::string toDotId(const DfgVertex& vtx) { return '"' + cvtToHex(&vtx) + '"'; }
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Dump one DfgVertex in Graphviz format
static void dumpDotVertex(std::ostream& os, const DfgVertex& vtx) {
if (const DfgVertexVar* const varVtxp = vtx.cast<DfgVertexVar>()) {
const AstNode* const nodep = varVtxp->nodep();
const AstVar* const varp = varVtxp->varp();
2022-09-30 17:19:21 +02:00
os << toDotId(vtx);
// Begin attributes
os << " [";
// Begin 'label'
os << "label=\"";
// Name
os << nodep->prettyName();
// Address
os << '\n' << cvtToHex(varVtxp);
// Original variable, if any
if (const AstNode* const tmpForp = varVtxp->tmpForp()) {
if (tmpForp != nodep) os << "\ntemporary for: " << tmpForp->prettyName();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Type and fanout
os << '\n';
varVtxp->dtypep()->dumpSmall(os);
os << " / F" << varVtxp->fanout();
// End 'label'
os << '"';
// Shape
if (varVtxp->is<DfgVarPacked>()) {
os << ", shape=box";
} else if (varVtxp->is<DfgVarArray>()) {
os << ", shape=box3d";
} else {
varVtxp->v3fatalSrc("Unhandled DfgVertexVar sub-type"); // LCOV_EXCL_LINE
}
// Color
if (varp->direction() == VDirection::INPUT) {
os << ", style=filled, fillcolor=chartreuse2"; // Green
} else if (varp->direction() == VDirection::OUTPUT) {
os << ", style=filled, fillcolor=cyan2"; // Cyan
} else if (varp->direction() == VDirection::INOUT) {
os << ", style=filled, fillcolor=darkorchid2"; // Purple
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else if (varVtxp->hasExtRefs()) {
os << ", style=filled, fillcolor=firebrick2"; // Red
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else if (varVtxp->hasModRefs()) {
os << ", style=filled, fillcolor=darkorange1"; // Orange
} else if (varVtxp->hasDfgRefs()) {
os << ", style=filled, fillcolor=gold2"; // Yellow
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else if (varVtxp->tmpForp()) {
os << ", style=filled, fillcolor=gray95";
}
// End attributes
os << "]\n";
return;
}
if (const DfgConst* const constVtxp = vtx.cast<DfgConst>()) {
const V3Number& num = constVtxp->num();
2022-09-30 17:19:21 +02:00
os << toDotId(vtx);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
os << " [label=\"";
if (num.width() <= 32 && !num.isSigned()) {
os << constVtxp->width() << "'d" << num.toUInt() << '\n';
os << constVtxp->width() << "'h" << std::hex << num.toUInt() << std::dec << '\n';
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else {
os << num.ascii() << '\n';
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
os << cvtToHex(constVtxp) << '\n';
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
os << '"';
os << ", shape=plain";
os << "]\n";
return;
}
2022-09-30 17:19:21 +02:00
if (const DfgSel* const selVtxp = vtx.cast<DfgSel>()) {
const uint32_t lsb = selVtxp->lsb();
const uint32_t msb = lsb + selVtxp->width() - 1;
os << toDotId(vtx);
os << " [label=\"SEL _[" << msb << ":" << lsb << "]\n";
os << cvtToHex(selVtxp) << '\n';
vtx.dtypep()->dumpSmall(os);
os << " / F" << vtx.fanout() << '"';
if (vtx.hasMultipleSinks()) {
os << ", shape=doublecircle";
} else {
os << ", shape=circle";
2022-09-30 17:19:21 +02:00
}
os << "]\n";
return;
2022-09-30 17:19:21 +02:00
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (vtx.is<DfgVertexSplice>() || vtx.is<DfgUnitArray>() || vtx.is<DfgUnresolved>()) {
os << toDotId(vtx);
os << " [label=\"" << vtx.typeName() << '\n';
os << cvtToHex(&vtx) << '\n';
vtx.dtypep()->dumpSmall(os);
os << " / F" << vtx.fanout() << '"';
if (vtx.hasMultipleSinks()) {
os << ", shape=doubleoctagon";
} else {
os << ", shape=octagon";
}
os << "]\n";
return;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (const DfgLogic* const logicp = vtx.cast<DfgLogic>()) {
os << toDotId(vtx);
std::stringstream ss;
V3EmitV::debugVerilogForTree(logicp->nodep(), ss);
std::string str = ss.str();
str = VString::quoteBackslash(str);
str = VString::quoteAny(str, '"', '\\');
str = VString::replaceSubstr(str, "\n", "\\l");
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
os << " [label=\"";
os << str;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
os << "\\n" << cvtToHex(&vtx);
os << "\"\n";
os << ", shape=box, style=\"rounded,filled\", fillcolor=cornsilk, nojustify=true";
os << "]\n";
return;
}
2022-09-30 17:19:21 +02:00
os << toDotId(vtx);
os << " [label=\"" << vtx.typeName() << '\n';
os << cvtToHex(&vtx) << '\n';
vtx.dtypep()->dumpSmall(os);
os << " / F" << vtx.fanout() << '"';
if (vtx.hasMultipleSinks()) {
os << ", shape=doublecircle";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
} else {
os << ", shape=circle";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
os << "]\n";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
void DfgGraph::dumpDot(std::ostream& os, const std::string& label,
std::function<bool(const DfgVertex&)> p) const {
// This generates a graphviz dump, https://www.graphviz.org
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Header
os << "digraph dfg {\n";
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
os << "rankdir=LR\n";
// If predicate not given, dump everything
if (!p) p = [](const DfgVertex&) { return true; };
std::unordered_set<const DfgVertex*> emitted;
// Emit all vertices associated with a DfgLogic
forEachVertex([&](const DfgVertex& vtx) {
const DfgLogic* const logicp = vtx.cast<DfgLogic>();
if (!logicp) return;
if (logicp->synth().empty()) return;
if (!p(vtx)) return;
os << "subgraph cluster_" << cvtToHex(logicp) << " {\n";
dumpDotVertex(os, *logicp);
emitted.insert(logicp);
for (DfgVertex* const vtxp : logicp->synth()) {
if (!p(*vtxp)) continue;
dumpDotVertex(os, *vtxp);
emitted.insert(vtxp);
}
os << "}\n";
});
// Emit all remaining vertices
forEachVertex([&](const DfgVertex& vtx) {
if (emitted.count(&vtx)) return;
if (!p(vtx)) return;
dumpDotVertex(os, vtx);
});
// Emit all edges
forEachVertex([&](const DfgVertex& vtx) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
if (!p(vtx)) return;
for (size_t i = 0; i < vtx.nInputs(); ++i) {
DfgVertex* const srcp = vtx.inputp(i);
if (!srcp) continue;
if (!p(*srcp)) continue;
os << toDotId(*srcp) << " -> " << toDotId(vtx);
os << " [headlabel=\"" << vtx.srcName(i) << "\"]";
os << '\n';
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
});
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Footer
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
os << "label=\"" << name() + (label.empty() ? "" : "-" + label) << "\"\n";
os << "labelloc=t\n";
os << "labeljust=l\n";
os << "}\n";
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
std::string DfgGraph::dumpDotString(const std::string& label,
std::function<bool(const DfgVertex&)> p) const {
std::stringstream ss;
dumpDot(ss, label, p);
return ss.str();
}
void DfgGraph::dumpDotFile(const std::string& filename, const std::string& label,
std::function<bool(const DfgVertex&)> p) const {
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(filename)};
2025-03-24 00:51:54 +01:00
if (os->fail()) v3fatal("Can't write file: " << filename);
dumpDot(*os.get(), label, p);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
os->close();
}
void DfgGraph::dumpDotFilePrefixed(const std::string& label,
std::function<bool(const DfgVertex&)> p) const {
std::string filename = name();
if (!label.empty()) filename += "-" + label;
dumpDotFile(v3Global.debugFilename(filename) + ".dot", label, p);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
template <bool T_SinksNotSources>
static std::unique_ptr<std::unordered_set<const DfgVertex*>>
dfgGraphCollectCone(const std::vector<const DfgVertex*>& vtxps) {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Work queue for traversal starting from all the seed vertices
std::vector<const DfgVertex*> queue = vtxps;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Set of already visited vertices
std::unique_ptr<std::unordered_set<const DfgVertex*>> resp{
new std::unordered_set<const DfgVertex*>{}};
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Depth first traversal
while (!queue.empty()) {
// Pop next work item
2025-08-05 06:05:31 +02:00
const DfgVertex* const vtxp = queue.back();
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
queue.pop_back();
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Mark vertex as visited, move on if already visited
if (!resp->insert(vtxp).second) continue;
// Enqueue all siblings of this vertex.
if VL_CONSTEXPR_CXX17 (T_SinksNotSources) {
vtxp->foreachSink([&](const DfgVertex& sink) {
queue.push_back(&sink);
return false;
});
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
} else {
vtxp->foreachSource([&](const DfgVertex& src) {
queue.push_back(&src);
return false;
});
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
}
// Done
return resp;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
std::unique_ptr<std::unordered_set<const DfgVertex*>>
DfgGraph::sourceCone(const std::vector<const DfgVertex*>& vtxps) const {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return dfgGraphCollectCone<false>(vtxps);
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
std::unique_ptr<std::unordered_set<const DfgVertex*>>
DfgGraph::sinkCone(const std::vector<const DfgVertex*>& vtxps) const {
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
return dfgGraphCollectCone<true>(vtxps);
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
//------------------------------------------------------------------------------
// DfgVertex
DfgVertex::DfgVertex(DfgGraph& dfg, VDfgType type, FileLine* flp, AstNodeDType* dtypep)
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
: m_filelinep{flp}
, m_dtypep{dtypep}
, m_type{type} {
dfg.addVertex(*this);
}
bool DfgVertex::equals(const DfgVertex& that, EqualsCache& cache) const {
// If same vertex, then equal
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (this == &that) return true;
// If different type, then not equal
if (this->type() != that.type()) return false;
// If different data type, then not equal
if (this->dtypep() != that.dtypep()) return false;
// If different number of inputs, then not equal
if (this->nInputs() != that.nInputs()) return false;
// Check vertex specifics
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (!this->selfEquals(that)) return false;
// Check sources
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
const auto key = (this < &that) ? EqualsCache::key_type{this, &that} //
: EqualsCache::key_type{&that, this};
// Note: the recursive invocation can cause a re-hash but that will not invalidate references
uint8_t& result = cache[key];
if (!result) {
const bool equal = [&]() {
for (size_t i = 0; i < nInputs(); ++i) {
const DfgVertex* const ap = this->inputp(i);
const DfgVertex* const bp = that.inputp(i);
if (!ap && !bp) continue;
if (!ap || !bp) return false;
if (!ap->equals(*bp, cache)) return false;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
return true;
}();
result = (static_cast<uint8_t>(equal) << 1) | 1;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
return result >> 1;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
V3Hash DfgVertex::hash(DfgUserMap<V3Hash>& cache) {
V3Hash& result = cache[this];
if (!result.value()) {
V3Hash hash{selfHash()};
// Variables are defined by themselves, so there is no need to hash them further
// (especially the sources). This enables sound hashing of graphs circular only through
// variables, which we rely on.
if (!is<DfgVertexVar>()) {
hash += m_type;
hash += size();
foreachSource([&](DfgVertex& vtx) {
hash += vtx.hash(cache);
return false;
});
}
result = hash;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
return result;
}
uint32_t DfgVertex::fanout() const {
uint32_t result = 0;
foreachSink([&](const DfgVertex&) {
++result;
return false;
});
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return result;
}
DfgVertexVar* DfgVertex::getResultVar() {
// It's easy if the vertex is already a variable ...
if (DfgVertexVar* const varp = this->cast<DfgVertexVar>()) return varp;
// Inspect existing variables written by this vertex, and choose one
DfgVertexVar* resp = nullptr;
// cppcheck-has-bug-suppress constParameter
this->foreachSink([&resp](DfgVertex& sink) {
DfgVertexVar* const varp = sink.cast<DfgVertexVar>();
if (!varp) return false;
// First variable found
if (!resp) {
resp = varp;
return false;
}
// Prefer those variables that must be kept anyway
if (resp->hasExtRefs() != varp->hasExtRefs()) {
if (!resp->hasExtRefs()) resp = varp;
return false;
}
if (resp->hasModWrRefs() != varp->hasModWrRefs()) {
if (!resp->hasModWrRefs()) resp = varp;
return false;
}
if (resp->hasDfgRefs() != varp->hasDfgRefs()) {
if (!resp->hasDfgRefs()) resp = varp;
return false;
}
// Prefer those that already have module references
if (resp->hasModRdRefs() != varp->hasModRdRefs()) {
if (!resp->hasModRdRefs()) resp = varp;
return false;
}
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
// Prefer real variabels over temporaries
if (!resp->tmpForp() != !varp->tmpForp()) {
if (resp->tmpForp()) resp = varp;
return false;
Optimize complex combinational logic in DFG (#6298) This patch adds DfgLogic, which is a vertex that represents a whole, arbitrarily complex combinational AstAlways or AstAssignW in the DfgGraph. Implementing this requires computing the variables live at entry to the AstAlways (variables read by the block), so there is a new ControlFlowGraph data structure and a classical data-flow analysis based live variable analysis to do that at the variable level (as opposed to bit/element level). The actual CFG construction and live variable analysis is best effort, and might fail for currently unhandled constructs or data types. This can be extended later. V3DfgAstToDfg is changed to convert the Ast into an initial DfgGraph containing only DfgLogic, DfgVertexSplice and DfgVertexVar vertices. The DfgLogic are then subsequently synthesized into primitive operations by the new V3DfgSynthesize pass, which is a combination of the old V3DfgAstToDfg conversion and new code to handle AstAlways blocks with complex flow control. V3DfgSynthesize by default will synthesize roughly the same constructs as V3DfgAstToDfg used to handle before, plus any logic that is part of a combinational cycle within the DfgGraph. This enables breaking up these cycles, for which there are extensions to V3DfgBreakCycles in this patch as well. V3DfgSynthesize will then delete all non synthesized or non synthesizable DfgLogic vertices and the rest of the Dfg pipeline is identical, with minor changes to adjust for the changed representation. Because with this change we can now eliminate many more UNOPTFLAT, DFG has been disabled in all the tests that specifically target testing the scheduling and reporting of circular combinational logic.
2025-08-19 16:06:38 +02:00
}
// Prefer the earlier one in source order
const FileLine& oldFlp = *(resp->fileline());
const FileLine& newFlp = *(varp->fileline());
if (const int cmp = oldFlp.operatorCompare(newFlp)) {
if (cmp > 0) resp = varp;
return false;
}
// Prefer the one with the lexically smaller name
2025-07-01 23:55:08 +02:00
if (const int cmp = resp->nodep()->name().compare(varp->nodep()->name())) {
if (cmp > 0) resp = varp;
return false;
}
// 'resp' and 'varp' are all the same, keep using the existing 'resp'
return false;
});
return resp;
}
2025-07-01 23:55:08 +02:00
AstScope* DfgVertex::scopep(ScopeCache& cache, bool tryResultVar) VL_MT_DISABLED {
// If this is a variable, we are done
if (const DfgVertexVar* const varp = this->cast<DfgVertexVar>()) {
return varp->varScopep()->scopep();
}
2025-07-01 23:55:08 +02:00
// Try the result var first if instructed (usully only in the recursive case)
if (tryResultVar) {
if (const DfgVertexVar* const varp = this->getResultVar()) {
return varp->varScopep()->scopep();
}
2025-07-01 23:55:08 +02:00
}
// Note: the recursive invocation can cause a re-hash but that will not invalidate references
AstScope*& resultr = cache[this];
if (!resultr) {
// Mark to prevent infinite recursion on circular graphs - should never be called on such
resultr = reinterpret_cast<AstScope*>(1);
2025-07-01 23:55:08 +02:00
// Find scope based on sources, falling back on the root scope
AstScope* const rootp = v3Global.rootp()->topScopep()->scopep();
AstScope* foundp = nullptr;
foreachSource([&](DfgVertex& src) {
AstScope* const scp = src.scopep(cache, true);
if (scp != rootp) {
foundp = scp;
return true;
}
return false;
});
resultr = foundp ? foundp : rootp;
2025-07-01 23:55:08 +02:00
}
// Die on a graph circular through operation vertices
UASSERT_OBJ(resultr != reinterpret_cast<AstScope*>(1), this,
2025-07-01 23:55:08 +02:00
"DfgVertex::scopep called on graph with circular operations");
// Done
return resultr;
2025-07-01 23:55:08 +02:00
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
void DfgVertex::unlinkDelete(DfgGraph& dfg) {
// Unlink sink edges
while (!m_sinks.empty()) m_sinks.frontp()->unlinkSrcp();
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Remove from graph
dfg.removeVertex(*this);
// Delete - this will unlink sources
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
delete this;
}
//------------------------------------------------------------------------------
// DfgVisitor
#include "V3Dfg__gen_visitor_defns.h" // From ./astgen