verilator/src/V3DfgPeephole.cpp

1646 lines
68 KiB
C++
Raw Normal View History

Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: Peephole optimizations over DfgGraph
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
2023-01-01 16:18:39 +01:00
// Copyright 2003-2023 by Wilson Snyder. This program is free software; you
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
//
// A pattern-matching based optimizer for DfgGraph. This is in some aspects similar to V3Const, but
// more powerful in that it does not care about ordering combinational statement. This is also less
// broadly applicable than V3Const, as it does not apply to procedural statements with sequential
// execution semantics.
//
//*************************************************************************
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
#include "V3DfgPeephole.h"
#include "V3Dfg.h"
#include "V3DfgPasses.h"
#include "V3Stats.h"
#include <cctype>
VL_DEFINE_DEBUG_FUNCTIONS;
V3DfgPeepholeContext::V3DfgPeepholeContext(const std::string& label)
: m_label{label} {
const auto checkEnabled = [this](VDfgPeepholePattern id) {
string str{id.ascii()};
std::transform(str.begin(), str.end(), str.begin(), [](unsigned char c) { //
return c == '_' ? '-' : std::tolower(c);
});
m_enabled[id] = v3Global.opt.fDfgPeepholeEnabled(str);
};
#define OPTIMIZATION_CHECK_ENABLED(id, name) checkEnabled(VDfgPeepholePattern::id);
FOR_EACH_DFG_PEEPHOLE_OPTIMIZATION(OPTIMIZATION_CHECK_ENABLED)
#undef OPTIMIZATION_CHECK_ENABLED
}
V3DfgPeepholeContext::~V3DfgPeepholeContext() {
const auto emitStat = [this](VDfgPeepholePattern id) {
string str{id.ascii()};
std::transform(str.begin(), str.end(), str.begin(), [](unsigned char c) { //
return c == '_' ? ' ' : std::tolower(c);
});
V3Stats::addStat("Optimizations, DFG " + m_label + " Peephole, " + str, m_count[id]);
};
#define OPTIMIZATION_EMIT_STATS(id, name) emitStat(VDfgPeepholePattern::id);
FOR_EACH_DFG_PEEPHOLE_OPTIMIZATION(OPTIMIZATION_EMIT_STATS)
#undef OPTIMIZATION_EMIT_STATS
}
2022-09-30 17:19:53 +02:00
// clang-format off
template <typename T_Reduction>
struct ReductionToBitwiseImpl {};
template <> struct ReductionToBitwiseImpl<DfgRedAnd> { using type = DfgAnd; };
template <> struct ReductionToBitwiseImpl<DfgRedOr> { using type = DfgOr; };
template <> struct ReductionToBitwiseImpl<DfgRedXor> { using type = DfgXor; };
template <typename T_Reductoin>
using ReductionToBitwise = typename ReductionToBitwiseImpl<T_Reductoin>::type;
template <typename T_Bitwise>
struct BitwiseToReductionImpl {};
template <> struct BitwiseToReductionImpl<DfgAnd> { using type = DfgRedAnd; };
template <> struct BitwiseToReductionImpl<DfgOr> { using type = DfgRedOr; };
template <> struct BitwiseToReductionImpl<DfgXor> { using type = DfgRedXor; };
template <typename T_Reductoin>
using BitwiseToReduction = typename BitwiseToReductionImpl<T_Reductoin>::type;
namespace {
template<typename Vertex> void foldOp(V3Number& out, const V3Number& src);
template <> void foldOp<DfgCLog2> (V3Number& out, const V3Number& src) { out.opCLog2(src); }
template <> void foldOp<DfgCountOnes> (V3Number& out, const V3Number& src) { out.opCountOnes(src); }
template <> void foldOp<DfgExtend> (V3Number& out, const V3Number& src) { out.opAssign(src); }
template <> void foldOp<DfgExtendS> (V3Number& out, const V3Number& src) { out.opExtendS(src, src.width()); }
template <> void foldOp<DfgLogNot> (V3Number& out, const V3Number& src) { out.opLogNot(src); }
template <> void foldOp<DfgNegate> (V3Number& out, const V3Number& src) { out.opNegate(src); }
template <> void foldOp<DfgNot> (V3Number& out, const V3Number& src) { out.opNot(src); }
template <> void foldOp<DfgOneHot> (V3Number& out, const V3Number& src) { out.opOneHot(src); }
template <> void foldOp<DfgOneHot0> (V3Number& out, const V3Number& src) { out.opOneHot0(src); }
template <> void foldOp<DfgRedAnd> (V3Number& out, const V3Number& src) { out.opRedAnd(src); }
template <> void foldOp<DfgRedOr> (V3Number& out, const V3Number& src) { out.opRedOr(src); }
template <> void foldOp<DfgRedXor> (V3Number& out, const V3Number& src) { out.opRedXor(src); }
template<typename Vertex> void foldOp(V3Number& out, const V3Number& lhs, const V3Number& rhs);
template <> void foldOp<DfgAdd> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opAdd(lhs, rhs); }
template <> void foldOp<DfgAnd> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opAnd(lhs, rhs); }
template <> void foldOp<DfgConcat> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opConcat(lhs, rhs); }
template <> void foldOp<DfgDiv> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opDiv(lhs, rhs); }
template <> void foldOp<DfgDivS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opDivS(lhs, rhs); }
template <> void foldOp<DfgEq> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opEq(lhs, rhs); }
template <> void foldOp<DfgGt> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opGt(lhs, rhs); }
template <> void foldOp<DfgGtS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opGtS(lhs, rhs); }
template <> void foldOp<DfgGte> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opGte(lhs, rhs); }
template <> void foldOp<DfgGteS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opGteS(lhs, rhs); }
template <> void foldOp<DfgLogAnd> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opLogAnd(lhs, rhs); }
template <> void foldOp<DfgLogEq> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opLogEq(lhs, rhs); }
template <> void foldOp<DfgLogIf> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opLogIf(lhs, rhs); }
template <> void foldOp<DfgLogOr> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opLogOr(lhs, rhs); }
template <> void foldOp<DfgLt> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opLt(lhs, rhs); }
template <> void foldOp<DfgLtS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opLtS(lhs, rhs); }
template <> void foldOp<DfgLte> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opLte(lhs, rhs); }
template <> void foldOp<DfgLteS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opLtS(lhs, rhs); }
template <> void foldOp<DfgModDiv> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opModDiv(lhs, rhs); }
template <> void foldOp<DfgModDivS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opModDivS(lhs, rhs); }
template <> void foldOp<DfgMul> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opMul(lhs, rhs); }
template <> void foldOp<DfgMulS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opMulS(lhs, rhs); }
template <> void foldOp<DfgNeq> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opNeq(lhs, rhs); }
template <> void foldOp<DfgOr> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opOr(lhs, rhs); }
template <> void foldOp<DfgPow> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opPow(lhs, rhs); }
template <> void foldOp<DfgPowSS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opPowSS(lhs, rhs); }
template <> void foldOp<DfgPowSU> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opPowSU(lhs, rhs); }
template <> void foldOp<DfgPowUS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opPowUS(lhs, rhs); }
template <> void foldOp<DfgReplicate> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opRepl(lhs, rhs); }
template <> void foldOp<DfgShiftL> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opShiftL(lhs, rhs); }
template <> void foldOp<DfgShiftR> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opShiftR(lhs, rhs); }
template <> void foldOp<DfgShiftRS> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opShiftRS(lhs, rhs, lhs.width()); }
template <> void foldOp<DfgSub> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opSub(lhs, rhs); }
template <> void foldOp<DfgXor> (V3Number& out, const V3Number& lhs, const V3Number& rhs) { out.opXor(lhs, rhs); }
}
2022-09-30 17:19:53 +02:00
// clang-format on
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
class V3DfgPeephole final : public DfgVisitor {
// STATE
DfgGraph& m_dfg; // The DfgGraph being visited
V3DfgPeepholeContext& m_ctx; // The config structure
// bool m_changed = false; // Changed a vertex
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
AstNodeDType* const m_bitDType = DfgVertex::dtypeForWidth(1); // Common, so grab it up front
// Head of work list. Note that we want all next pointers in the list to be non-zero (including
// that of the last element). This allows as to do two important things: detect if an element
// is in the list by checking for a non-zero next pointer, and easy prefetching without
// conditionals. The 'this' pointer is a good sentinel as it is a valid memory address, and we
// can easily check for the end of the list.
DfgVertex* m_workListp = reinterpret_cast<DfgVertex*>(this);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
#define APPLYING(id) if (checkApplying(VDfgPeepholePattern::id))
// METHODS
bool checkApplying(VDfgPeepholePattern id) {
if (!m_ctx.m_enabled[id]) return false;
UINFO(9, "Applying DFG patten " << id.ascii() << endl);
++m_ctx.m_count[id];
// m_changed = true;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return true;
}
void addToWorkList(DfgVertex* vtxp) {
// We only process actual operation vertices
if (vtxp->is<DfgConst>() || vtxp->is<DfgVertexVar>()) return;
// If already in work list then nothing to do
if (vtxp->getUser<DfgVertex*>()) return;
// Actually add to work list.
vtxp->setUser<DfgVertex*>(m_workListp);
m_workListp = vtxp;
}
void addSourcesToWorkList(DfgVertex* vtxp) {
vtxp->forEachSource([&](DfgVertex& src) { addToWorkList(&src); });
}
void addSinksToWorkList(DfgVertex* vtxp) {
vtxp->forEachSink([&](DfgVertex& src) { addToWorkList(&src); });
}
void deleteVertex(DfgVertex* vtxp) {
// Add all sources to the work list
addSourcesToWorkList(vtxp);
// If in work list then we can't delete it just yet (as we can't remove from the middle of
// the work list), but it will be deleted when the work list is processed.
if (vtxp->getUser<DfgVertex*>()) return;
// Otherwise we can delete it now.
VL_DO_DANGLING(vtxp->unlinkDelete(m_dfg), vtxp);
}
void replace(DfgVertex* vtxp, DfgVertex* replacementp) {
// Add sinks of replaced vertex to the work list
addSinksToWorkList(vtxp);
// Add replacement to the work list
addToWorkList(replacementp);
// Replace vertex with the replacement
vtxp->replaceWith(replacementp);
// Vertex is now unused, so delete it
deleteVertex(vtxp);
}
void modified(DfgVertex* vtxp) {
// Add sinks of modified vertex to the work list
addSinksToWorkList(vtxp);
// Add the modified vertex itself to the work list
addToWorkList(vtxp);
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Shorthand
static AstNodeDType* dtypeForWidth(uint32_t width) { return DfgVertex::dtypeForWidth(width); }
// Create a 32-bit DfgConst vertex
DfgConst* makeI32(FileLine* flp, uint32_t val) { return new DfgConst{m_dfg, flp, 32, val}; }
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Create a DfgConst vertex with the given width and value zero
DfgConst* makeZero(FileLine* flp, uint32_t width) { return new DfgConst{m_dfg, flp, width}; }
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Create a new vertex of the given type
template <typename Vertex, typename... Args>
Vertex* make(FileLine* flp, Args&&... args) {
static_assert(std::is_final<Vertex>::value, "Must invoke on final class");
static_assert(!std::is_same<DfgConst, Vertex>::value, "Use 'makeZero' instead");
static_assert(!std::is_base_of<DfgVertexVar, Vertex>::value, "Can't create variables");
// Create the new vertex
Vertex* const vtxp = new Vertex{m_dfg, flp, std::forward<Args>(args)...};
// Add to work list.
vtxp->template setUser<DfgVertex*>(m_workListp);
m_workListp = vtxp;
// Return new node
return vtxp;
}
// Constant fold unary vertex, return true if folded
template <typename Vertex>
bool foldUnary(Vertex* vtxp) {
static_assert(std::is_base_of<DfgVertexUnary, Vertex>::value, "Must invoke on unary");
static_assert(std::is_final<Vertex>::value, "Must invoke on final class");
if (DfgConst* const srcp = vtxp->srcp()->template cast<DfgConst>()) {
APPLYING(FOLD_UNARY) {
DfgConst* const resultp = makeZero(vtxp->fileline(), vtxp->width());
foldOp<Vertex>(resultp->num(), srcp->num());
replace(vtxp, resultp);
return true;
}
}
return false;
}
// Constant fold binary vertex, return true if folded
template <typename Vertex>
bool foldBinary(Vertex* vtxp) {
static_assert(std::is_base_of<DfgVertexBinary, Vertex>::value, "Must invoke on binary");
static_assert(std::is_final<Vertex>::value, "Must invoke on final class");
if (DfgConst* const lhsp = vtxp->lhsp()->template cast<DfgConst>()) {
if (DfgConst* const rhsp = vtxp->rhsp()->template cast<DfgConst>()) {
APPLYING(FOLD_BINARY) {
DfgConst* const resultp = makeZero(vtxp->fileline(), vtxp->width());
foldOp<Vertex>(resultp->num(), lhsp->num(), rhsp->num());
replace(vtxp, resultp);
return true;
}
}
}
return false;
}
// Rotate the expression tree rooted at 'vtxp' to the right ('vtxp->lhsp()' becomes root,
// producing a right-leaning tree). Warning: only valid for associative operations.
template <typename Vertex>
void rotateRight(Vertex* vtxp) {
static_assert(std::is_base_of<DfgVertexBinary, Vertex>::value, "Must invoke on binary");
static_assert(std::is_final<Vertex>::value, "Must invoke on final class");
DfgVertexBinary* const ap = vtxp;
DfgVertexBinary* const bp = vtxp->lhsp()->template as<Vertex>();
UASSERT_OBJ(!bp->hasMultipleSinks(), vtxp, "Can't rotate a non-tree");
ap->replaceWith(bp);
ap->lhsp(bp->rhsp());
bp->rhsp(ap);
// Concatenation dtypes need to be fixed up, other associative nodes preserve types
if VL_CONSTEXPR_CXX17 (std::is_same<DfgConcat, Vertex>::value) {
ap->dtypep(dtypeForWidth(ap->lhsp()->width() + ap->rhsp()->width()));
bp->dtypep(dtypeForWidth(bp->lhsp()->width() + bp->rhsp()->width()));
}
}
// Transformations that apply to all associative binary vertices.
// Returns true if vtxp was replaced.
template <typename Vertex>
bool associativeBinary(Vertex* vtxp) {
static_assert(std::is_base_of<DfgVertexBinary, Vertex>::value, "Must invoke on binary");
static_assert(std::is_final<Vertex>::value, "Must invoke on final class");
DfgVertex* const lhsp = vtxp->lhsp();
DfgVertex* const rhsp = vtxp->rhsp();
FileLine* const flp = vtxp->fileline();
DfgConst* const lConstp = lhsp->cast<DfgConst>();
DfgConst* const rConstp = rhsp->cast<DfgConst>();
if (lConstp && rConstp) {
APPLYING(FOLD_ASSOC_BINARY) {
DfgConst* const resultp = makeZero(flp, vtxp->width());
foldOp<Vertex>(resultp->num(), lConstp->num(), rConstp->num());
replace(vtxp, resultp);
return true;
}
}
if (lConstp) {
if (Vertex* const rVtxp = rhsp->cast<Vertex>()) {
if (DfgConst* const rlConstp = rVtxp->lhsp()->template cast<DfgConst>()) {
APPLYING(FOLD_ASSOC_BINARY_LHS_OF_RHS) {
// Fold constants
const uint32_t width = std::is_same<DfgConcat, Vertex>::value
? lConstp->width() + rlConstp->width()
: vtxp->width();
DfgConst* const constp = makeZero(flp, width);
foldOp<Vertex>(constp->num(), lConstp->num(), rlConstp->num());
// Replace vertex
if (!rVtxp->hasMultipleSinks()) {
rVtxp->lhsp(constp);
rVtxp->dtypep(vtxp->dtypep());
replace(vtxp, rVtxp);
return true;
} else {
Vertex* const resp = make<Vertex>(flp, vtxp->dtypep());
resp->lhsp(constp);
resp->rhsp(rVtxp->rhsp());
replace(vtxp, resp);
return true;
}
}
}
}
}
if (rConstp) {
if (Vertex* const lVtxp = lhsp->cast<Vertex>()) {
if (DfgConst* const lrConstp = lVtxp->rhsp()->template cast<DfgConst>()) {
APPLYING(FOLD_ASSOC_BINARY_RHS_OF_LHS) {
// Fold constants
const uint32_t width = std::is_same<DfgConcat, Vertex>::value
? lrConstp->width() + rConstp->width()
: vtxp->width();
DfgConst* const constp = makeZero(flp, width);
foldOp<Vertex>(constp->num(), lrConstp->num(), rConstp->num());
// Replace vertex
if (!lVtxp->hasMultipleSinks()) {
lVtxp->rhsp(constp);
lVtxp->dtypep(vtxp->dtypep());
replace(vtxp, lVtxp);
return true;
} else {
Vertex* const resp = make<Vertex>(flp, vtxp->dtypep());
resp->lhsp(lVtxp->lhsp());
resp->rhsp(constp);
replace(vtxp, resp);
return true;
}
}
}
}
}
// Make associative trees right leaning to reduce pattern variations, and for better CSE
while (vtxp->lhsp()->template is<Vertex>() && !vtxp->lhsp()->hasMultipleSinks()) {
APPLYING(RIGHT_LEANING_ASSOC) {
rotateRight(vtxp);
modified(vtxp);
continue;
}
break;
}
return false;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Transformations that apply to all commutative binary vertices
void commutativeBinary(DfgVertexBinary* vtxp) {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
DfgVertex* const lhsp = vtxp->source<0>();
DfgVertex* const rhsp = vtxp->source<1>();
// Ensure Const is on left-hand side to simplify other patterns
if (lhsp->is<DfgConst>()) return;
if (rhsp->is<DfgConst>()) {
APPLYING(SWAP_CONST_IN_COMMUTATIVE_BINARY) {
vtxp->lhsp(rhsp);
vtxp->rhsp(lhsp);
modified(vtxp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
// Ensure Not is on the left-hand side to simplify other patterns
if (lhsp->is<DfgNot>()) return;
if (rhsp->is<DfgNot>()) {
APPLYING(SWAP_NOT_IN_COMMUTATIVE_BINARY) {
vtxp->lhsp(rhsp);
vtxp->rhsp(lhsp);
modified(vtxp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
// If both sides are variable references, order the side in some defined way. This allows
// CSE to later merge 'a op b' with 'b op a'.
if (lhsp->is<DfgVertexVar>() && rhsp->is<DfgVertexVar>()) {
AstVar* const lVarp = lhsp->as<DfgVertexVar>()->varp();
AstVar* const rVarp = rhsp->as<DfgVertexVar>()->varp();
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (lVarp->name() > rVarp->name()) {
APPLYING(SWAP_VAR_IN_COMMUTATIVE_BINARY) {
vtxp->lhsp(rhsp);
vtxp->rhsp(lhsp);
modified(vtxp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
}
}
// Bitwise operation with one side Const, and the other side a Concat
template <typename Vertex>
bool tryPushBitwiseOpThroughConcat(Vertex* vtxp, DfgConst* constp, DfgConcat* concatp) {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(constp->dtypep() == concatp->dtypep(), vtxp, "Mismatched widths");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
FileLine* const flp = vtxp->fileline();
// If at least one of the sides of the Concat constant, or width 1 (i.e.: can be
// further simplified), then push the Vertex past the Concat
if (concatp->lhsp()->is<DfgConst>() || concatp->rhsp()->is<DfgConst>() //
2022-10-06 13:02:46 +02:00
|| concatp->lhsp()->dtypep() == m_bitDType
|| concatp->rhsp()->dtypep() == m_bitDType) {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
APPLYING(PUSH_BITWISE_OP_THROUGH_CONCAT) {
const uint32_t width = concatp->width();
AstNodeDType* const lDtypep = concatp->lhsp()->dtypep();
AstNodeDType* const rDtypep = concatp->rhsp()->dtypep();
const uint32_t lWidth = lDtypep->width();
const uint32_t rWidth = rDtypep->width();
// The new Lhs vertex
Vertex* const newLhsp = make<Vertex>(flp, lDtypep);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
DfgConst* const newLhsConstp = makeZero(constp->fileline(), lWidth);
newLhsConstp->num().opSel(constp->num(), width - 1, rWidth);
newLhsp->lhsp(newLhsConstp);
newLhsp->rhsp(concatp->lhsp());
// The new Rhs vertex
Vertex* const newRhsp = make<Vertex>(flp, rDtypep);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
DfgConst* const newRhsConstp = makeZero(constp->fileline(), rWidth);
newRhsConstp->num().opSel(constp->num(), rWidth - 1, 0);
newRhsp->lhsp(newRhsConstp);
newRhsp->rhsp(concatp->rhsp());
// The replacement Concat vertex
DfgConcat* const newConcat
= make<DfgConcat>(concatp->fileline(), concatp->dtypep());
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
newConcat->lhsp(newLhsp);
newConcat->rhsp(newRhsp);
// Replace this vertex
replace(vtxp, newConcat);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return true;
}
}
return false;
}
template <typename Vertex>
bool tryPushCompareOpThroughConcat(Vertex* vtxp, DfgConst* constp, DfgConcat* concatp) {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(constp->dtypep() == concatp->dtypep(), vtxp, "Mismatched widths");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
FileLine* const flp = vtxp->fileline();
// If at least one of the sides of the Concat is constant, then push the Vertex past the
// Concat
if (concatp->lhsp()->is<DfgConst>() || concatp->rhsp()->is<DfgConst>()) {
APPLYING(PUSH_COMPARE_OP_THROUGH_CONCAT) {
const uint32_t width = concatp->width();
const uint32_t lWidth = concatp->lhsp()->width();
const uint32_t rWidth = concatp->rhsp()->width();
// The new Lhs vertex
Vertex* const newLhsp = make<Vertex>(flp, m_bitDType);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
DfgConst* const newLhsConstp = makeZero(constp->fileline(), lWidth);
newLhsConstp->num().opSel(constp->num(), width - 1, rWidth);
newLhsp->lhsp(newLhsConstp);
newLhsp->rhsp(concatp->lhsp());
// The new Rhs vertex
Vertex* const newRhsp = make<Vertex>(flp, m_bitDType);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
DfgConst* const newRhsConstp = makeZero(constp->fileline(), rWidth);
newRhsConstp->num().opSel(constp->num(), rWidth - 1, 0);
newRhsp->lhsp(newRhsConstp);
newRhsp->rhsp(concatp->rhsp());
// The replacement Vertex
DfgVertexBinary* const replacementp
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
= std::is_same<Vertex, DfgEq>::value
? make<DfgAnd>(concatp->fileline(), m_bitDType)
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
: nullptr;
UASSERT_OBJ(replacementp, vtxp,
"Unhandled vertex type in 'tryPushCompareOpThroughConcat': "
<< vtxp->typeName());
replacementp->relinkSource<0>(newLhsp);
replacementp->relinkSource<1>(newRhsp);
// Replace this vertex
replace(vtxp, replacementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return true;
}
}
return false;
}
2022-09-30 17:19:53 +02:00
template <typename Bitwise>
bool tryPushBitwiseOpThroughReductions(Bitwise* vtxp) {
using Reduction = BitwiseToReduction<Bitwise>;
if (Reduction* const lRedp = vtxp->lhsp()->template cast<Reduction>()) {
if (Reduction* const rRedp = vtxp->rhsp()->template cast<Reduction>()) {
DfgVertex* const lSrcp = lRedp->srcp();
DfgVertex* const rSrcp = rRedp->srcp();
if (lSrcp->dtypep() == rSrcp->dtypep() && lSrcp->width() <= 64
&& !lSrcp->hasMultipleSinks() && !rSrcp->hasMultipleSinks()) {
2022-09-30 17:19:53 +02:00
APPLYING(PUSH_BITWISE_THROUGH_REDUCTION) {
FileLine* const flp = vtxp->fileline();
Bitwise* const bwp = make<Bitwise>(flp, lSrcp->dtypep());
2022-09-30 17:19:53 +02:00
bwp->lhsp(lSrcp);
bwp->rhsp(rSrcp);
Reduction* const redp = make<Reduction>(flp, m_bitDType);
2022-09-30 17:19:53 +02:00
redp->srcp(bwp);
replace(vtxp, redp);
2022-09-30 17:19:53 +02:00
return true;
}
}
}
}
return false;
}
template <typename Reduction>
void optimizeReduction(Reduction* vtxp) {
using Bitwise = ReductionToBitwise<Reduction>;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (foldUnary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
DfgVertex* const srcp = vtxp->srcp();
2022-09-30 17:19:53 +02:00
FileLine* const flp = vtxp->fileline();
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
2022-09-30 17:19:53 +02:00
// Reduction of 1-bit value
2022-10-06 13:02:46 +02:00
if (srcp->dtypep() == m_bitDType) {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
APPLYING(REMOVE_WIDTH_ONE_REDUCTION) {
replace(vtxp, srcp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
2022-09-30 17:19:53 +02:00
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (DfgCond* const condp = srcp->cast<DfgCond>()) {
if (condp->thenp()->is<DfgConst>() || condp->elsep()->is<DfgConst>()) {
APPLYING(PUSH_REDUCTION_THROUGH_COND_WITH_CONST_BRANCH) {
// The new 'then' vertex
Reduction* const newThenp = make<Reduction>(flp, m_bitDType);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
newThenp->srcp(condp->thenp());
// The new 'else' vertex
Reduction* const newElsep = make<Reduction>(flp, m_bitDType);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
newElsep->srcp(condp->elsep());
// The replacement Cond vertex
DfgCond* const newCondp = make<DfgCond>(condp->fileline(), m_bitDType);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
newCondp->condp(condp->condp());
newCondp->thenp(newThenp);
newCondp->elsep(newElsep);
// Replace this vertex
replace(vtxp, newCondp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
}
2022-09-30 17:19:53 +02:00
if (DfgConcat* const concatp = srcp->cast<DfgConcat>()) {
if (concatp->lhsp()->is<DfgConst>() || concatp->rhsp()->is<DfgConst>()) {
APPLYING(PUSH_REDUCTION_THROUGH_CONCAT) {
// Reduce the parts of the concatenation
Reduction* const lRedp = make<Reduction>(concatp->fileline(), m_bitDType);
lRedp->srcp(concatp->lhsp());
Reduction* const rRedp = make<Reduction>(concatp->fileline(), m_bitDType);
rRedp->srcp(concatp->rhsp());
// Bitwise reduce the results
Bitwise* const replacementp = make<Bitwise>(flp, m_bitDType);
replacementp->lhsp(lRedp);
replacementp->rhsp(rRedp);
replace(vtxp, replacementp);
return;
}
2022-09-30 17:19:53 +02:00
}
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
void optimizeShiftRHS(DfgVertexBinary* vtxp) {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (const DfgConcat* const concatp = vtxp->rhsp()->cast<DfgConcat>()) {
if (concatp->lhsp()->isZero()) { // Drop redundant zero extension
APPLYING(REMOVE_REDUNDANT_ZEXT_ON_RHS_OF_SHIFT) {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
vtxp->rhsp(concatp->rhsp());
modified(vtxp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
}
}
// VISIT methods
void visit(DfgVertex*) override {}
//=========================================================================
// DfgVertexUnary
//=========================================================================
void visit(DfgCLog2* vtxp) override {
if (foldUnary(vtxp)) return;
}
void visit(DfgCountOnes* vtxp) override {
if (foldUnary(vtxp)) return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
void visit(DfgExtend* vtxp) override {
UASSERT_OBJ(vtxp->width() > vtxp->srcp()->width(), vtxp, "Invalid zero extend");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (foldUnary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Convert all Extend into Concat with zeros. This simplifies other patterns as they only
2022-09-30 17:19:53 +02:00
// need to handle Concat, which is more generic, and don't need special cases for
// Extend.
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
APPLYING(REPLACE_EXTEND) {
FileLine* const flp = vtxp->fileline();
DfgConcat* const replacementp = make<DfgConcat>(flp, vtxp->dtypep());
replacementp->lhsp(makeZero(flp, vtxp->width() - vtxp->srcp()->width()));
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
replacementp->rhsp(vtxp->srcp());
replace(vtxp, replacementp);
return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
void visit(DfgExtendS* vtxp) override {
UASSERT_OBJ(vtxp->width() > vtxp->srcp()->width(), vtxp, "Invalid sign extend");
if (foldUnary(vtxp)) return;
}
void visit(DfgLogNot* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == m_bitDType, vtxp, "Incorrect width");
if (foldUnary(vtxp)) return;
}
void visit(DfgNegate* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->srcp()->dtypep(), vtxp, "Mismatched width");
if (foldUnary(vtxp)) return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
void visit(DfgNot* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->srcp()->dtypep(), vtxp, "Mismatched width");
if (foldUnary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
// Not of Cond
if (DfgCond* const condp = vtxp->srcp()->cast<DfgCond>()) {
// If at least one of the branches are a constant, push the Not past the Cond
if (condp->thenp()->is<DfgConst>() || condp->elsep()->is<DfgConst>()) {
APPLYING(PUSH_NOT_THROUGH_COND) {
// The new 'then' vertex
DfgNot* const newThenp = make<DfgNot>(vtxp->fileline(), vtxp->dtypep());
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
newThenp->srcp(condp->thenp());
// The new 'else' vertex
DfgNot* const newElsep = make<DfgNot>(vtxp->fileline(), vtxp->dtypep());
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
newElsep->srcp(condp->elsep());
// The replacement Cond vertex
DfgCond* const newCondp = make<DfgCond>(condp->fileline(), vtxp->dtypep());
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
newCondp->condp(condp->condp());
newCondp->thenp(newThenp);
newCondp->elsep(newElsep);
// Replace this vertex
replace(vtxp, newCondp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
}
// Not of Not
if (DfgNot* const notp = vtxp->srcp()->cast<DfgNot>()) {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == notp->srcp()->dtypep(), vtxp, "Width mismatch");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
APPLYING(REMOVE_NOT_NOT) {
replace(vtxp, notp->srcp());
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (!vtxp->srcp()->hasMultipleSinks()) {
// Not of Eq
if (DfgEq* const eqp = vtxp->srcp()->cast<DfgEq>()) {
APPLYING(REPLACE_NOT_EQ) {
DfgNeq* const replacementp = make<DfgNeq>(eqp->fileline(), vtxp->dtypep());
replacementp->lhsp(eqp->lhsp());
replacementp->rhsp(eqp->rhsp());
replace(vtxp, replacementp);
return;
}
2022-09-30 17:19:53 +02:00
}
// Not of Neq
if (DfgNeq* const neqp = vtxp->srcp()->cast<DfgNeq>()) {
APPLYING(REPLACE_NOT_NEQ) {
DfgEq* const replacementp = make<DfgEq>(neqp->fileline(), vtxp->dtypep());
replacementp->lhsp(neqp->lhsp());
replacementp->rhsp(neqp->rhsp());
replace(vtxp, replacementp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
void visit(DfgOneHot* vtxp) override {
if (foldUnary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
void visit(DfgOneHot0* vtxp) override {
if (foldUnary(vtxp)) return;
}
void visit(DfgRedOr* vtxp) override { optimizeReduction(vtxp); }
void visit(DfgRedAnd* vtxp) override { optimizeReduction(vtxp); }
void visit(DfgRedXor* vtxp) override { optimizeReduction(vtxp); }
void visit(DfgSel* vtxp) override {
DfgVertex* const fromp = vtxp->fromp();
FileLine* const flp = vtxp->fileline();
const uint32_t lsb = vtxp->lsb();
const uint32_t width = vtxp->width();
const uint32_t msb = lsb + width - 1;
if (DfgConst* const constp = fromp->cast<DfgConst>()) {
APPLYING(FOLD_SEL) {
DfgConst* const replacementp = makeZero(flp, width);
replacementp->num().opSel(constp->num(), msb, lsb);
replace(vtxp, replacementp);
return;
}
}
// Full width select, replace with the source.
if (fromp->width() == width) {
UASSERT_OBJ(lsb == 0, fromp, "OOPS");
APPLYING(REMOVE_FULL_WIDTH_SEL) {
replace(vtxp, fromp);
return;
}
}
// Sel from Concat
if (DfgConcat* const concatp = fromp->cast<DfgConcat>()) {
DfgVertex* const lhsp = concatp->lhsp();
DfgVertex* const rhsp = concatp->rhsp();
if (msb < rhsp->width()) {
// If the select is entirely from rhs, then replace with sel from rhs
APPLYING(REMOVE_SEL_FROM_RHS_OF_CONCAT) { //
vtxp->fromp(rhsp);
modified(vtxp);
}
} else if (lsb >= rhsp->width()) {
// If the select is entirely from the lhs, then replace with sel from lhs
APPLYING(REMOVE_SEL_FROM_LHS_OF_CONCAT) {
vtxp->fromp(lhsp);
vtxp->lsb(lsb - rhsp->width());
modified(vtxp);
}
} else if (lsb == 0 || msb == concatp->width() - 1 //
|| lhsp->is<DfgConst>() || rhsp->is<DfgConst>() //
|| !concatp->hasMultipleSinks()) {
// If the select straddles both sides, but at least one of the sides is wholly
// selected, or at least one of the sides is a Const, or this concat has no other
// use, then push the Sel past the Concat
APPLYING(PUSH_SEL_THROUGH_CONCAT) {
const uint32_t rSelWidth = rhsp->width() - lsb;
const uint32_t lSelWidth = width - rSelWidth;
// The new Lhs vertex
DfgSel* const newLhsp = make<DfgSel>(flp, dtypeForWidth(lSelWidth));
newLhsp->fromp(lhsp);
newLhsp->lsb(0);
// The new Rhs vertex
DfgSel* const newRhsp = make<DfgSel>(flp, dtypeForWidth(rSelWidth));
newRhsp->fromp(rhsp);
newRhsp->lsb(lsb);
// The replacement Concat vertex
DfgConcat* const newConcat
= make<DfgConcat>(concatp->fileline(), vtxp->dtypep());
newConcat->lhsp(newLhsp);
newConcat->rhsp(newRhsp);
// Replace this vertex
replace(vtxp, newConcat);
return;
}
}
}
if (DfgReplicate* const repp = fromp->cast<DfgReplicate>()) {
// If the Sel is wholly into the source of the Replicate, push the Sel through the
// Replicate and apply it directly to the source of the Replicate.
const uint32_t srcWidth = repp->srcp()->width();
if (width <= srcWidth) {
const uint32_t newLsb = lsb % srcWidth;
if (newLsb + width <= srcWidth) {
APPLYING(PUSH_SEL_THROUGH_REPLICATE) {
vtxp->fromp(repp->srcp());
vtxp->lsb(newLsb);
modified(vtxp);
}
}
}
}
// Sel from Not
if (DfgNot* const notp = fromp->cast<DfgNot>()) {
// Replace "Sel from Not" with "Not of Sel"
if (!notp->hasMultipleSinks()) {
UASSERT_OBJ(notp->srcp()->dtypep() == notp->dtypep(), notp, "Mismatched widths");
APPLYING(PUSH_SEL_THROUGH_NOT) {
// Make Sel select from source of Not
vtxp->fromp(notp->srcp());
// Add Not after Sel
DfgNot* const replacementp = make<DfgNot>(notp->fileline(), vtxp->dtypep());
vtxp->replaceWith(replacementp);
replacementp->srcp(vtxp);
modified(vtxp);
}
}
}
// Sel from Sel
if (DfgSel* const selp = fromp->cast<DfgSel>()) {
APPLYING(REPLACE_SEL_FROM_SEL) {
// Make this Sel select from the source of the source Sel
vtxp->fromp(selp->fromp());
// Adjust LSB
vtxp->lsb(lsb + selp->lsb());
modified(vtxp);
}
}
// Sel from Cond
if (DfgCond* const condp = fromp->cast<DfgCond>()) {
// If at least one of the branches are a constant, push the select past the cond
if (condp->thenp()->is<DfgConst>() || condp->elsep()->is<DfgConst>()) {
APPLYING(PUSH_SEL_THROUGH_COND) {
// The new 'then' vertex
DfgSel* const newThenp = make<DfgSel>(flp, vtxp->dtypep());
newThenp->fromp(condp->thenp());
newThenp->lsb(lsb);
// The new 'else' vertex
DfgSel* const newElsep = make<DfgSel>(flp, vtxp->dtypep());
newElsep->fromp(condp->elsep());
newElsep->lsb(lsb);
// The replacement Cond vertex
DfgCond* const newCondp = make<DfgCond>(condp->fileline(), vtxp->dtypep());
newCondp->condp(condp->condp());
newCondp->thenp(newThenp);
newCondp->elsep(newElsep);
// Replace this vertex
replace(vtxp, newCondp);
return;
}
}
}
// Sel from ShiftL
if (DfgShiftL* const shiftLp = fromp->cast<DfgShiftL>()) {
// If selecting bottom bits of left shift, push the Sel before the shift
if (lsb == 0) {
UASSERT_OBJ(shiftLp->lhsp()->width() >= width, vtxp, "input of shift narrow");
APPLYING(PUSH_SEL_THROUGH_SHIFTL) {
vtxp->fromp(shiftLp->lhsp());
DfgShiftL* const newShiftLp
= make<DfgShiftL>(shiftLp->fileline(), vtxp->dtypep());
vtxp->replaceWith(newShiftLp);
newShiftLp->lhsp(vtxp);
newShiftLp->rhsp(shiftLp->rhsp());
modified(vtxp);
}
}
}
}
//=========================================================================
// DfgVertexBinary - bitwise
//=========================================================================
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
void visit(DfgAnd* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->lhsp()->dtypep(), vtxp, "Mismatched LHS width");
UASSERT_OBJ(vtxp->dtypep() == vtxp->rhsp()->dtypep(), vtxp, "Mismatched RHS width");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (associativeBinary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
commutativeBinary(vtxp);
DfgVertex* const lhsp = vtxp->lhsp();
DfgVertex* const rhsp = vtxp->rhsp();
FileLine* const flp = vtxp->fileline();
// Bubble pushing
if (!vtxp->hasMultipleSinks() && !lhsp->hasMultipleSinks() && !rhsp->hasMultipleSinks()) {
if (DfgNot* const lhsNotp = lhsp->cast<DfgNot>()) {
if (DfgNot* const rhsNotp = rhsp->cast<DfgNot>()) {
APPLYING(REPLACE_AND_OF_NOT_AND_NOT) {
DfgOr* const orp = make<DfgOr>(flp, vtxp->dtypep());
orp->lhsp(lhsNotp->srcp());
orp->rhsp(rhsNotp->srcp());
DfgNot* const notp = make<DfgNot>(flp, vtxp->dtypep());
notp->srcp(orp);
replace(vtxp, notp);
return;
}
2022-09-30 17:19:53 +02:00
}
if (DfgNeq* const rhsNeqp = rhsp->cast<DfgNeq>()) {
APPLYING(REPLACE_AND_OF_NOT_AND_NEQ) {
DfgOr* const orp = make<DfgOr>(flp, vtxp->dtypep());
orp->lhsp(lhsNotp->srcp());
DfgEq* const newRhsp = make<DfgEq>(rhsp->fileline(), rhsp->dtypep());
newRhsp->lhsp(rhsNeqp->lhsp());
newRhsp->rhsp(rhsNeqp->rhsp());
orp->rhsp(newRhsp);
DfgNot* const notp = make<DfgNot>(flp, vtxp->dtypep());
notp->srcp(orp);
replace(vtxp, notp);
return;
}
2022-09-30 17:19:53 +02:00
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
if (DfgConst* const lhsConstp = lhsp->cast<DfgConst>()) {
if (lhsConstp->isZero()) {
APPLYING(REPLACE_AND_WITH_ZERO) {
replace(vtxp, lhsConstp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (lhsConstp->isOnes()) {
APPLYING(REMOVE_AND_WITH_ONES) {
replace(vtxp, rhsp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (DfgConcat* const rhsConcatp = rhsp->cast<DfgConcat>()) {
if (tryPushBitwiseOpThroughConcat(vtxp, lhsConstp, rhsConcatp)) return;
}
}
2022-09-30 17:19:53 +02:00
if (tryPushBitwiseOpThroughReductions(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (DfgNot* const lhsNotp = lhsp->cast<DfgNot>()) {
// ~A & A is all zeroes
if (lhsNotp->srcp() == rhsp) {
APPLYING(REPLACE_CONTRADICTORY_AND) {
DfgConst* const replacementp = makeZero(flp, vtxp->width());
replace(vtxp, replacementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
}
}
void visit(DfgOr* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->lhsp()->dtypep(), vtxp, "Mismatched LHS width");
UASSERT_OBJ(vtxp->dtypep() == vtxp->rhsp()->dtypep(), vtxp, "Mismatched RHS width");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (associativeBinary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
commutativeBinary(vtxp);
DfgVertex* const lhsp = vtxp->lhsp();
DfgVertex* const rhsp = vtxp->rhsp();
FileLine* const flp = vtxp->fileline();
// Bubble pushing
if (!vtxp->hasMultipleSinks() && !lhsp->hasMultipleSinks() && !rhsp->hasMultipleSinks()) {
if (DfgNot* const lhsNotp = lhsp->cast<DfgNot>()) {
if (DfgNot* const rhsNotp = rhsp->cast<DfgNot>()) {
APPLYING(REPLACE_OR_OF_NOT_AND_NOT) {
DfgAnd* const andp = make<DfgAnd>(flp, vtxp->dtypep());
andp->lhsp(lhsNotp->srcp());
andp->rhsp(rhsNotp->srcp());
DfgNot* const notp = make<DfgNot>(flp, vtxp->dtypep());
notp->srcp(andp);
replace(vtxp, notp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
if (DfgNeq* const rhsNeqp = rhsp->cast<DfgNeq>()) {
APPLYING(REPLACE_OR_OF_NOT_AND_NEQ) {
DfgAnd* const andp = make<DfgAnd>(flp, vtxp->dtypep());
andp->lhsp(lhsNotp->srcp());
DfgEq* const newRhsp = make<DfgEq>(rhsp->fileline(), rhsp->dtypep());
newRhsp->lhsp(rhsNeqp->lhsp());
newRhsp->rhsp(rhsNeqp->rhsp());
andp->rhsp(newRhsp);
DfgNot* const notp = make<DfgNot>(flp, vtxp->dtypep());
notp->srcp(andp);
replace(vtxp, notp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
}
if (DfgConcat* const lhsConcatp = lhsp->cast<DfgConcat>()) {
if (DfgConcat* const rhsConcatp = rhsp->cast<DfgConcat>()) {
2022-10-06 13:02:46 +02:00
if (lhsConcatp->lhsp()->dtypep() == rhsConcatp->lhsp()->dtypep()) {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (lhsConcatp->lhsp()->isZero() && rhsConcatp->rhsp()->isZero()) {
APPLYING(REPLACE_OR_OF_CONCAT_ZERO_LHS_AND_CONCAT_RHS_ZERO) {
DfgConcat* const replacementp = make<DfgConcat>(flp, vtxp->dtypep());
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
replacementp->lhsp(rhsConcatp->lhsp());
replacementp->rhsp(lhsConcatp->rhsp());
replace(vtxp, replacementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (lhsConcatp->rhsp()->isZero() && rhsConcatp->lhsp()->isZero()) {
APPLYING(REPLACE_OR_OF_CONCAT_LHS_ZERO_AND_CONCAT_ZERO_RHS) {
DfgConcat* const replacementp = make<DfgConcat>(flp, vtxp->dtypep());
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
replacementp->lhsp(lhsConcatp->lhsp());
replacementp->rhsp(rhsConcatp->rhsp());
replace(vtxp, replacementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
}
}
}
if (DfgConst* const lhsConstp = lhsp->cast<DfgConst>()) {
if (lhsConstp->isZero()) {
APPLYING(REMOVE_OR_WITH_ZERO) {
replace(vtxp, rhsp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (lhsConstp->isOnes()) {
APPLYING(REPLACE_OR_WITH_ONES) {
replace(vtxp, lhsp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (DfgConcat* const rhsConcatp = rhsp->cast<DfgConcat>()) {
if (tryPushBitwiseOpThroughConcat(vtxp, lhsConstp, rhsConcatp)) return;
}
}
2022-09-30 17:19:53 +02:00
if (tryPushBitwiseOpThroughReductions(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (DfgNot* const lhsNotp = lhsp->cast<DfgNot>()) {
// ~A | A is all ones
if (lhsNotp->srcp() == rhsp) {
APPLYING(REPLACE_TAUTOLOGICAL_OR) {
DfgConst* const replacementp = makeZero(flp, vtxp->width());
replacementp->num().setAllBits1();
replace(vtxp, replacementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
}
}
void visit(DfgXor* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->lhsp()->dtypep(), vtxp, "Mismatched LHS width");
UASSERT_OBJ(vtxp->dtypep() == vtxp->rhsp()->dtypep(), vtxp, "Mismatched RHS width");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (associativeBinary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
commutativeBinary(vtxp);
DfgVertex* const lhsp = vtxp->lhsp();
DfgVertex* const rhsp = vtxp->rhsp();
2022-09-30 17:19:53 +02:00
FileLine* const flp = vtxp->fileline();
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
2022-09-30 17:19:53 +02:00
if (DfgConst* const lConstp = lhsp->cast<DfgConst>()) {
if (lConstp->isZero()) {
APPLYING(REMOVE_XOR_WITH_ZERO) {
replace(vtxp, rhsp);
2022-09-30 17:19:53 +02:00
return;
}
}
if (lConstp->isOnes()) {
APPLYING(REPLACE_XOR_WITH_ONES) {
DfgNot* const replacementp = make<DfgNot>(flp, vtxp->dtypep());
2022-09-30 17:19:53 +02:00
replacementp->srcp(rhsp);
replace(vtxp, replacementp);
2022-09-30 17:19:53 +02:00
return;
}
}
if (DfgConcat* const rConcatp = rhsp->cast<DfgConcat>()) {
tryPushBitwiseOpThroughConcat(vtxp, lConstp, rConcatp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
2022-09-30 17:19:53 +02:00
if (tryPushBitwiseOpThroughReductions(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
//=========================================================================
// DfgVertexBinary - other
//=========================================================================
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
void visit(DfgAdd* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->lhsp()->dtypep(), vtxp, "Mismatched LHS width");
UASSERT_OBJ(vtxp->dtypep() == vtxp->rhsp()->dtypep(), vtxp, "Mismatched RHS width");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (associativeBinary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
commutativeBinary(vtxp);
}
void visit(DfgArraySel* vtxp) override {
if (DfgConst* const idxp = vtxp->bitp()->cast<DfgConst>()) {
if (DfgVarArray* const varp = vtxp->fromp()->cast<DfgVarArray>()) {
const size_t idx = idxp->toSizeT();
if (DfgVertex* const driverp = varp->driverAt(idx)) {
APPLYING(INLINE_ARRAYSEL) {
replace(vtxp, driverp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
}
}
void visit(DfgConcat* vtxp) override {
UASSERT_OBJ(vtxp->width() == vtxp->lhsp()->width() + vtxp->rhsp()->width(), vtxp,
"Inconsistent Concat");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
2022-10-06 13:02:46 +02:00
if (associativeBinary(vtxp)) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
DfgVertex* const lhsp = vtxp->lhsp();
DfgVertex* const rhsp = vtxp->rhsp();
FileLine* const flp = vtxp->fileline();
if (lhsp->isZero()) {
DfgConst* const lConstp = lhsp->as<DfgConst>();
if (DfgSel* const rSelp = rhsp->cast<DfgSel>()) {
if (vtxp->dtypep() == rSelp->fromp()->dtypep()
&& rSelp->lsb() == lConstp->width()) {
APPLYING(REPLACE_CONCAT_ZERO_AND_SEL_TOP_WITH_SHIFTR) {
DfgShiftR* const replacementp = make<DfgShiftR>(flp, vtxp->dtypep());
replacementp->lhsp(rSelp->fromp());
replacementp->rhsp(makeI32(flp, lConstp->width()));
replace(vtxp, replacementp);
return;
}
}
}
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (rhsp->isZero()) {
DfgConst* const rConstp = rhsp->as<DfgConst>();
if (DfgSel* const lSelp = lhsp->cast<DfgSel>()) {
if (vtxp->dtypep() == lSelp->fromp()->dtypep() && lSelp->lsb() == 0) {
APPLYING(REPLACE_CONCAT_SEL_BOTTOM_AND_ZERO_WITH_SHIFTL) {
DfgShiftL* const replacementp = make<DfgShiftL>(flp, vtxp->dtypep());
replacementp->lhsp(lSelp->fromp());
replacementp->rhsp(makeI32(flp, rConstp->width()));
replace(vtxp, replacementp);
return;
}
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
if (DfgNot* const lNot = lhsp->cast<DfgNot>()) {
if (DfgNot* const rNot = rhsp->cast<DfgNot>()) {
if (!lNot->hasMultipleSinks() && !rNot->hasMultipleSinks()) {
APPLYING(PUSH_CONCAT_THROUGH_NOTS) {
vtxp->lhsp(lNot->srcp());
vtxp->rhsp(rNot->srcp());
DfgNot* const replacementp = make<DfgNot>(flp, vtxp->dtypep());
vtxp->replaceWith(replacementp);
replacementp->srcp(vtxp);
modified(vtxp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
}
{
const auto joinSels = [this](DfgSel* lSelp, DfgSel* rSelp, FileLine* flp) -> DfgSel* {
if (lSelp->fromp()->equals(*rSelp->fromp())) {
if (lSelp->lsb() == rSelp->lsb() + rSelp->width()) {
// Two consecutive Sels, make a single Sel.
const uint32_t width = lSelp->width() + rSelp->width();
DfgSel* const joinedSelp = make<DfgSel>(flp, dtypeForWidth(width));
joinedSelp->fromp(rSelp->fromp());
joinedSelp->lsb(rSelp->lsb());
return joinedSelp;
}
}
return nullptr;
};
DfgSel* const lSelp = lhsp->cast<DfgSel>();
DfgSel* const rSelp = rhsp->cast<DfgSel>();
if (lSelp && rSelp) {
if (DfgSel* const jointSelp = joinSels(lSelp, rSelp, flp)) {
APPLYING(REMOVE_CONCAT_OF_ADJOINING_SELS) {
replace(vtxp, jointSelp);
return;
}
}
}
if (lSelp) {
if (DfgConcat* const rConcatp = rhsp->cast<DfgConcat>()) {
if (DfgSel* const rlSelp = rConcatp->lhsp()->cast<DfgSel>()) {
if (DfgSel* const jointSelp = joinSels(lSelp, rlSelp, flp)) {
APPLYING(REPLACE_NESTED_CONCAT_OF_ADJOINING_SELS_ON_LHS) {
DfgConcat* const replacementp
= make<DfgConcat>(flp, vtxp->dtypep());
replacementp->lhsp(jointSelp);
replacementp->rhsp(rConcatp->rhsp());
replace(vtxp, replacementp);
return;
}
}
}
}
}
if (rSelp) {
if (DfgConcat* const lConcatp = lhsp->cast<DfgConcat>()) {
if (DfgSel* const lrlSelp = lConcatp->rhsp()->cast<DfgSel>()) {
if (DfgSel* const jointSelp = joinSels(lrlSelp, rSelp, flp)) {
APPLYING(REPLACE_NESTED_CONCAT_OF_ADJOINING_SELS_ON_RHS) {
DfgConcat* const replacementp
= make<DfgConcat>(flp, vtxp->dtypep());
replacementp->lhsp(lConcatp->lhsp());
replacementp->rhsp(jointSelp);
replace(vtxp, replacementp);
return;
}
}
}
}
}
}
}
void visit(DfgDiv* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgDivS* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgEq* vtxp) override {
if (foldBinary(vtxp)) return;
commutativeBinary(vtxp);
DfgVertex* const lhsp = vtxp->lhsp();
DfgVertex* const rhsp = vtxp->rhsp();
if (DfgConst* const lhsConstp = lhsp->cast<DfgConst>()) {
if (DfgConcat* const rhsConcatp = rhsp->cast<DfgConcat>()) {
if (tryPushCompareOpThroughConcat(vtxp, lhsConstp, rhsConcatp)) return;
}
}
}
void visit(DfgGt* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgGtS* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgGte* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgGteS* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgLogAnd* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgLogEq* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgLogIf* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgLogOr* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgLt* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgLtS* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgLte* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgLteS* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgModDiv* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgModDivS* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgMul* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->lhsp()->dtypep(), vtxp, "Mismatched LHS width");
UASSERT_OBJ(vtxp->dtypep() == vtxp->rhsp()->dtypep(), vtxp, "Mismatched RHS width");
if (associativeBinary(vtxp)) return;
commutativeBinary(vtxp);
}
void visit(DfgMulS* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->lhsp()->dtypep(), vtxp, "Mismatched LHS width");
UASSERT_OBJ(vtxp->dtypep() == vtxp->rhsp()->dtypep(), vtxp, "Mismatched RHS width");
if (associativeBinary(vtxp)) return;
commutativeBinary(vtxp);
}
void visit(DfgNeq* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgPow* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgPowSS* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgPowSU* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgPowUS* vtxp) override {
if (foldBinary(vtxp)) return;
}
void visit(DfgReplicate* vtxp) override {
2022-10-06 13:02:46 +02:00
if (vtxp->dtypep() == vtxp->srcp()->dtypep()) {
APPLYING(REMOVE_REPLICATE_ONCE) {
replace(vtxp, vtxp->srcp());
return;
}
}
if (foldBinary(vtxp)) return;
}
void visit(DfgShiftL* vtxp) override {
if (foldBinary(vtxp)) return;
optimizeShiftRHS(vtxp);
}
void visit(DfgShiftR* vtxp) override {
if (foldBinary(vtxp)) return;
optimizeShiftRHS(vtxp);
}
void visit(DfgShiftRS* vtxp) override {
if (foldBinary(vtxp)) return;
optimizeShiftRHS(vtxp);
}
void visit(DfgSub* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->lhsp()->dtypep(), vtxp, "Mismatched LHS width");
UASSERT_OBJ(vtxp->dtypep() == vtxp->rhsp()->dtypep(), vtxp, "Mismatched RHS width");
if (foldBinary(vtxp)) return;
DfgVertex* const lhsp = vtxp->lhsp();
DfgVertex* const rhsp = vtxp->rhsp();
if (DfgConst* const rConstp = rhsp->cast<DfgConst>()) {
if (rConstp->isZero()) {
APPLYING(REMOVE_SUB_ZERO) {
replace(vtxp, lhsp);
return;
}
}
if (vtxp->dtypep() == m_bitDType && rConstp->hasValue(1)) {
APPLYING(REPLACE_SUB_WITH_NOT) {
DfgNot* const replacementp = make<DfgNot>(vtxp->fileline(), m_bitDType);
replacementp->srcp(lhsp);
replace(vtxp, replacementp);
return;
}
}
}
}
//=========================================================================
// DfgVertexTernary
//=========================================================================
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
void visit(DfgCond* vtxp) override {
2022-10-06 13:02:46 +02:00
UASSERT_OBJ(vtxp->dtypep() == vtxp->thenp()->dtypep(), vtxp, "Width mismatch");
UASSERT_OBJ(vtxp->dtypep() == vtxp->elsep()->dtypep(), vtxp, "Width mismatch");
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
DfgVertex* const condp = vtxp->condp();
DfgVertex* const thenp = vtxp->thenp();
DfgVertex* const elsep = vtxp->elsep();
FileLine* const flp = vtxp->fileline();
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
2022-10-06 13:02:46 +02:00
if (condp->dtypep() != m_bitDType) return;
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
if (condp->isOnes()) {
APPLYING(REMOVE_COND_WITH_TRUE_CONDITION) {
replace(vtxp, thenp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (condp->isZero()) {
APPLYING(REMOVE_COND_WITH_FALSE_CONDITION) {
replace(vtxp, elsep);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (DfgNot* const condNotp = condp->cast<DfgNot>()) {
if (!condp->hasMultipleSinks() || condNotp->hasMultipleSinks()) {
APPLYING(SWAP_COND_WITH_NOT_CONDITION) {
vtxp->condp(condNotp->srcp());
vtxp->thenp(elsep);
vtxp->elsep(thenp);
modified(vtxp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
if (DfgNeq* const condNeqp = condp->cast<DfgNeq>()) {
if (!condp->hasMultipleSinks()) {
APPLYING(SWAP_COND_WITH_NEQ_CONDITION) {
DfgEq* const newCondp = make<DfgEq>(condp->fileline(), condp->dtypep());
newCondp->lhsp(condNeqp->lhsp());
newCondp->rhsp(condNeqp->rhsp());
vtxp->condp(newCondp);
vtxp->thenp(elsep);
vtxp->elsep(thenp);
modified(vtxp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
if (DfgNot* const thenNotp = thenp->cast<DfgNot>()) {
if (DfgNot* const elseNotp = elsep->cast<DfgNot>()) {
if (!thenNotp->srcp()->is<DfgConst>() && !elseNotp->srcp()->is<DfgConst>()
&& !thenNotp->hasMultipleSinks() && !elseNotp->hasMultipleSinks()) {
APPLYING(PULL_NOTS_THROUGH_COND) {
DfgNot* const replacementp
= make<DfgNot>(thenp->fileline(), vtxp->dtypep());
vtxp->thenp(thenNotp->srcp());
vtxp->elsep(elseNotp->srcp());
vtxp->replaceWith(replacementp);
replacementp->srcp(vtxp);
modified(vtxp);
return;
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
}
}
}
2022-09-30 17:19:53 +02:00
if (vtxp->width() > 1) {
// 'cond ? a + 1 : a' -> 'a + cond'
if (DfgAdd* const thenAddp = thenp->cast<DfgAdd>()) {
if (DfgConst* const constp = thenAddp->lhsp()->cast<DfgConst>()) {
if (constp->hasValue(1)) {
2022-09-30 17:19:53 +02:00
if (thenAddp->rhsp() == elsep) {
APPLYING(REPLACE_COND_INC) {
DfgConcat* const extp = make<DfgConcat>(flp, vtxp->dtypep());
2022-09-30 17:19:53 +02:00
extp->rhsp(condp);
extp->lhsp(makeZero(flp, vtxp->width() - 1));
FileLine* const thenFlp = thenAddp->fileline();
DfgAdd* const addp = make<DfgAdd>(thenFlp, vtxp->dtypep());
2022-09-30 17:19:53 +02:00
addp->lhsp(thenAddp->rhsp());
addp->rhsp(extp);
replace(vtxp, addp);
2022-09-30 17:19:53 +02:00
return;
}
}
}
}
}
// 'cond ? a - 1 : a' -> 'a - cond'
if (DfgSub* const thenSubp = thenp->cast<DfgSub>()) {
if (DfgConst* const constp = thenSubp->rhsp()->cast<DfgConst>()) {
if (constp->hasValue(1)) {
2022-09-30 17:19:53 +02:00
if (thenSubp->lhsp() == elsep) {
APPLYING(REPLACE_COND_DEC) {
DfgConcat* const extp = make<DfgConcat>(flp, vtxp->dtypep());
2022-09-30 17:19:53 +02:00
extp->rhsp(condp);
extp->lhsp(makeZero(flp, vtxp->width() - 1));
FileLine* const thenFlp = thenSubp->fileline();
DfgSub* const subp = make<DfgSub>(thenFlp, vtxp->dtypep());
2022-09-30 17:19:53 +02:00
subp->lhsp(thenSubp->lhsp());
subp->rhsp(extp);
replace(vtxp, subp);
2022-09-30 17:19:53 +02:00
return;
}
}
}
}
}
}
2022-10-06 13:02:46 +02:00
if (vtxp->dtypep() == m_bitDType) {
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
AstNodeDType* const dtypep = vtxp->dtypep();
if (thenp->isZero()) { // a ? 0 : b becomes ~a & b
APPLYING(REPLACE_COND_WITH_THEN_BRANCH_ZERO) {
DfgAnd* const repalcementp = make<DfgAnd>(flp, dtypep);
DfgNot* const notp = make<DfgNot>(flp, dtypep);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
notp->srcp(condp);
repalcementp->lhsp(notp);
repalcementp->rhsp(elsep);
replace(vtxp, repalcementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (thenp->isOnes()) { // a ? 1 : b becomes a | b
APPLYING(REPLACE_COND_WITH_THEN_BRANCH_ONES) {
DfgOr* const repalcementp = make<DfgOr>(flp, dtypep);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
repalcementp->lhsp(condp);
repalcementp->rhsp(elsep);
replace(vtxp, repalcementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (elsep->isZero()) { // a ? b : 0 becomes a & b
APPLYING(REPLACE_COND_WITH_ELSE_BRANCH_ZERO) {
DfgAnd* const repalcementp = make<DfgAnd>(flp, dtypep);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
repalcementp->lhsp(condp);
repalcementp->rhsp(thenp);
replace(vtxp, repalcementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
if (elsep->isOnes()) { // a ? b : 1 becomes ~a | b
APPLYING(REPLACE_COND_WITH_ELSE_BRANCH_ONES) {
DfgOr* const repalcementp = make<DfgOr>(flp, dtypep);
DfgNot* const notp = make<DfgNot>(flp, dtypep);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
notp->srcp(condp);
repalcementp->lhsp(notp);
repalcementp->rhsp(thenp);
replace(vtxp, repalcementp);
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
return;
}
}
}
}
#undef APPLYING
V3DfgPeephole(DfgGraph& dfg, V3DfgPeepholeContext& ctx)
: m_dfg{dfg}
2022-10-06 13:02:46 +02:00
, m_ctx{ctx} {
// DfgVertex::user is the next pointer of the work list elements
const auto userDataInUse = m_dfg.userDataInUse();
// Add all vertices to the work list. This also allocates all DfgVertex::user.
for (DfgVertex *vtxp = m_dfg.opVerticesBeginp(), *nextp; vtxp; vtxp = nextp) {
nextp = vtxp->verticesNext();
if (VL_LIKELY(nextp)) VL_PREFETCH_RW(nextp);
vtxp->setUser<DfgVertex*>(m_workListp);
m_workListp = vtxp;
}
// Process the work list
while (m_workListp != reinterpret_cast<DfgVertex*>(this)) {
// Pick up the head
DfgVertex* const vtxp = m_workListp;
// Detach the head and prefetch next
m_workListp = vtxp->getUser<DfgVertex*>();
VL_PREFETCH_RW(m_workListp);
vtxp->setUser<DfgVertex*>(nullptr);
2022-11-06 16:42:01 +01:00
// Remove unused vertices as we gp
if (!vtxp->hasSinks()) {
deleteVertex(vtxp);
continue;
}
// Transform node (might get deleted in the process)
iterate(vtxp);
2022-10-06 13:02:46 +02:00
}
}
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
public:
2022-10-06 13:02:46 +02:00
static void apply(DfgGraph& dfg, V3DfgPeepholeContext& ctx) { V3DfgPeephole{dfg, ctx}; }
Introduce DFG based combinational logic optimizer (#3527) Added a new data-flow graph (DFG) based combinational logic optimizer. The capabilities of this covers a combination of V3Const and V3Gate, but is also more capable of transforming combinational logic into simplified forms and more. This entail adding a new internal representation, `DfgGraph`, and appropriate `astToDfg` and `dfgToAst` conversion functions. The graph represents some of the combinational equations (~continuous assignments) in a module, and for the duration of the DFG passes, it takes over the role of AstModule. A bulk of the Dfg vertices represent expressions. These vertex classes, and the corresponding conversions to/from AST are mostly auto-generated by astgen, together with a DfgVVisitor that can be used for dynamic dispatch based on vertex (operation) types. The resulting combinational logic graph (a `DfgGraph`) is then optimized in various ways. Currently we perform common sub-expression elimination, variable inlining, and some specific peephole optimizations, but there is scope for more optimizations in the future using the same representation. The optimizer is run directly before and after inlining. The pre inline pass can operate on smaller graphs and hence converges faster, but still has a chance of substantially reducing the size of the logic on some designs, making inlining both faster and less memory intensive. The post inline pass can then optimize across the inlined module boundaries. No optimization is performed across a module boundary. For debugging purposes, each peephole optimization can be disabled individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one of the optimizations listed in V3DfgPeephole.h, for example -fno-dfg-peephole-remove-not-not. The peephole patterns currently implemented were mostly picked based on the design that inspired this work, and on that design the optimizations yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As you can imagine not having to haul around redundant combinational networks in the rest of the compilation pipeline also helps with memory consumption, and up to 30% peak memory usage of Verilator was observed on the same design. Gains on other arbitrary designs are smaller (and can be improved by analyzing those designs). For example OpenTitan gains between 1-15% speedup depending on build type.
2022-09-23 17:46:22 +02:00
};
void V3DfgPasses::peephole(DfgGraph& dfg, V3DfgPeepholeContext& ctx) {
V3DfgPeephole::apply(dfg, ctx);
}