package sbt import Types._ import Classes.Applicative /** Heterogeneous list with each element having type M[T] for some type T.*/ sealed trait KList[+M[_]] { type Transform[N[_]] <: KList[N] /** Apply the natural transformation `f` to each element. */ def transform[N[_]](f: M ~> N): Transform[N] /** Folds this list using a function that operates on the homogeneous type of the elements of this list. */ def foldr[T](f: (M[_], T) => T, init: T): T = init // had trouble defining it in KNil /** Applies `f` to the elements of this list in the applicative functor defined by `ap`. */ def apply[N[x] >: M[x], Z](f: Transform[Id] => Z)(implicit ap: Applicative[N]): N[Z] /** Equivalent to `transform(f) . apply(x => x)`, this is the essence of the iterator at the level of natural transformations.*/ def traverse[N[_], P[_]](f: M ~> (N ∙ P)#l)(implicit np: Applicative[N]): N[Transform[P]] /** Discards the heterogeneous type information and constructs a plain List from this KList's elements. */ def toList: List[M[_]] } final case class KCons[H, +T <: KList[M], +M[_]](head: M[H], tail: T) extends KList[M] { final type Transform[N[_]] = KCons[H, tail.Transform[N], N] def transform[N[_]](f: M ~> N) = KCons(f(head), tail.transform(f)) def toList: List[M[_]] = head :: tail.toList def apply[N[x] >: M[x], Z](f: Transform[Id] => Z)(implicit ap: Applicative[N]): N[Z] = { val g = (t: tail.Transform[Id]) => (h: H) =>f( KCons[H, tail.Transform[Id], Id](h, t) ) ap.apply( tail.apply[N, H => Z](g), head ) } def traverse[N[_], P[_]](f: M ~> (N ∙ P)#l)(implicit np: Applicative[N]): N[Transform[P]] = { val tt: N[tail.Transform[P]] = tail.traverse[N,P](f) val g = (t: tail.Transform[P]) => (h: P[H]) => KCons(h, t) np.apply(np.map(g, tt), f(head)) } def :^:[A,N[x] >: M[x]](h: N[A]) = KCons(h, this) override def foldr[T](f: (M[_], T) => T, init: T): T = f(head, tail.foldr(f, init)) } sealed abstract class KNil extends KList[Nothing] { final type Transform[N[_]] = KNil final def transform[N[_]](f: Nothing ~> N): Transform[N] = KNil final def toList = Nil final def apply[N[x], Z](f: KNil => Z)(implicit ap: Applicative[N]): N[Z] = ap.pure(f(KNil)) final def traverse[N[_], P[_]](f: Nothing ~> (N ∙ P)#l)(implicit np: Applicative[N]): N[KNil] = np.pure(KNil) } case object KNil extends KNil { def :^:[M[_], H](h: M[H]): KCons[H, KNil, M] = KCons(h, this) }