openFPGALoader/src/ftdiJtagMPSSE.cpp

569 lines
14 KiB
C++

// SPDX-License-Identifier: Apache-2.0
/*
* Copyright (C) 2020 Gwenhael Goavec-Merou <gwenhael.goavec-merou@trabucayre.com>
*/
#include <libusb.h>
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <map>
#include <vector>
#include <stdexcept>
#include <string>
#include "display.hpp"
#include "ftdiJtagMPSSE.hpp"
#include "ftdipp_mpsse.hpp"
using namespace std;
#define DEBUG 0
#ifdef DEBUG
#define display(...) \
do { \
if (_verbose) fprintf(stdout, __VA_ARGS__); \
}while(0)
#else
#define display(...) do {}while(0)
#endif
FtdiJtagMPSSE::FtdiJtagMPSSE(const cable_t &cable,
const string &dev, const string &serial, uint32_t clkHZ,
bool invert_read_edge, int8_t verbose):
FTDIpp_MPSSE(cable, dev, serial, clkHZ, verbose), _ch552WA(false),
_write_mode(MPSSE_WRITE_NEG), // always write on neg edge
_read_mode(0),
_invert_read_edge(invert_read_edge), // false: pos, true: neg
_tdo_pos(0)
{
init_internal(cable.config);
}
FtdiJtagMPSSE::~FtdiJtagMPSSE()
{
int read;
/* Before shutdown, we must wait until everything is shifted out
* Do this by temporary enabling loopback mode, write something
* and wait until we can read it back
*/
static unsigned char tbuf[16] = { SET_BITS_LOW, 0xff, 0x00,
SET_BITS_HIGH, 0xff, 0x00,
LOOPBACK_START,
static_cast<unsigned char>(MPSSE_DO_READ | _read_mode |
MPSSE_DO_WRITE | _write_mode | MPSSE_LSB),
0x04, 0x00,
0xaa, 0x55, 0x00, 0xff, 0xaa,
LOOPBACK_END
};
mpsse_store(tbuf, 16);
read = mpsse_read(tbuf, 5);
if (read != 5)
fprintf(stderr,
"Loopback failed, expect problems on later runs %d\n", read);
}
void FtdiJtagMPSSE::init_internal(const mpsse_bit_config &cable)
{
display("iProduct : %s\n", _iproduct);
if (!strncmp((const char *)_iproduct, "Sipeed-Debug", 12)) {
_ch552WA = true;
}
display("%x\n", cable.bit_low_val);
display("%x\n", cable.bit_low_dir);
display("%x\n", cable.bit_high_val);
display("%x\n", cable.bit_high_dir);
if (init(5, 0xfb, BITMODE_MPSSE) != 0)
throw std::runtime_error("low level FTDI init failed");
config_edge();
_curr_tms = (cable.bit_low_val >> 3) & 0x01;
_curr_tdi = (cable.bit_low_val >> 1) & 0x01;
}
int FtdiJtagMPSSE::setClkFreq(uint32_t clkHZ) {
int ret = FTDIpp_MPSSE::setClkFreq(clkHZ);
config_edge();
return ret;
}
void FtdiJtagMPSSE::config_edge()
{
/* at high (>15MHz) with digilent cable (arty)
* opposite edges must be used.
* Not required with classic FT2232 but user selectable
*/
if (_invert_read_edge || (FTDIpp_MPSSE::getClkFreq() >= 15000000 &&
!strncmp((const char *)_iproduct, "Digilent USB Device", 19))) {
_read_mode = MPSSE_READ_NEG;
} else {
_read_mode = 0;
}
}
int FtdiJtagMPSSE::writeTMS(const uint8_t *tms, uint32_t len, bool flush_buffer, const uint8_t tdi)
{
(void) flush_buffer;
display("%s %d %d\n", __func__, len, (len/8)+1);
uint8_t curr_tdi = (tdi << 7);
if (len == 0)
return 0;
int xfer = len;
int iter = _buffer_size / 3;
int offset = 0, pos = 0;
uint8_t buf[3]= {static_cast<unsigned char>(MPSSE_WRITE_TMS | MPSSE_LSB |
MPSSE_BITMODE | _write_mode),
0, 0};
while (xfer > 0) {
uint8_t curr_tms = 0;
int bit_to_send = (xfer > 6) ? 6 : xfer;
buf[1] = bit_to_send-1;
buf[2] = curr_tdi;
for (int i = 0; i < bit_to_send; i++, offset++) {
curr_tms = ((tms[offset >> 3] & (1 << (offset & 0x07))) ? 1 : 0);
buf[2] |= (curr_tms << i);
}
buf[2] |= (curr_tms << bit_to_send);
pos+=3;
mpsse_store(buf, 3);
if (pos == iter * 3) {
pos = 0;
if (mpsse_write() < 0)
printf("writeTMS: error\n");
if (_ch552WA) {
uint8_t c[len/8+1];
int ret = ftdi_read_data(_ftdi, c, len/8+1);
if (ret != 0) {
printf("ret : %d\n", ret);
}
}
}
xfer -= bit_to_send;
}
if (flush_buffer)
mpsse_write();
if (_ch552WA) {
uint8_t c[len/8+1];
ftdi_read_data(_ftdi, c, len/8+1);
}
return len;
}
/* need a WA for ch552 */
int FtdiJtagMPSSE::toggleClk(uint8_t tms, uint8_t tdi, uint32_t clk_len)
{
(void) tdi;
int ret;
uint32_t len = clk_len;
/* clk ouput without data xfer is only supported
* with 2232H, 4242H & 232H
*/
if (_ftdi->type == TYPE_2232H || _ftdi->type == TYPE_4232H ||
_ftdi->type == TYPE_232H) {
uint8_t buf[] = {static_cast<uint8_t>(0x8f), 0, 0};
while (len) {
unsigned int chunk = len;
if (chunk > 0x10000 * 8)
chunk = 0x10000 * 8;
if (chunk > 8) {
unsigned cycles8 = chunk / 8;
len -= cycles8 * 8;
cycles8 --;
buf[1] = ((cycles8) ) & 0xff;
buf[2] = ((cycles8) >> 8) & 0xff;
mpsse_store(buf, 3);
}
if (len && len < 9) {
buf[0] = 0x8E;
buf[1] = len - 1;
mpsse_store(buf, 2);
len = 0;
}
}
ret = clk_len;
} else {
int byteLen = (len+7)/8;
uint8_t buf_tms[byteLen];
memset(buf_tms, (tms) ? 0xff : 0x00, byteLen);
ret = writeTMS(buf_tms, len, false);
}
return ret;
}
int FtdiJtagMPSSE::flush()
{
return mpsse_write();
}
int FtdiJtagMPSSE::writeTDI(const uint8_t *tdi, uint8_t *tdo, uint32_t len, bool last)
{
/* 3 possible case :
* - n * 8bits to send -> use byte command
* - less than 8bits -> use bit command
* - last bit to send -> sent in conjunction with TMS
*/
int tx_buff_size = mpsse_get_buffer_size();
int real_len = (last) ? len - 1 : len; // if its a buffer in a big send send len
// else suppress last bit -> with TMS
int nb_byte = real_len >> 3; // number of byte to send
int nb_bit = (real_len & 0x07); // residual bits
int xfer = tx_buff_size - 3;
unsigned char c[xfer];
unsigned char *rx_ptr = (unsigned char *)tdo;
unsigned char *tx_ptr = (unsigned char *)tdi;
unsigned char tx_buf[3] = {(unsigned char)(MPSSE_LSB |
((tdi) ? (MPSSE_DO_WRITE | _write_mode) : 0) |
((tdo) ? (MPSSE_DO_READ | _read_mode) : 0)),
static_cast<unsigned char>((xfer - 1) & 0xff), // low
static_cast<unsigned char>((((xfer - 1) >> 8) & 0xff))}; // high
display("%s len : %d %d %d %d last: %d\n", __func__, len, real_len, nb_byte,
nb_bit, last);
if ((nb_byte + _num + 3) > _buffer_size)
mpsse_write();
if ((nb_byte * 8) + nb_bit != real_len) {
printf("pas cool\n");
throw std::exception();
}
/* if only one full byte use BITMODE to reduce
* transaction size
*/
if (nb_byte == 1 && nb_bit == 0) {
nb_byte = 0;
nb_bit = 8;
}
while (nb_byte != 0) {
int xfer_len = (nb_byte > xfer) ? xfer : nb_byte;
tx_buf[1] = (((xfer_len - 1) ) & 0xff); // low
tx_buf[2] = (((xfer_len - 1) >> 8) & 0xff); // high
mpsse_store(tx_buf, 3);
if (tdi) {
mpsse_store(tx_ptr, xfer_len);
tx_ptr += xfer_len;
}
if (tdo) {
mpsse_read(rx_ptr, xfer_len);
rx_ptr += xfer_len;
} else if (_ch552WA) {
mpsse_write();
ftdi_read_data(_ftdi, c, xfer_len);
} else if (!last) {
mpsse_write();
}
nb_byte -= xfer_len;
}
unsigned char last_bit = (tdi) ? *tx_ptr : 0;
// never double write when nb_bit == 0
bool double_write = (nb_bit != 0) ? true : false;
if (nb_bit != 0) {
display("%s read/write %d bit\n", __func__, nb_bit);
tx_buf[0] |= MPSSE_BITMODE;
tx_buf[1] = nb_bit - 1;
mpsse_store(tx_buf, 2);
if (tdi) {
display("%s last_bit %x size %d\n", __func__, last_bit, nb_bit-1);
mpsse_store(last_bit);
}
if (tdo && !last) {
mpsse_read(rx_ptr, 1);
double_write = false;
/* realign we have read nb_bit
* since LSB add bit by the left and shift
* we need to complete shift
*/
*rx_ptr >>= (8 - nb_bit);
display("%s %x\n", __func__, *rx_ptr);
} else if (_ch552WA) {
if (tdo) {
mpsse_read(rx_ptr, 1);
double_write = false;
*rx_ptr >>= (8 - nb_bit);
} else {
mpsse_write();
ftdi_read_data(_ftdi, c, nb_bit);
}
} else if (!last) {
mpsse_write();
}
}
/* display : must be dropped */
if (_verbose && tdo) {
display("\n");
for (int i = (len / 8) - 1; i >= 0; i--)
display("%x ", (unsigned char)tdo[i]);
display("\n");
}
if (last == 1) {
last_bit = (tdi)? (*tx_ptr & (1 << nb_bit)) : 0;
display("%s move to EXIT1_xx and send last bit %x\n", __func__, (last_bit?0x81:0x01));
/* write the last bit in conjunction with TMS */
tx_buf[0] = MPSSE_WRITE_TMS | MPSSE_LSB | MPSSE_BITMODE | _write_mode |
((tdo) ? (MPSSE_DO_READ | _read_mode) : 0);
tx_buf[1] = 0x0; // send 1bit
tx_buf[2] = ((last_bit) ? 0x81 : 0x01); // we know in TMS tdi is bit 7
// and to move to EXIT_XR TMS = 1
mpsse_store(tx_buf, 3);
if (tdo) {
unsigned char c[2];
int index = 0;
mpsse_read(c, 1 + ((double_write)?1:0));
if (double_write) {
*rx_ptr = c[index] >> (8-nb_bit);
index++;
}
/* in this case for 1 one it's always bit 7 */
*rx_ptr |= (((c[index]) & 0x80) >> (7 - nb_bit));
} else if (_ch552WA) {
mpsse_write();
ftdi_read_data(_ftdi, c, 1);
} else {
mpsse_write();
}
}
return 0;
}
int32_t FtdiJtagMPSSE::update_tms_buff(uint8_t *buffer, uint8_t bit,
uint32_t offset, uint8_t tdi, uint8_t *tdo, bool end)
{
int32_t ret;
if (_verbose)
printf("%s %d %02x %d\n", __func__, offset, buffer[0], end);
if (!end) {
uint8_t bit_shift = (1 << (offset));
if (bit)
buffer[0] |= bit_shift;
else
buffer[0] &= ~bit_shift;
offset++;
}
if (offset == 6 || end) {
if (tdi)
buffer[0] |= (0x01 << 7);
else
buffer[0] &= ~(0x01 << 7);
uint8_t mp[3] = {
static_cast<unsigned char>(MPSSE_WRITE_TMS | MPSSE_LSB |
MPSSE_BITMODE | _write_mode |
MPSSE_DO_READ | _read_mode
),
static_cast<uint8_t>(offset - 1),
buffer[0]
};
// force a write
if (_verbose)
printf("\t%02x %02d %02x\n", mp[0], mp[1], mp[2]);
if ((ret = mpsse_store(mp, 3)) < 0)
return ret;
uint8_t tdo_tmp;
if ((ret = mpsse_read(&tdo_tmp, 1)) < 0)
return ret;
update_tdo_buff(&tdo_tmp, tdo, offset);
offset = 0;
buffer[0] = 0;
}
return offset;
}
uint32_t FtdiJtagMPSSE::update_tdo_buff(uint8_t *buffer, uint8_t *tdo, uint32_t len)
{
if (_verbose) {
printError("update tdo " + std::to_string(_tdo_pos) + " " + std::to_string(len) + " ", false);
uint32_t tt = (len + 7) / 8;
for (uint32_t i = 0; i < tt; i++)
printf("%02x ", buffer[i]);
}
for (uint32_t i = 0; i < len; i++, _tdo_pos++) {
uint8_t bit = (buffer[i >> 3] >> (i & 0x07)) & 0x01;
uint8_t mask = 1 << (_tdo_pos & 0x07);
if (bit)
tdo[_tdo_pos >> 3] |= mask;
else
tdo[_tdo_pos >> 3] &= ~mask;
}
if (_verbose)
printf("\n");
return _tdo_pos;
}
bool FtdiJtagMPSSE::writeTMSTDI(const uint8_t *tms, const uint8_t *tdi,
uint8_t *tdo, uint32_t len)
{
int32_t ret;
uint32_t max_len = 1024;
uint8_t mode = 0; // current state: 0 none, 1 TDI, 2 TMS
uint8_t tdi_buf[max_len]; // buffer to store TDI sequence
uint8_t tms_tmp = 0; // buffer to store TMS sequence (limited to 6bits per cmd)
uint8_t tdo_tmp[max_len]; // local TDO sequence
uint32_t buff_len = 0; // current bits stored
memset(tdi_buf, 0, max_len);
memset(tdo_tmp, 0, max_len);
_tdo_pos = 0; // current bits read
if (_verbose)
printSuccess("begin: " + std::to_string(len));
for (uint32_t buf_pos = 0; buf_pos < len; buf_pos++) {
/* extract bit from TMS and TDI sequence */
uint8_t tms_bit = (tms[buf_pos >> 3] >> (buf_pos & 0x07) & 0x01);
uint8_t tdi_bit = (tdi[buf_pos >> 3] >> (buf_pos & 0x07) & 0x01);
if (_verbose) {
char mess[256];
snprintf(mess, 256, "tms %d -> %d tdi %d -> %d mode %d %d/%d (%d)",
_curr_tms, tms_bit, _curr_tdi, tdi_bit, mode, buf_pos, len, buff_len);
printInfo(mess);
}
/* possible case:
* tdi & tms not changed -> write tdi
* tdi change but tms not -> write tdi
* tdi idem but tms changed -> write tms
* tdi & tms changed -> serie of write tms
* but finally:
* if tms is not changed -> write tdi
* otherwise -> write tms
*/
/* tms unchanged -> try to use TDI/TDO transaction */
if (tms_bit == _curr_tms) {
/* a tms transaction exist but not flushed or full
* if tdi is not changed -> update tms sequence
*/
if (mode == 2 && buff_len != 0 && tdi_bit == _curr_tdi) {
ret = update_tms_buff(&tms_tmp, tms_bit, buff_len,
tdi_bit, tdo);
if (ret < 0)
return false;
else
buff_len = ret;
} else {
/* tdi sequence
* first flush tms sequence if required */
if (mode != 1 && buff_len != 0) {
ret = update_tms_buff(&tms_tmp, 0, buff_len, _curr_tdi,
tdo, true);
if (ret < 0)
return false;
else
buff_len = ret;
}
/* update tdi buffer with one more bit */
uint8_t mask = (1 << (buff_len & 0x07));
if (tdi_bit)
tdi_buf[buff_len >> 3] |= mask;
else
tdi_buf[buff_len >> 3] &= ~mask;
buff_len++;
mode = 1;
}
/* TMS is changed -> TMS transaction */
} else {
/* flush */
/* previous write TDI -> flush */
if (mode == 1 && buff_len > 0) {
bool is_end = false;
/* tms 0 -> 1: it's handled by writeTDI:
* append bit to avoid another transaction */
if (_curr_tms == 0 && tms_bit == 1) {
uint8_t mask = (1 << (buff_len & 0x07));
if (tdi_bit)
tdi_buf[buff_len >> 3] |= mask;
else
tdi_buf[buff_len >> 3] &= ~mask;
buff_len++;
is_end = true;
}
writeTDI(tdi_buf, tdo_tmp, buff_len, is_end);
update_tdo_buff(tdo_tmp, tdo, buff_len);
memset(tdi_buf, 0, max_len);
buff_len = 0;
if (is_end) {
_curr_tdi = tdi_bit;
mode = 1;
continue;
}
/* same state -> simply flush */
} else if (tdi_bit != _curr_tdi && mode == 2 && buff_len > 0) {
ret = update_tms_buff(&tms_tmp, 0, buff_len, _curr_tdi, tdo, true);
if (ret < 0)
return false;
else
buff_len = ret;
tms_tmp = 0;
}
/* update */
ret = update_tms_buff(&tms_tmp, tms_bit, buff_len, tdi_bit, tdo);
if (ret < 0)
return false;
else
buff_len = ret;
mode = 2;
}
/* buffer full? */
if (buff_len == 8*max_len && mode == 1) {
writeTDI(tdi_buf, tdo_tmp, buff_len, false);
update_tdo_buff(tdo_tmp, tdo, buff_len);
memset(tdi_buf, 0, max_len);
buff_len = 0;
} else if (buff_len == 6 && mode == 2) {
ret = update_tms_buff(&tms_tmp, 0, buff_len, _curr_tdi, tdo, true);
if (ret < 0)
return false;
else
buff_len = ret;
tms_tmp = 0;
}
_curr_tdi = tdi_bit;
_curr_tms = tms_bit;
}
/* end -> force flush buffers */
if (buff_len > 0) {
switch (mode) {
case 1:
writeTDI(tdi_buf, tdo_tmp, buff_len, false);
update_tdo_buff(tdo_tmp, tdo, buff_len);
break;
case 2:
if (update_tms_buff(&tms_tmp, 0, buff_len, _curr_tdi,
tdo, true) < 0)
return false;
break;
}
}
if (_verbose) {
printSuccess("end state: tdi " + std::to_string(_curr_tdi) +
" tms " + std::to_string(_curr_tms));
}
return true;
}