import random random.seed(0) import os import re def slice_xy(): '''Return (X1, X2), (Y1, Y2) from XRAY_ROI, exclusive end (for xrange)''' # SLICE_X12Y100:SLICE_X27Y149 # Note XRAY_ROI_GRID_* is something else m = re.match( r'SLICE_X([0-9]*)Y([0-9]*):SLICE_X([0-9]*)Y([0-9]*)', os.getenv('XRAY_ROI')) ms = [int(m.group(i + 1)) for i in range(4)] return ((ms[0], ms[2] + 1), (ms[1], ms[3] + 1)) CLBN = 50 SLICEX, SLICEY = slice_xy() # 800 SLICEN = (SLICEY[1] - SLICEY[0]) * (SLICEX[1] - SLICEX[0]) print('//SLICEX: %s' % str(SLICEX)) print('//SLICEY: %s' % str(SLICEY)) print('//SLICEN: %s' % str(SLICEN)) print('//Requested CLBs: %s' % str(CLBN)) # Rearranged to sweep Y so that carry logic is easy to allocate # XXX: careful...if odd number of Y in ROI will break carry def gen_slicems(): ''' SLICEM at the following: SLICE_XxY* Where Y any value x Always even (ie 100, 102, 104, etc) In our ROI x = 6, 8, 10, 12, 14 ''' # TODO: generate this from DB assert ((12, 28) == SLICEX) for slicex in (12, 14): for slicey in range(*SLICEY): # caller may reject position if needs more room #yield ("SLICE_X%dY%d" % (slicex, slicey), (slicex, slicey)) yield "SLICE_X%dY%d" % (slicex, slicey) DIN_N = CLBN * 8 DOUT_N = CLBN * 8 print( ''' module top(input clk, stb, di, output do); localparam integer DIN_N = %d; localparam integer DOUT_N = %d; reg [DIN_N-1:0] din; wire [DOUT_N-1:0] dout; reg [DIN_N-1:0] din_shr; reg [DOUT_N-1:0] dout_shr; always @(posedge clk) begin din_shr <= {din_shr, di}; dout_shr <= {dout_shr, din_shr[DIN_N-1]}; if (stb) begin din <= din_shr; dout_shr <= dout; end end assign do = dout_shr[DOUT_N-1]; roi roi ( .clk(clk), .din(din), .dout(dout) ); endmodule ''' % (DIN_N, DOUT_N)) f = open('params.csv', 'w') f.write('module,loc,c31,b31,a31\n') slices = gen_slicems() print( 'module roi(input clk, input [%d:0] din, output [%d:0] dout);' % (DIN_N - 1, DOUT_N - 1)) multis = 0 for clbi in range(CLBN): loc = next(slices) module = 'my_NDI1MUX_NI_NMC31' c31 = random.randint(0, 1) b31 = random.randint(0, 1) a31 = random.randint(0, 1) print(' %s' % module) print( ' #(.LOC("%s"), .C31(%d), .B31(%d), .A31(%d))' % (loc, c31, b31, a31)) print( ' clb_%d (.clk(clk), .din(din[ %d +: 8]), .dout(dout[ %d +: 8]));' % (clbi, 8 * clbi, 8 * clbi)) f.write('%s,%s,%d,%d,%d\n' % (module, loc, c31, b31, a31)) f.close() print( '''endmodule // --------------------------------------------------------------------- ''') print( ''' module my_NDI1MUX_NI_NMC31 (input clk, input [7:0] din, output [7:0] dout); parameter LOC = "SLICE_X6Y100"; parameter C31 = 0; parameter B31 = 0; parameter A31 = 0; wire [3:0] q31; wire [3:0] lutd; assign lutd[3] = din[7]; assign lutd[2] = C31 ? q31[3] : din[7]; assign lutd[1] = B31 ? q31[2] : din[7]; assign lutd[0] = A31 ? q31[1] : din[7]; (* LOC=LOC, BEL="D6LUT" *) SRLC32E #( .INIT(32'h00000000), .IS_CLK_INVERTED(1'b0) ) lutd ( .Q(dout[0]), .Q31(q31[3]), .A(din[4:0]), .CE(din[5]), .CLK(din[6]), .D(lutd[3])); (* LOC=LOC, BEL="C6LUT" *) SRLC32E #( .INIT(32'h00000000), .IS_CLK_INVERTED(1'b0) ) lutc ( .Q(dout[1]), .Q31(q31[2]), .A(din[4:0]), .CE(din[5]), .CLK(din[6]), .D(lutd[2])); (* LOC=LOC, BEL="B6LUT" *) SRLC32E #( .INIT(32'h00000000), .IS_CLK_INVERTED(1'b0) ) lutb ( .Q(dout[2]), .Q31(q31[1]), .A(din[4:0]), .CE(din[5]), .CLK(din[6]), .D(lutd[1])); (* LOC=LOC, BEL="A6LUT" *) SRLC32E #( .INIT(32'h00000000), .IS_CLK_INVERTED(1'b0) ) luta ( .Q(dout[3]), .Q31(q31[0]), .A(din[4:0]), .CE(din[5]), .CLK(din[6]), .D(lutd[0])); endmodule ''')