package sbt package appmacro import Classes.Applicative import Types.Id /** The separate hierarchy from Applicative/Monad is for two reasons. * * 1. The type constructor is represented as an abstract type because a TypeTag cannot represent a type constructor directly. * 2. The applicative interface is uncurried. */ trait Instance { type M[x] def app[K[L[x]], Z](in: K[M], f: K[Id] => Z)(implicit a: AList[K]): M[Z] def map[S,T](in: M[S], f: S => T): M[T] def pure[T](t: () => T): M[T] } trait Convert { def apply[T: c.WeakTypeTag](c: scala.reflect.macros.Context)(in: c.Tree): c.Tree } trait MonadInstance extends Instance { def flatten[T](in: M[M[T]]): M[T] } import scala.reflect._ import macros._ object InputWrapper { /** The name of the wrapper method should be obscure. * Wrapper checking is based solely on this name, so it must not conflict with a user method name. * The user should never see this method because it is compile-time only and only used internally by the task macro system.*/ final val WrapName = "wrap_\u2603\u2603" // This method should be annotated as compile-time only when that feature is implemented def wrap_\u2603\u2603[T](in: Any): T = error("This method is an implementation detail and should not be referenced.") /** Wraps an arbitrary Tree in a call to the `wrap` method of this module for later processing by an enclosing macro. * The resulting Tree is the manually constructed version of: * * `c.universe.reify { InputWrapper.[T](ts.splice) }` */ def wrapKey[T: c.WeakTypeTag](c: Context)(ts: c.Expr[Any]): c.Expr[T] = { import c.universe.{Apply=>ApplyTree,_} val util = new ContextUtil[c.type](c) val iw = util.singleton(InputWrapper) val tpe = c.weakTypeOf[T] val nme = newTermName(WrapName).encoded val tree = ApplyTree(TypeApply(Select(Ident(iw), nme), TypeTree(tpe) :: Nil), ts.tree :: Nil) tree.setPos(ts.tree.pos) c.Expr[T](tree) } } object Instance { final val ApplyName = "app" final val FlattenName = "flatten" final val PureName = "pure" final val MapName = "map" final val InstanceTCName = "M" final class Input[U <: Universe with Singleton](val tpe: U#Type, val expr: U#Tree, val local: U#ValDef) /** Implementation of a macro that provides a direct syntax for applicative functors and monads. * It is intended to be used in conjunction with another macro that conditions the inputs. * * This method processes the Tree `t` to find inputs of the form `InputWrapper.wrap[T]( input )` * This form is typically constructed by another macro that pretends to be able to get a value of type `T` * from a value convertible to `M[T]`. This `wrap(input)` form has two main purposes. * First, it identifies the inputs that should be transformed. * Second, it allows the input trees to be wrapped for later conversion into the appropriate `M[T]` type by `convert`. * This wrapping is necessary because applying the first macro must preserve the original type, * but it is useful to delay conversion until the outer, second macro is called. The `wrap` method accomplishes this by * allowing the original `Tree` and `Type` to be hidden behind the raw `T` type. This method will remove the call to `wrap` * so that it is not actually called at runtime. * * Each `input` in each expression of the form `InputWrapper.wrap[T]( input )` is transformed by `convert`. * This transformation converts the input Tree to a Tree of type `M[T]`. * The original wrapped expression `wrap(input)` is replaced by a reference to a new local `val $x: T`, where `$x` is a fresh name. * These converted inputs are passed to `builder` as well as the list of these synthetic `ValDef`s. * The `TupleBuilder` instance constructs a tuple (Tree) from the inputs and defines the right hand side of the vals * that unpacks the tuple containing the results of the inputs. * * The constructed tuple of inputs and the code that unpacks the results of the inputs are then passed to the `i`, * which is an implementation of `Instance` that is statically accessible. * An Instance defines a applicative functor associated with a specific type constructor and, if it implements MonadInstance as well, a monad. * Typically, it will be either a top-level module or a stable member of a top-level module (such as a val or a nested module). * The `with Singleton` part of the type verifies some cases at macro compilation time, * while the full check for static accessibility is done at macro expansion time. * Note: Ideally, the types would verify that `i: MonadInstance` when `t.isRight`. * With the various dependent types involved, this is not worth it. * * The `t` argument is the argument of the macro that will be transformed as described above. * If the macro that calls this method is for a multi-input map (app followed by map), * `t` should be the argument wrapped in Left. * If this is for multi-input flatMap (app followed by flatMap), * this should be the argument wrapped in Right. */ def contImpl[T](c: Context, i: Instance with Singleton, convert: Convert, builder: TupleBuilder)(t: Either[c.Expr[T], c.Expr[i.M[T]]])( implicit tt: c.WeakTypeTag[T], it: c.TypeTag[i.type]): c.Expr[i.M[T]] = { import c.universe.{Apply=>ApplyTree,_} val util = ContextUtil[c.type](c) val mTC: Type = util.extractTC(i, InstanceTCName) val mttpe: Type = appliedType(mTC, tt.tpe :: Nil).normalize // the tree for the macro argument val (tree, treeType) = t match { case Left(l) => (l.tree, tt.tpe.normalize) case Right(r) => (r.tree, mttpe) } val instanceSym = util.singleton(i) // A Tree that references the statically accessible Instance that provides the actual implementations of map, flatMap, ... val instance = Ident(instanceSym) val isWrapper: Tree => Boolean = util.isWrapper(InputWrapper.WrapName) type In = Input[c.universe.type] var inputs = List[In]() // Local definitions in the macro. This is used to ensure references are to M instances defined outside of the macro call. val defs = util.collectDefs(tree, isWrapper) val checkQual: Tree => Unit = util.checkReferences(defs, isWrapper) // transforms the original tree into calls to the Instance functions pure, map, ..., // resulting in a value of type M[T] def makeApp(body: Tree): Tree = inputs match { case Nil => pure(body) case x :: Nil => single(body, x) case xs => arbArity(body, xs) } // no inputs, so construct M[T] via Instance.pure or pure+flatten def pure(body: Tree): Tree = { val typeApplied = TypeApply(Select(instance, PureName), TypeTree(treeType) :: Nil) val p = ApplyTree(typeApplied, Function(Nil, body) :: Nil) if(t.isLeft) p else flatten(p) } // m should have type M[M[T]] // the returned Tree will have type M[T] def flatten(m: Tree): Tree = { val typedFlatten = TypeApply(Select(instance, FlattenName), TypeTree(tt.tpe) :: Nil) ApplyTree(typedFlatten, m :: Nil) } // calls Instance.map or flatmap directly, skipping the intermediate Instance.app that is unnecessary for a single input def single(body: Tree, input: In): Tree = { val variable = input.local val param = ValDef(util.parameterModifiers, variable.name, variable.tpt, EmptyTree) val typeApplied = TypeApply(Select(instance, MapName), variable.tpt :: TypeTree(treeType) :: Nil) val mapped = ApplyTree(typeApplied, input.expr :: Function(param :: Nil, body) :: Nil) if(t.isLeft) mapped else flatten(mapped) } // calls Instance.app to get the values for all inputs and then calls Instance.map or flatMap to evaluate the body def arbArity(body: Tree, inputs: List[In]): Tree = { val result = builder.make(c)(mTC, inputs) val param = util.freshMethodParameter( appliedType(result.representationC, util.idTC :: Nil) ) val bindings = result.extract(param) val f = Function(param :: Nil, Block(bindings, body)) val ttt = TypeTree(treeType) val typedApp = TypeApply(Select(instance, ApplyName), TypeTree(result.representationC) :: ttt :: Nil) val app = ApplyTree(ApplyTree(typedApp, result.input :: f :: Nil), result.alistInstance :: Nil) if(t.isLeft) app else flatten(app) } // called when transforming the tree to add an input // for `qual` of type M[A], and a selection qual.value, // the call is addType(Type A, Tree qual) // the result is a Tree representing a reference to // the bound value of the input def addType(tpe: Type, qual: Tree): Tree = { qual.foreach(checkQual) val vd = util.freshValDef(tpe, qual.symbol) inputs ::= new Input(tpe, qual, vd) util.refVal(vd) } def sub(tpe: Type, qual: Tree): Tree = { val tag = c.WeakTypeTag(tpe) addType(tpe, convert(c)(qual)(tag) ) } // applies the transformation // resetting attributes must be: a) local b) done here and not wider or else there are obscure errors val tr = makeApp( c.resetLocalAttrs( util.transformWrappers(tree, isWrapper, (tpe, tr) => sub(tpe, tr)) ) ) c.Expr[i.M[T]](tr) } import Types._ implicit def applicativeInstance[A[_]](implicit ap: Applicative[A]): Instance { type M[x] = A[x] } = new Instance { type M[x] = A[x] def app[ K[L[x]], Z ](in: K[A], f: K[Id] => Z)(implicit a: AList[K]) = a.apply[A,Z](in, f) def map[S,T](in: A[S], f: S => T) = ap.map(f, in) def pure[S](s: () => S): M[S] = ap.pure(s()) } type AI[A[_]] = Instance { type M[x] = A[x] } def compose[A[_], B[_]](implicit a: AI[A], b: AI[B]): Instance { type M[x] = A[B[x]] } = new Composed[A,B](a,b) // made a public, named, unsealed class because of trouble with macros and inference when the Instance is not an object class Composed[A[_], B[_]](a: AI[A], b: AI[B]) extends Instance { type M[x] = A[B[x]] def pure[S](s: () => S): A[B[S]] = a.pure(() => b.pure(s)) def map[S,T](in: M[S], f: S => T): M[T] = a.map(in, (bv: B[S]) => b.map(bv, f)) def app[ K[L[x]], Z ](in: K[M], f: K[Id] => Z)(implicit alist: AList[K]): A[B[Z]] = { val g: K[B] => B[Z] = in => b.app[K, Z](in, f) type Split[ L[x] ] = K[ (L ∙ B)#l ] a.app[Split, B[Z]](in, g)(AList.asplit(alist)) } } }