Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// -*- mode: C++; c-file-style: "cc-mode" -*-
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
// DESCRIPTION: Verilator: Data flow graph (DFG) representation of logic
|
|
|
|
|
//
|
|
|
|
|
// Code available from: https://verilator.org
|
|
|
|
|
//
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
//
|
2025-01-01 14:30:25 +01:00
|
|
|
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// can redistribute it and/or modify it under the terms of either the GNU
|
|
|
|
|
// Lesser General Public License Version 3 or the Perl Artistic License
|
|
|
|
|
// Version 2.0.
|
|
|
|
|
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
|
|
|
|
|
//
|
|
|
|
|
//*************************************************************************
|
|
|
|
|
|
2023-10-18 12:37:46 +02:00
|
|
|
#include "V3PchAstNoMT.h" // VL_MT_DISABLED_CODE_UNIT
|
|
|
|
|
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
#include "V3Dfg.h"
|
|
|
|
|
|
|
|
|
|
#include "V3File.h"
|
|
|
|
|
|
2022-09-28 15:42:18 +02:00
|
|
|
VL_DEFINE_DEBUG_FUNCTIONS;
|
|
|
|
|
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
// DfgGraph
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
DfgGraph::DfgGraph(AstModule& module, const string& name)
|
|
|
|
|
: m_modulep{&module}
|
|
|
|
|
, m_name{name} {}
|
|
|
|
|
|
|
|
|
|
DfgGraph::~DfgGraph() {
|
|
|
|
|
forEachVertex([](DfgVertex& vtxp) { delete &vtxp; });
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void DfgGraph::addGraph(DfgGraph& other) {
|
2022-10-08 13:05:30 +02:00
|
|
|
m_size += other.m_size;
|
|
|
|
|
other.m_size = 0;
|
|
|
|
|
|
2024-03-26 00:06:25 +01:00
|
|
|
for (DfgVertexVar& vtx : other.m_varVertices) {
|
|
|
|
|
vtx.m_userCnt = 0;
|
|
|
|
|
vtx.m_graphp = this;
|
|
|
|
|
}
|
|
|
|
|
m_varVertices.splice(m_varVertices.end(), other.m_varVertices);
|
|
|
|
|
for (DfgConst& vtx : other.m_constVertices) {
|
|
|
|
|
vtx.m_userCnt = 0;
|
|
|
|
|
vtx.m_graphp = this;
|
|
|
|
|
}
|
|
|
|
|
m_constVertices.splice(m_constVertices.end(), other.m_constVertices);
|
|
|
|
|
for (DfgVertex& vtx : other.m_opVertices) {
|
|
|
|
|
vtx.m_userCnt = 0;
|
|
|
|
|
vtx.m_graphp = this;
|
|
|
|
|
}
|
|
|
|
|
m_opVertices.splice(m_opVertices.end(), other.m_opVertices);
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static const string toDotId(const DfgVertex& vtx) { return '"' + cvtToHex(&vtx) + '"'; }
|
|
|
|
|
|
|
|
|
|
// Dump one DfgVertex in Graphviz format
|
|
|
|
|
static void dumpDotVertex(std::ostream& os, const DfgVertex& vtx) {
|
2022-09-27 01:06:50 +02:00
|
|
|
|
|
|
|
|
if (const DfgVarPacked* const varVtxp = vtx.cast<DfgVarPacked>()) {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
AstVar* const varp = varVtxp->varp();
|
2022-09-30 17:19:21 +02:00
|
|
|
os << toDotId(vtx);
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
os << " [label=\"" << varp->name() << "\nW" << varVtxp->width() << " / F"
|
|
|
|
|
<< varVtxp->fanout() << '"';
|
2022-09-27 01:06:50 +02:00
|
|
|
|
|
|
|
|
if (varp->direction() == VDirection::INPUT) {
|
|
|
|
|
os << ", shape=box, style=filled, fillcolor=chartreuse2"; // Green
|
|
|
|
|
} else if (varp->direction() == VDirection::OUTPUT) {
|
|
|
|
|
os << ", shape=box, style=filled, fillcolor=cyan2"; // Cyan
|
|
|
|
|
} else if (varp->direction() == VDirection::INOUT) {
|
|
|
|
|
os << ", shape=box, style=filled, fillcolor=darkorchid2"; // Purple
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
} else if (varVtxp->hasExtRefs()) {
|
2022-09-27 01:06:50 +02:00
|
|
|
os << ", shape=box, style=filled, fillcolor=firebrick2"; // Red
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
} else if (varVtxp->hasModRefs()) {
|
2024-03-02 20:49:29 +01:00
|
|
|
os << ", shape=box, style=filled, fillcolor=darkorange1"; // Orange
|
|
|
|
|
} else if (varVtxp->hasDfgRefs()) {
|
2022-09-27 01:06:50 +02:00
|
|
|
os << ", shape=box, style=filled, fillcolor=gold2"; // Yellow
|
|
|
|
|
} else if (varVtxp->keep()) {
|
|
|
|
|
os << ", shape=box, style=filled, fillcolor=grey";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
} else {
|
|
|
|
|
os << ", shape=box";
|
|
|
|
|
}
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "]\n";
|
2022-09-27 01:06:50 +02:00
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (const DfgVarArray* const arrVtxp = vtx.cast<DfgVarArray>()) {
|
|
|
|
|
AstVar* const varp = arrVtxp->varp();
|
2022-09-30 17:19:21 +02:00
|
|
|
const int elements = VN_AS(arrVtxp->dtypep(), UnpackArrayDType)->elementsConst();
|
|
|
|
|
os << toDotId(vtx);
|
|
|
|
|
os << " [label=\"" << varp->name() << "[" << elements << "]\"";
|
2022-09-27 01:06:50 +02:00
|
|
|
if (varp->direction() == VDirection::INPUT) {
|
|
|
|
|
os << ", shape=box3d, style=filled, fillcolor=chartreuse2"; // Green
|
|
|
|
|
} else if (varp->direction() == VDirection::OUTPUT) {
|
|
|
|
|
os << ", shape=box3d, style=filled, fillcolor=cyan2"; // Cyan
|
|
|
|
|
} else if (varp->direction() == VDirection::INOUT) {
|
|
|
|
|
os << ", shape=box3d, style=filled, fillcolor=darkorchid2"; // Purple
|
|
|
|
|
} else if (arrVtxp->hasExtRefs()) {
|
|
|
|
|
os << ", shape=box3d, style=filled, fillcolor=firebrick2"; // Red
|
|
|
|
|
} else if (arrVtxp->hasModRefs()) {
|
2024-03-02 20:49:29 +01:00
|
|
|
os << ", shape=box3d, style=filled, fillcolor=darkorange1"; // Orange
|
|
|
|
|
} else if (arrVtxp->hasDfgRefs()) {
|
2022-09-27 01:06:50 +02:00
|
|
|
os << ", shape=box3d, style=filled, fillcolor=gold2"; // Yellow
|
|
|
|
|
} else if (arrVtxp->keep()) {
|
|
|
|
|
os << ", shape=box3d, style=filled, fillcolor=grey";
|
|
|
|
|
} else {
|
|
|
|
|
os << ", shape=box3d";
|
|
|
|
|
}
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "]\n";
|
2022-09-27 01:06:50 +02:00
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (const DfgConst* const constVtxp = vtx.cast<DfgConst>()) {
|
2022-10-07 16:44:14 +02:00
|
|
|
const V3Number& num = constVtxp->num();
|
2022-09-30 17:19:21 +02:00
|
|
|
|
|
|
|
|
os << toDotId(vtx);
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
os << " [label=\"";
|
|
|
|
|
if (num.width() <= 32 && !num.isSigned()) {
|
2022-09-30 17:19:21 +02:00
|
|
|
os << constVtxp->width() << "'d" << num.toUInt() << "\n";
|
|
|
|
|
os << constVtxp->width() << "'h" << std::hex << num.toUInt() << std::dec;
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
} else {
|
|
|
|
|
os << num.ascii();
|
|
|
|
|
}
|
|
|
|
|
os << '"';
|
|
|
|
|
os << ", shape=plain";
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "]\n";
|
2022-09-27 01:06:50 +02:00
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
2022-09-30 17:19:21 +02:00
|
|
|
if (const DfgSel* const selVtxp = vtx.cast<DfgSel>()) {
|
2022-10-06 19:34:18 +02:00
|
|
|
const uint32_t lsb = selVtxp->lsb();
|
|
|
|
|
const uint32_t msb = lsb + selVtxp->width() - 1;
|
|
|
|
|
os << toDotId(vtx);
|
|
|
|
|
os << " [label=\"SEL\n_[" << msb << ":" << lsb << "]\nW" << vtx.width() << " / F"
|
|
|
|
|
<< vtx.fanout() << '"';
|
|
|
|
|
if (vtx.hasMultipleSinks()) {
|
|
|
|
|
os << ", shape=doublecircle";
|
|
|
|
|
} else {
|
|
|
|
|
os << ", shape=circle";
|
2022-09-30 17:19:21 +02:00
|
|
|
}
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "]\n";
|
2022-10-06 19:34:18 +02:00
|
|
|
return;
|
2022-09-30 17:19:21 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
os << toDotId(vtx);
|
2022-09-27 01:06:50 +02:00
|
|
|
os << " [label=\"" << vtx.typeName() << "\nW" << vtx.width() << " / F" << vtx.fanout() << '"';
|
|
|
|
|
if (vtx.hasMultipleSinks()) {
|
|
|
|
|
os << ", shape=doublecircle";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
} else {
|
2022-09-27 01:06:50 +02:00
|
|
|
os << ", shape=circle";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "]\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Dump one DfgEdge in Graphviz format
|
|
|
|
|
static void dumpDotEdge(std::ostream& os, const DfgEdge& edge, const string& headlabel) {
|
|
|
|
|
os << toDotId(*edge.sourcep()) << " -> " << toDotId(*edge.sinkp());
|
|
|
|
|
if (!headlabel.empty()) os << " [headlabel=\"" << headlabel << "\"]";
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Dump one DfgVertex and all of its source DfgEdges in Graphviz format
|
|
|
|
|
static void dumpDotVertexAndSourceEdges(std::ostream& os, const DfgVertex& vtx) {
|
|
|
|
|
dumpDotVertex(os, vtx);
|
|
|
|
|
vtx.forEachSourceEdge([&](const DfgEdge& edge, size_t idx) { //
|
|
|
|
|
if (edge.sourcep()) {
|
|
|
|
|
string headLabel;
|
2022-10-04 12:03:41 +02:00
|
|
|
if (vtx.arity() > 1 || vtx.is<DfgVertexVar>()) headLabel = vtx.srcName(idx);
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
dumpDotEdge(os, edge, headLabel);
|
|
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void DfgGraph::dumpDot(std::ostream& os, const string& label) const {
|
|
|
|
|
// Header
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "digraph dfg {\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
os << "graph [label=\"" << name();
|
|
|
|
|
if (!label.empty()) os << "-" << label;
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "\", labelloc=t, labeljust=l]\n";
|
|
|
|
|
os << "graph [rankdir=LR]\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
|
|
|
|
// Emit all vertices
|
|
|
|
|
forEachVertex([&](const DfgVertex& vtx) { dumpDotVertexAndSourceEdges(os, vtx); });
|
|
|
|
|
|
|
|
|
|
// Footer
|
2023-11-24 17:45:52 +01:00
|
|
|
os << "}\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
2024-07-14 15:34:54 +02:00
|
|
|
void DfgGraph::dumpDotFile(const string& filename, const string& label) const {
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
// This generates a file used by graphviz, https://www.graphviz.org
|
|
|
|
|
// "hardcoded" parameters:
|
2024-07-14 15:34:54 +02:00
|
|
|
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(filename)};
|
|
|
|
|
if (os->fail()) v3fatal("Cannot write to file: " << filename);
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
dumpDot(*os.get(), label);
|
|
|
|
|
os->close();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void DfgGraph::dumpDotFilePrefixed(const string& label) const {
|
2024-07-14 15:34:54 +02:00
|
|
|
string filename = name();
|
|
|
|
|
if (!label.empty()) filename += "-" + label;
|
|
|
|
|
dumpDotFile(v3Global.debugFilename(filename) + ".dot", label);
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Dump upstream logic cone starting from given vertex
|
|
|
|
|
static void dumpDotUpstreamConeFromVertex(std::ostream& os, const DfgVertex& vtx) {
|
|
|
|
|
// Work queue for depth first traversal starting from this vertex
|
|
|
|
|
std::vector<const DfgVertex*> queue{&vtx};
|
|
|
|
|
|
|
|
|
|
// Set of already visited vertices
|
|
|
|
|
std::unordered_set<const DfgVertex*> visited;
|
|
|
|
|
|
|
|
|
|
// Depth first traversal
|
|
|
|
|
while (!queue.empty()) {
|
|
|
|
|
// Pop next work item
|
|
|
|
|
const DfgVertex* const itemp = queue.back();
|
|
|
|
|
queue.pop_back();
|
|
|
|
|
|
|
|
|
|
// Mark vertex as visited
|
|
|
|
|
const bool isFirstEncounter = visited.insert(itemp).second;
|
|
|
|
|
|
|
|
|
|
// If we have already visited this vertex during the traversal, then move on.
|
|
|
|
|
if (!isFirstEncounter) continue;
|
|
|
|
|
|
|
|
|
|
// Enqueue all sources of this vertex.
|
|
|
|
|
itemp->forEachSource([&](const DfgVertex& src) { queue.push_back(&src); });
|
|
|
|
|
|
|
|
|
|
// Emit this vertex and all of its source edges
|
|
|
|
|
dumpDotVertexAndSourceEdges(os, *itemp);
|
|
|
|
|
}
|
|
|
|
|
|
2022-09-27 01:06:50 +02:00
|
|
|
// Emit all DfgVarPacked vertices that have external references driven by this vertex
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
vtx.forEachSink([&](const DfgVertex& dst) {
|
2022-09-27 01:06:50 +02:00
|
|
|
if (const DfgVarPacked* const varVtxp = dst.cast<DfgVarPacked>()) {
|
2024-03-02 20:49:29 +01:00
|
|
|
if (varVtxp->hasNonLocalRefs()) dumpDotVertexAndSourceEdges(os, dst);
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// LCOV_EXCL_START // Debug function for developer use only
|
|
|
|
|
void DfgGraph::dumpDotUpstreamCone(const string& fileName, const DfgVertex& vtx,
|
|
|
|
|
const string& name) const {
|
|
|
|
|
// Open output file
|
|
|
|
|
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(fileName)};
|
|
|
|
|
if (os->fail()) v3fatal("Cannot write to file: " << fileName);
|
|
|
|
|
|
|
|
|
|
// Header
|
2023-11-24 17:45:52 +01:00
|
|
|
*os << "digraph dfg {\n";
|
|
|
|
|
if (!name.empty()) *os << "graph [label=\"" << name << "\", labelloc=t, labeljust=l]\n";
|
|
|
|
|
*os << "graph [rankdir=LR]\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
|
|
|
|
// Dump the cone
|
|
|
|
|
dumpDotUpstreamConeFromVertex(*os, vtx);
|
|
|
|
|
|
|
|
|
|
// Footer
|
2023-11-24 17:45:52 +01:00
|
|
|
*os << "}\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
|
|
|
|
// Done
|
|
|
|
|
os->close();
|
|
|
|
|
}
|
|
|
|
|
// LCOV_EXCL_STOP
|
|
|
|
|
|
|
|
|
|
void DfgGraph::dumpDotAllVarConesPrefixed(const string& label) const {
|
|
|
|
|
const string prefix = label.empty() ? name() + "-cone-" : name() + "-" + label + "-cone-";
|
|
|
|
|
forEachVertex([&](const DfgVertex& vtx) {
|
|
|
|
|
// Check if this vertex drives a variable referenced outside the DFG.
|
2022-09-27 01:06:50 +02:00
|
|
|
const DfgVarPacked* const sinkp
|
|
|
|
|
= vtx.findSink<DfgVarPacked>([](const DfgVarPacked& sink) { //
|
2024-03-02 20:49:29 +01:00
|
|
|
return sink.hasNonLocalRefs();
|
2022-09-27 01:06:50 +02:00
|
|
|
});
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
|
|
|
|
// We only dump cones driving an externally referenced variable
|
|
|
|
|
if (!sinkp) return;
|
|
|
|
|
|
|
|
|
|
// Open output file
|
|
|
|
|
const string coneName{prefix + sinkp->varp()->name()};
|
|
|
|
|
const string fileName{v3Global.debugFilename(coneName) + ".dot"};
|
|
|
|
|
const std::unique_ptr<std::ofstream> os{V3File::new_ofstream(fileName)};
|
|
|
|
|
if (os->fail()) v3fatal("Cannot write to file: " << fileName);
|
|
|
|
|
|
|
|
|
|
// Header
|
2023-11-24 17:45:52 +01:00
|
|
|
*os << "digraph dfg {\n";
|
|
|
|
|
*os << "graph [label=\"" << coneName << "\", labelloc=t, labeljust=l]\n";
|
|
|
|
|
*os << "graph [rankdir=LR]\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
|
|
|
|
// Dump this cone
|
|
|
|
|
dumpDotUpstreamConeFromVertex(*os, vtx);
|
|
|
|
|
|
|
|
|
|
// Footer
|
2023-11-24 17:45:52 +01:00
|
|
|
*os << "}\n";
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
|
|
|
|
// Done with this logic cone
|
|
|
|
|
os->close();
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
// DfgEdge
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
void DfgEdge::unlinkSource() {
|
|
|
|
|
if (!m_sourcep) return;
|
|
|
|
|
#ifdef VL_DEBUG
|
|
|
|
|
{
|
|
|
|
|
DfgEdge* sinkp = m_sourcep->m_sinksp;
|
|
|
|
|
while (sinkp) {
|
|
|
|
|
if (sinkp == this) break;
|
|
|
|
|
sinkp = sinkp->m_nextp;
|
|
|
|
|
}
|
|
|
|
|
UASSERT(sinkp, "'m_sourcep' does not have this edge as sink");
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
// Relink pointers of predecessor and successor
|
|
|
|
|
if (m_prevp) m_prevp->m_nextp = m_nextp;
|
|
|
|
|
if (m_nextp) m_nextp->m_prevp = m_prevp;
|
|
|
|
|
// If head of list in source, update source's head pointer
|
|
|
|
|
if (m_sourcep->m_sinksp == this) m_sourcep->m_sinksp = m_nextp;
|
|
|
|
|
// Mark source as unconnected
|
|
|
|
|
m_sourcep = nullptr;
|
|
|
|
|
// Clear links. This is not strictly necessary, but might catch bugs.
|
|
|
|
|
m_prevp = nullptr;
|
|
|
|
|
m_nextp = nullptr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void DfgEdge::relinkSource(DfgVertex* newSourcep) {
|
|
|
|
|
// Unlink current source, if any
|
|
|
|
|
unlinkSource();
|
|
|
|
|
// Link new source
|
|
|
|
|
m_sourcep = newSourcep;
|
|
|
|
|
// Prepend to sink list in source
|
|
|
|
|
m_nextp = newSourcep->m_sinksp;
|
|
|
|
|
if (m_nextp) m_nextp->m_prevp = this;
|
|
|
|
|
newSourcep->m_sinksp = this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
// DfgVertex
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
2022-10-04 12:03:41 +02:00
|
|
|
DfgVertex::DfgVertex(DfgGraph& dfg, VDfgType type, FileLine* flp, AstNodeDType* dtypep)
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
: m_filelinep{flp}
|
|
|
|
|
, m_dtypep{dtypep}
|
|
|
|
|
, m_type{type} {
|
|
|
|
|
dfg.addVertex(*this);
|
|
|
|
|
}
|
|
|
|
|
|
2024-03-23 23:12:43 +01:00
|
|
|
DfgVertex::~DfgVertex() {}
|
2022-09-27 01:06:50 +02:00
|
|
|
|
2022-10-06 19:34:18 +02:00
|
|
|
bool DfgVertex::selfEquals(const DfgVertex& that) const { return true; }
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
2022-10-06 19:34:18 +02:00
|
|
|
V3Hash DfgVertex::selfHash() const { return V3Hash{}; }
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
|
|
|
|
bool DfgVertex::equals(const DfgVertex& that, EqualsCache& cache) const {
|
|
|
|
|
if (this == &that) return true;
|
2022-10-06 19:34:18 +02:00
|
|
|
if (this->type() != that.type()) return false;
|
|
|
|
|
if (this->dtypep() != that.dtypep()) return false;
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
if (!this->selfEquals(that)) return false;
|
|
|
|
|
|
|
|
|
|
const auto key = (this < &that) ? EqualsCache::key_type{this, &that} //
|
|
|
|
|
: EqualsCache::key_type{&that, this};
|
2024-07-25 22:07:58 +02:00
|
|
|
// Note: the recursive invocation can cause a re-hash but that will not invalidate references
|
|
|
|
|
uint8_t& result = cache[key];
|
2022-10-06 12:26:11 +02:00
|
|
|
if (!result) {
|
|
|
|
|
result = 2; // Assume equals
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
auto thisPair = this->sourceEdges();
|
|
|
|
|
const DfgEdge* const thisSrcEdgesp = thisPair.first;
|
|
|
|
|
const size_t thisArity = thisPair.second;
|
|
|
|
|
auto thatPair = that.sourceEdges();
|
|
|
|
|
const DfgEdge* const thatSrcEdgesp = thatPair.first;
|
|
|
|
|
const size_t thatArity = thatPair.second;
|
|
|
|
|
UASSERT_OBJ(thisArity == thatArity, this, "Same type vertices must have same arity!");
|
|
|
|
|
for (size_t i = 0; i < thisArity; ++i) {
|
|
|
|
|
const DfgVertex* const thisSrcVtxp = thisSrcEdgesp[i].m_sourcep;
|
|
|
|
|
const DfgVertex* const thatSrcVtxp = thatSrcEdgesp[i].m_sourcep;
|
|
|
|
|
if (thisSrcVtxp == thatSrcVtxp) continue;
|
|
|
|
|
if (!thisSrcVtxp || !thatSrcVtxp || !thisSrcVtxp->equals(*thatSrcVtxp, cache)) {
|
2022-10-06 12:26:11 +02:00
|
|
|
result = 1; // Mark not equal
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2022-10-06 12:26:11 +02:00
|
|
|
return result >> 1;
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
2022-10-06 12:26:11 +02:00
|
|
|
V3Hash DfgVertex::hash() {
|
|
|
|
|
V3Hash& result = user<V3Hash>();
|
|
|
|
|
if (!result.value()) {
|
2022-10-21 11:50:02 +02:00
|
|
|
V3Hash hash{selfHash()};
|
|
|
|
|
// Variables are defined by themselves, so there is no need to hash them further
|
|
|
|
|
// (especially the sources). This enables sound hashing of graphs circular only through
|
|
|
|
|
// variables, which we rely on.
|
2022-10-04 12:03:41 +02:00
|
|
|
if (!is<DfgVertexVar>()) {
|
2022-10-21 11:50:02 +02:00
|
|
|
hash += m_type;
|
|
|
|
|
hash += width(); // Currently all non-variable vertices are packed, so this is safe
|
2022-10-06 12:26:11 +02:00
|
|
|
const auto pair = sourceEdges();
|
|
|
|
|
const DfgEdge* const edgesp = pair.first;
|
|
|
|
|
const size_t arity = pair.second;
|
|
|
|
|
// Sources must always be connected in well-formed graphs
|
|
|
|
|
for (size_t i = 0; i < arity; ++i) hash += edgesp[i].m_sourcep->hash();
|
2022-09-27 14:50:37 +02:00
|
|
|
}
|
2022-10-06 12:26:11 +02:00
|
|
|
result = hash;
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint32_t DfgVertex::fanout() const {
|
|
|
|
|
uint32_t result = 0;
|
|
|
|
|
forEachSinkEdge([&](const DfgEdge&) { ++result; });
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void DfgVertex::unlinkDelete(DfgGraph& dfg) {
|
|
|
|
|
// Unlink source edges
|
|
|
|
|
forEachSourceEdge([](DfgEdge& edge, size_t) { edge.unlinkSource(); });
|
|
|
|
|
// Unlink sink edges
|
|
|
|
|
forEachSinkEdge([](DfgEdge& edge) { edge.unlinkSource(); });
|
|
|
|
|
// Remove from graph
|
|
|
|
|
dfg.removeVertex(*this);
|
|
|
|
|
// Delete
|
|
|
|
|
delete this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void DfgVertex::replaceWith(DfgVertex* newSorucep) {
|
|
|
|
|
while (m_sinksp) m_sinksp->relinkSource(newSorucep);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
// Vertex classes
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
2022-10-06 19:34:18 +02:00
|
|
|
// DfgConst ----------
|
|
|
|
|
|
|
|
|
|
bool DfgConst::selfEquals(const DfgVertex& that) const {
|
2022-10-07 16:44:14 +02:00
|
|
|
return num().isCaseEq(that.as<DfgConst>()->num());
|
2022-10-06 19:34:18 +02:00
|
|
|
}
|
|
|
|
|
|
2022-10-07 16:44:14 +02:00
|
|
|
V3Hash DfgConst::selfHash() const { return num().toHash(); }
|
2022-10-06 19:34:18 +02:00
|
|
|
|
|
|
|
|
// DfgSel ----------
|
|
|
|
|
|
|
|
|
|
bool DfgSel::selfEquals(const DfgVertex& that) const { return lsb() == that.as<DfgSel>()->lsb(); }
|
|
|
|
|
|
|
|
|
|
V3Hash DfgSel::selfHash() const { return V3Hash{lsb()}; }
|
|
|
|
|
|
2022-10-06 12:26:11 +02:00
|
|
|
// DfgVertexVar ----------
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
|
2022-10-06 12:26:11 +02:00
|
|
|
bool DfgVertexVar::selfEquals(const DfgVertex& that) const {
|
2022-10-06 19:34:18 +02:00
|
|
|
UASSERT_OBJ(varp() != that.as<DfgVertexVar>()->varp(), this,
|
2022-10-07 16:44:14 +02:00
|
|
|
"There should only be one DfgVertexVar for a given AstVar");
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2022-10-06 12:26:11 +02:00
|
|
|
V3Hash DfgVertexVar::selfHash() const {
|
|
|
|
|
V3Hash hash;
|
|
|
|
|
hash += m_varp->name();
|
|
|
|
|
hash += m_varp->varType();
|
|
|
|
|
return hash;
|
2022-09-27 01:06:50 +02:00
|
|
|
}
|
|
|
|
|
|
Introduce DFG based combinational logic optimizer (#3527)
Added a new data-flow graph (DFG) based combinational logic optimizer.
The capabilities of this covers a combination of V3Const and V3Gate, but
is also more capable of transforming combinational logic into simplified
forms and more.
This entail adding a new internal representation, `DfgGraph`, and
appropriate `astToDfg` and `dfgToAst` conversion functions. The graph
represents some of the combinational equations (~continuous assignments)
in a module, and for the duration of the DFG passes, it takes over the
role of AstModule. A bulk of the Dfg vertices represent expressions.
These vertex classes, and the corresponding conversions to/from AST are
mostly auto-generated by astgen, together with a DfgVVisitor that can be
used for dynamic dispatch based on vertex (operation) types.
The resulting combinational logic graph (a `DfgGraph`) is then optimized
in various ways. Currently we perform common sub-expression elimination,
variable inlining, and some specific peephole optimizations, but there
is scope for more optimizations in the future using the same
representation. The optimizer is run directly before and after inlining.
The pre inline pass can operate on smaller graphs and hence converges
faster, but still has a chance of substantially reducing the size of the
logic on some designs, making inlining both faster and less memory
intensive. The post inline pass can then optimize across the inlined
module boundaries. No optimization is performed across a module
boundary.
For debugging purposes, each peephole optimization can be disabled
individually via the -fno-dfg-peepnole-<OPT> option, where <OPT> is one
of the optimizations listed in V3DfgPeephole.h, for example
-fno-dfg-peephole-remove-not-not.
The peephole patterns currently implemented were mostly picked based on
the design that inspired this work, and on that design the optimizations
yields ~30% single threaded speedup, and ~50% speedup on 4 threads. As
you can imagine not having to haul around redundant combinational
networks in the rest of the compilation pipeline also helps with memory
consumption, and up to 30% peak memory usage of Verilator was observed
on the same design.
Gains on other arbitrary designs are smaller (and can be improved by
analyzing those designs). For example OpenTitan gains between 1-15%
speedup depending on build type.
2022-09-23 17:46:22 +02:00
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
// DfgVisitor
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
2022-10-04 12:03:41 +02:00
|
|
|
#include "V3Dfg__gen_visitor_defns.h" // From ./astgen
|