// SPDX-License-Identifier: Apache-2.0 /* * Copyright (C) 2019 Gwenhael Goavec-Merou */ #define __STDC_FORMAT_MACROS #include #include #include #include #include #include #include #include #include #include #include #include "bitparser.hpp" #include "common.hpp" #include "configBitstreamParser.hpp" #include "display.hpp" #include "jedParser.hpp" #include "jtag.hpp" #include "mcsParser.hpp" #include "part.hpp" #include "progressBar.hpp" #if defined (_WIN64) || defined (_WIN32) #include "pathHelper.hpp" #endif #include "rawParser.hpp" #include "spiFlash.hpp" #include "spiInterface.hpp" #include "xilinx.hpp" #include "xilinxMapParser.hpp" /* Used for xc3s */ #define USER1 0x02 #define CFG_IN 0x05 #define USERCODE 0x08 #define IDCODE 0x09 #define ISC_ENABLE 0x10 #define JPROGRAM 0x0B #define JSTART 0x0C #define JSHUTDOWN 0x0D #define ISC_PROGRAM 0x11 #define ISC_DISABLE 0x16 #define BYPASS 0xff /* xc95 instructions set */ #define XC95_IDCODE 0xfe #define XC95_ISC_ERASE 0xed #define XC95_ISC_ENABLE 0xe9 #define XC95_ISC_DISABLE 0xf0 #define XC95_XSC_BLANK_CHECK 0xe5 #define XC95_ISC_PROGRAM 0xea #define XC95_ISC_READ 0xee /* DRP instructions set */ #define XADC_DRP 0x37 /* XADC Addresses */ #define XADC_TEMP 0x00 #define XADC_LOCK 0x00 #define XADC_VCCINT 0x01 #define XADC_VCCAUX 0x02 #define XADC_VAUXEN 0x02 #define XADC_VPVN 0x03 #define XADC_RESET 0x03 #define XADC_VREFP 0x04 #define XADC_VREFN 0x05 #define XADC_VCCBRAM 0x06 #define XADC_SUPAOFFS 0x08 #define XADC_ADCAOFFS 0x09 #define XADC_ADCAGAIN 0x0a #define XADC_VCCPINT 0x0d #define XADC_VCCPAUX 0x0e #define XADC_VCCODDR 0x0f #define XADC_VAUX0 0x10 #define XADC_VAUX1 0x11 #define XADC_VAUX2 0x12 #define XADC_VAUX3 0x13 #define XADC_VAUX4 0x14 #define XADC_VAUX5 0x15 #define XADC_VAUX6 0x16 #define XADC_VAUX7 0x17 #define XADC_VAUX8 0x18 #define XADC_VAUX9 0x19 #define XADC_VAUX10 0x1a #define XADC_VAUX11 0x1b #define XADC_VAUX12 0x1c #define XADC_VAUX13 0x1d #define XADC_VAUX14 0x1e #define XADC_VAUX15 0x1f #define XADC_TEMP_MAX 0x20 #define XADC_TEMP_MIN 0x24 #define XADC_SUPBOFFS 0x30 #define XADC_ADCBOFFS 0x31 #define XADC_ADCBGAIN 0x32 #define XADC_FLAG 0x3f #define XADC_CFG0 0x40 #define XADC_CFG1 0x41 #define XADC_CFG2 0x42 #define XADC_SEQ0 0x48 #define XADC_SEQ1 0x49 #define XADC_SEQ2 0x4a #define XADC_SEQ3 0x4b #define XADC_SEQ4 0x4c #define XADC_SEQ5 0x4d #define XADC_SEQ6 0x4e #define XADC_SEQ7 0x4f #define XADC_ALARM0 0x50 #define XADC_ALARM1 0x51 #define XADC_ALARM2 0x52 #define XADC_ALARM3 0x53 #define XADC_ALARM4 0x54 #define XADC_ALARM5 0x55 #define XADC_ALARM6 0x56 #define XADC_ALARM7 0x57 #define XADC_ALARM8 0x58 #define XADC_ALARM9 0x59 #define XADC_ALARM10 0x5a #define XADC_ALARM11 0x5b #define XADC_ALARM12 0x5c #define XADC_ALARM13 0x5d #define XADC_ALARM14 0x5e #define XADC_ALARM15 0x5f #define XADC_VCC_MINOFFSET 0x24 #define XADC_VCC_MAXOFFSET 0x20 /* Boundary-scan instruction set based on the FPGA model */ static std::map>> ircode_mapping { { /* 7-series default */ "default", { { "USER1", {0x02} }, { "USER2", {0x03} }, { "CFG_OUT", {0x04} }, { "CFG_IN", {0x05} }, { "USERCODE", {0x08} }, { "IDCODE", {0x09} }, { "ISC_ENABLE", {0x10} }, { "JPROGRAM", {0x0B} }, { "JSTART", {0x0C} }, { "JSHUTDOWN", {0x0D} }, { "ISC_PROGRAM", {0x11} }, { "ISC_DISABLE", {0x16} }, { "BYPASS", {0xff} }, } }, { /* Xilinx Virtex UltraScale+ */ /* /data/parts/xilinx/virtexuplus/public/bsdl/xcvu9p_flga2104.bsd */ "virtexusp", { { "USER1", {0b00100100, 0b00101001, 0b00} }, { "USER2", {0b00100100, 0b00111001, 0b00} }, { "CFG_IN", {0b00100100, 0b01011001, 0b00} }, // CFG_IN_SLR1 { "USERCODE", {0b00100100, 0b10001001, 0b00} }, { "IDCODE", {0b01001001, 0b10010010, 0b00} }, { "ISC_ENABLE", {0b00010000, 0b00000100, 0b01} }, { "JPROGRAM", {0b11001011, 0b10110010, 0b00} }, { "JSTART", {0b00001100, 0b11000011, 0b00} }, { "JSHUTDOWN", {0b01001101, 0b11010011, 0b00} }, { "ISC_PROGRAM", {0b01010001, 0b00010100, 0b01} }, { "ISC_DISABLE", {0b10010110, 0b01100101, 0b01} }, { "BYPASS", {0b11111111, 0b11111111, 0b11} }, } } }; /* Helper to get instruction code as a uint8_t pointer * */ static uint8_t *get_ircode( std::map> &inst_map, std::string inst) { return inst_map.at(inst).data(); } static void open_bitfile( const std::string &filename, const std::string &extension, ConfigBitstreamParser **parser, bool reverse, bool verbose) { printInfo("Open file ", false); if (extension == "bit") { *parser = new BitParser(filename, reverse, verbose); } else if (extension == "mcs") { *parser = new McsParser(filename, reverse, verbose); } else { *parser = new RawParser(filename, reverse); } printSuccess("DONE"); printInfo("Parse file ", false); if ((*parser)->parse() == EXIT_FAILURE) { throw std::runtime_error("Failed to parse bitstream"); } printSuccess("DONE"); } #define FUSE_DNA 0x32 uint64_t Xilinx::fuse_dna_read(void) { unsigned char tx_data[8] = {0, 0, 0, 0, 0, 0, 0, 0}; unsigned char rx_data[8]; _jtag->go_test_logic_reset(); _jtag->shiftIR(FUSE_DNA, 6); _jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 64); uint64_t dna = 0; for(int i = 0; i < 8; i++) { unsigned char rev = 0; for (int j = 0; j < 8; j++) { rev |= ((rx_data[i] >> j) & 1) << (7 - j); } dna = (dna << 8ULL) | rev; } return dna & 0x1ffffffffffffff; } unsigned int Xilinx::xadc_read(uint16_t addr) { unsigned int tx_data = (1 << 26) | (addr << 16); unsigned int rx_data = 0; _jtag->go_test_logic_reset(); _jtag->shiftIR(XADC_DRP, 6); _jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32); usleep(1000); _jtag->shiftIR(XADC_DRP, 6); _jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32); return rx_data; } void Xilinx::xadc_write(uint16_t addr, uint16_t data) { unsigned int tx_data = (1 << 26) | (addr << 16) | data; unsigned int rx_data = 0; _jtag->go_test_logic_reset(); _jtag->shiftIR(XADC_DRP, 6); _jtag->shiftDR((unsigned char *)&tx_data, (unsigned char *)&rx_data, 32); } unsigned int Xilinx::xadc_single(uint16_t ch) { _jtag->go_test_logic_reset(); // single channel, disable the sequencer xadc_write(XADC_CFG1, 0x3000); // set channel, no averaging, additional settling time xadc_write(XADC_CFG0, (1 << 15) | (1 << 8) | ch); // leave some time (1ms) for the conversion usleep(1000); unsigned int ret = xadc_read(ch); return ret; } Xilinx::Xilinx(Jtag *jtag, const std::string &filename, const std::string &secondary_filename, const std::string &file_type, Device::prog_type_t prg_type, const std::string &device_package, const std::string &spiOverJtagPath, const std::string &target_flash, bool verify, int8_t verbose, bool skip_load_bridge, bool skip_reset, bool read_dna, bool read_xadc): Device(jtag, filename, file_type, verify, verbose), SPIInterface(filename, verbose, 256, verify, skip_load_bridge, skip_reset), _device_package(device_package), _spiOverJtagPath(spiOverJtagPath), _irlen(6), _secondary_filename(secondary_filename) { if (prg_type == Device::RD_FLASH) { _mode = Device::READ_MODE; } else if (!_file_extension.empty()) { if (_file_extension == "mcs") { _mode = Device::SPI_MODE; } else if (_file_extension == "bit" || _file_extension == "bin") { if (prg_type == Device::WR_SRAM) _mode = Device::MEM_MODE; else _mode = Device::SPI_MODE; } else if (_file_extension == "jed") { _mode = Device::FLASH_MODE; } else { _mode = Device::SPI_MODE; } } select_flash_chip(PRIMARY_FLASH); if (target_flash == "primary") { _flash_chips = PRIMARY_FLASH; } else if (target_flash == "secondary") { _flash_chips = SECONDARY_FLASH; } else if (target_flash == "both") { _flash_chips = (PRIMARY_FLASH | SECONDARY_FLASH); } else { throw std::runtime_error("Error: unknown flash target: " + target_flash); } if (_flash_chips & SECONDARY_FLASH) { _secondary_file_extension = secondary_filename.substr( secondary_filename.find_last_of(".") + 1); _mode = Device::SPI_MODE; if (!(_device_package == "xcvu9p-flga2104" || _device_package == "xcku5p-ffvb676")) { throw std::runtime_error("Error: secondary flash unavailable"); } } uint32_t idcode = _jtag->get_target_device_id(); std::string family = fpga_list[idcode].family; std::string model = fpga_list[idcode].model; _irlen = fpga_list[idcode].irlength; _ircode_map = ircode_mapping.at("default"); if (family.substr(0, 5) == "artix") { _fpga_family = ARTIX_FAMILY; } else if (family == "spartan7") { _fpga_family = SPARTAN7_FAMILY; } else if (family == "zynq") { _fpga_family = ZYNQ_FAMILY; if (_mode != Device::MEM_MODE) { char mess[256]; snprintf(mess, 256, "Error: can't flash non-volatile memory for " "Zynq7000 devices\n" "\tSPI Flash access is only available from PS side\n"); throw std::runtime_error(mess); } } else if (family.substr(0, 6) == "zynqmp") { if (_mode != Device::MEM_MODE) { char mess[256]; snprintf(mess, 256, "Error: can't flash non-volatile memory for " "ZynqMP devices\n" "\tSPI Flash access is only available from PSU side\n"); throw std::runtime_error(mess); } if (!zynqmp_init(family)) throw std::runtime_error("Error with ZynqMP init"); _fpga_family = ZYNQMP_FAMILY; } else if (family == "kintex7") { _fpga_family = KINTEX_FAMILY; } else if (family == "kintexus") { _fpga_family = KINTEXUS_FAMILY; } else if (family == "kintexusp") { _fpga_family = KINTEXUSP_FAMILY; } else if (family == "artixusp") { _fpga_family = ARTIXUSP_FAMILY; } else if (family == "virtexusp") { _fpga_family = VIRTEXUSP_FAMILY; _ircode_map = ircode_mapping.at("virtexusp"); } else if (family.substr(0, 8) == "spartan3") { _fpga_family = SPARTAN3_FAMILY; if (_mode != Device::MEM_MODE) { throw std::runtime_error("Error: Only load to mem is supported"); } } else if (family == "xcf") { _fpga_family = XCF_FAMILY; if (_mode == Device::MEM_MODE) { throw std::runtime_error("Error: Only write or read is supported"); } } else if (family == "spartan6") { _fpga_family = SPARTAN6_FAMILY; } else if (family == "xc2c") { xc2c_init(idcode); } else if (family == "xc9500xl") { _fpga_family = XC95_FAMILY; switch (idcode) { case 0x09602093: _xc95_line_len = 2; break; case 0x09604093: _xc95_line_len = 4; break; case 0x09608093: _xc95_line_len = 8; break; case 0x09616093: _xc95_line_len = 16; break; } } else { _fpga_family = UNKNOWN_FAMILY; } if (read_dna) { if (_fpga_family == ARTIX_FAMILY || _fpga_family == KINTEXUS_FAMILY) { uint64_t dna = Xilinx::fuse_dna_read(); printf("{\"dna\": \"0x%016" PRIx64 "\"}\n", dna); } else { throw std::runtime_error("Error: read_xadc only supported for Artix 7"); } } if (read_xadc) { if (_fpga_family == ARTIX_FAMILY || _fpga_family == KINTEXUS_FAMILY) { // calibrate XADC Xilinx::xadc_single(8); const int MAX_CHANNEL = 8; const int TEMP_MEAS = 4; unsigned int v = 0; for (int i = 0; i < TEMP_MEAS; i++) { v += Xilinx::xadc_single(XADC_TEMP); } double temp = ((v/(double)TEMP_MEAS) * 503.975)/(1 << 16) - 273.15; double max_temp = (Xilinx::xadc_single(XADC_TEMP_MAX) * 503.975)/(1 << 16) - 273.15; double min_temp = (Xilinx::xadc_single(XADC_TEMP_MIN) * 503.975)/(1 << 16) - 273.15; unsigned int channel_values[32]; for (int ch = 0; ch < MAX_CHANNEL; ch++) { if (ch < 7 || ch > 12) { v = Xilinx::xadc_single(ch); } else { // 7 = Invalid channel selection // 8 = Carry out XADC calibration // 9...12 = Invalid channel selection v = 0; } channel_values[ch] = v; } double vccint = (Xilinx::xadc_single(XADC_VCCINT)>>4)/4096.0 * 3.0; // ref: UG480 double vccintmax = (Xilinx::xadc_single(XADC_VCCINT + XADC_VCC_MAXOFFSET)>>4)/4096.0 * 3.0; // ref: UG480 double vccintmin = (Xilinx::xadc_single(XADC_VCCINT + XADC_VCC_MINOFFSET)>>4)/4096.0 * 3.0; // ref: UG480 double vccaux = (Xilinx::xadc_single(XADC_VCCAUX)>>4)/4096.0 * 3.0; // ref: UG480 double vccauxmax = (Xilinx::xadc_single(XADC_VCCAUX + XADC_VCC_MAXOFFSET)>>4)/4096.0 * 3.0; // ref: UG480 double vccauxmin = (Xilinx::xadc_single(XADC_VCCAUX + XADC_VCC_MINOFFSET)>>4)/4096.0 * 3.0; // ref: UG480 /* output as JSON dict */ std::cout << "{"; std::cout << "\"temp\": " << temp << ", " << std::endl;; std::cout << " \"maxtemp\": " << max_temp << ", " << std::endl;; std::cout << " \"mintemp\": " << min_temp << ", " << std::endl;; std::cout << "\"raw\": {"; for (int ch = 0; ch < MAX_CHANNEL; ch++) { std::cout << "\"" << ch << "\": " << channel_values[ch] << ((ch == MAX_CHANNEL - 1)? "}" : ", "); } std::cout << "," << std::endl; std::cout << "\"vccint\": " << vccint << ", " << std::endl; std::cout << " \"maxvccint\": " << vccintmax << ", " << std::endl; std::cout << " \"minvccint\": " << vccintmin << ", " << std::endl; std::cout << "\"vccaux\": " << vccaux << ", " << std::endl; std::cout << " \"maxvccaux\": " << vccauxmax << ", " << std::endl; std::cout << " \"minvccaux\": " << vccauxmin << ", " << std::endl; std::cout << "}" << std::endl; } else { throw std::runtime_error("Error: read_xadc only supported for Artix 7"); } } } Xilinx::~Xilinx() {} bool Xilinx::zynqmp_init(const std::string &family) { /* by default, at powering a zynqmp has * PL TAP and ARM DAP disabled * at this time only PS TAB and a dummy are seen * So first step is to enable PL and ARM */ if (family == "zynqmp_cfgn") { /* PS TAP is the first device with 0xfffffe idcode */ _jtag->device_select(0); /* send 0x03 into JTAG_CTRL register */ uint16_t ircode = 0x824; _jtag->shiftIR(ircode & 0xff, 8, Jtag::SHIFT_IR); _jtag->shiftIR((ircode >> 8) & 0x0f, 4); uint8_t instr[4] = {0x3, 0, 0, 0}; _jtag->shiftDR(instr, NULL, 32); /* synchronize everything by moving to TLR */ _jtag->set_state(Jtag::TEST_LOGIC_RESET); _jtag->toggleClk(10); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(100); /* force again JTAG chain detection */ _jtag->detectChain(5); } /* check if the chain is correctly configured: * 2 devices * PL at position 0 * ARM at position 1 */ char mess[256]; std::vector listDev = _jtag->get_devices_list(); if (listDev.size() != 2) { snprintf(mess, sizeof(mess), "ZynqMP error: wrong" " JTAG length: %zu instead of 2\n", listDev.size()); printError(mess); return false; } if (fpga_list[listDev[0]].family != "zynqmp") { snprintf(mess, sizeof(mess), "ZynqMP error: first device" " is not the PL TAP -> 0x%08x\n", listDev[0]); printError(mess); return false; } if (listDev[1] != 0x5ba00477) { snprintf(mess, sizeof(mess), "ZynqMP error: second device" " is not the ARM DAP cortex A53 -> 0x%08x\n", listDev[1]); printError(mess); return false; } _jtag->insert_first(0xdeadbeef, 6); _jtag->device_select(1); _irlen = 6; return true; } void Xilinx::reset() { _jtag->shiftIR(get_ircode(_ircode_map, "JSHUTDOWN"), NULL, _irlen); _jtag->shiftIR(get_ircode(_ircode_map, "JPROGRAM"), NULL, _irlen); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(10000*12); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); _jtag->shiftIR(get_ircode(_ircode_map, "BYPASS"), NULL, _irlen); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); } uint32_t Xilinx::idCode() { int id = 0; unsigned char tx_data[4]= {0x00, 0x00, 0x00, 0x00}; unsigned char rx_data[4]; _jtag->go_test_logic_reset(); _jtag->shiftIR(get_ircode(_ircode_map, "IDCODE"), NULL, _irlen); _jtag->shiftDR(tx_data, rx_data, 32); id = ((rx_data[0] & 0x000000ff) | ((rx_data[1] << 8) & 0x0000ff00) | ((rx_data[2] << 16) & 0x00ff0000) | ((rx_data[3] << 24) & 0xff000000)); /* workaround for XC95 with different * IR length and IDCODE value */ if (id == 0) { _jtag->go_test_logic_reset(); _jtag->shiftIR(XC95_IDCODE, 8); _jtag->shiftDR(tx_data, rx_data, 32); id = ((rx_data[0] & 0x000000ff) | ((rx_data[1] << 8) & 0x0000ff00) | ((rx_data[2] << 16) & 0x00ff0000) | ((rx_data[3] << 24) & 0xff000000)); } return id; } void Xilinx::program(unsigned int offset, bool unprotect_flash) { ConfigBitstreamParser *bit = nullptr; ConfigBitstreamParser *secondary_bit = nullptr; bool reverse = false; /* nothing to do */ if (_mode == Device::NONE_MODE || _mode == Device::READ_MODE) return; if (_mode == Device::FLASH_MODE && _file_extension == "jed") { if (_fpga_family != XC95_FAMILY && _fpga_family != XC2C_FAMILY) throw std::runtime_error("Error: jed only supported for xc95 and xc2c"); printInfo("Open file ", false); std::unique_ptr jed(new JedParser(_filename, _verbose)); if (jed->parse() == EXIT_FAILURE) { printError("FAIL"); return; } printSuccess("DONE"); if (_fpga_family == XC95_FAMILY) flow_program(jed.get()); else if (_fpga_family == XC2C_FAMILY) xc2c_flow_program(jed.get()); return; } if (_fpga_family == XC95_FAMILY) { printError("Only jed file and flash mode supported for XC95 CPLD"); return; } if (_mode == Device::MEM_MODE || _fpga_family == XCF_FAMILY) reverse = true; try { if (_flash_chips & PRIMARY_FLASH) { open_bitfile(_filename, _file_extension, &bit, reverse, _verbose); } if (_flash_chips & SECONDARY_FLASH) { open_bitfile(_secondary_filename, _secondary_file_extension, &secondary_bit, reverse, _verbose); } } catch (std::exception &e) { printError("FAIL"); if (bit) delete bit; if (secondary_bit) delete secondary_bit; return; } if (_verbose) { if (bit) bit->displayHeader(); if (secondary_bit) secondary_bit->displayHeader(); } if (_fpga_family == XCF_FAMILY) { xcf_program(bit); delete bit; return; } if (_mode == Device::SPI_MODE) { if (_flash_chips & PRIMARY_FLASH) { select_flash_chip(PRIMARY_FLASH); program_spi(bit, offset, unprotect_flash); } if (_flash_chips & SECONDARY_FLASH) { select_flash_chip(SECONDARY_FLASH); program_spi(secondary_bit, offset, unprotect_flash); } reset(); } else { if (_fpga_family == SPARTAN3_FAMILY) xc3s_flow_program(bit); else program_mem(bit); } delete bit; } bool Xilinx::post_flash_access() { if (_skip_reset) printInfo("Skip resetting device"); else reset(); return true; } bool Xilinx::prepare_flash_access() { if (_skip_load_bridge) { printInfo("Skip loading bridge for spiOverjtag"); return true; } return load_bridge(); } bool Xilinx::load_bridge() { std::string bitname; if (!_spiOverJtagPath.empty()) { bitname = _spiOverJtagPath; } else { if (_device_package.empty()) { printError("Can't program SPI flash: missing device-package information"); return false; } bitname = get_shell_env_var("OPENFPGALOADER_SOJ_DIR", DATA_DIR "/openFPGALoader"); bitname += "/spiOverJtag_" + _device_package + ".bit.gz"; } #if defined (_WIN64) || defined (_WIN32) /* Convert relative path embedded at compile time to an absolute path */ bitname = PathHelper::absolutePath(bitname); #endif std::cout << "use: " << bitname << std::endl; /* first: load spi over jtag */ try { BitParser bridge(bitname, true, _verbose); bridge.parse(); if (_fpga_family == SPARTAN3_FAMILY) xc3s_flow_program(&bridge); else program_mem(&bridge); } catch (std::exception &e) { printError(e.what()); throw std::runtime_error(e.what()); } return true; } void Xilinx::program_spi(ConfigBitstreamParser * bit, unsigned int offset, bool unprotect_flash) { if (!bit) throw std::runtime_error("called with null bitstream"); const uint8_t *data = bit->getData(); int length = bit->getLength() / 8; SPIInterface::write(offset, data, length, unprotect_flash); } void Xilinx::program_mem(ConfigBitstreamParser *bitfile) { std::cout << "load program" << std::endl; unsigned char *tx_buf; unsigned char rx_buf[(_irlen >> 3) + 1]; /* comment TDI TMS TCK * 1: On power-up, place a logic 1 on the TMS, * and clock the TCK five times. This ensures X 1 5 * starting in the TLR (Test-Logic-Reset) state. */ _jtag->go_test_logic_reset(); /* * 2: Move into the RTI state. X 0 1 * 3: Move into the SELECT-IR state. X 1 2 * 4: Enter the SHIFT-IR state. X 0 2 * 5: Start loading the JPROGRAM instruction, 01011(4) 0 5 * LSB first: * 6: Load the MSB of the JPROGRAM instruction * when exiting SHIFT-IR, as defined in the 0 1 1 * IEEE standard. * 7: Place a logic 1 on the TMS and clock the * TCK five times. This ensures starting in X 1 5 * the TLR (Test-Logic-Reset) state. */ _jtag->shiftIR(get_ircode(_ircode_map, "JPROGRAM"), NULL, _irlen); /* test */ tx_buf = get_ircode(_ircode_map, "BYPASS"); do { _jtag->shiftIR(tx_buf, rx_buf, _irlen); } while (!(rx_buf[0] &0x01)); /* * 8: Move into the RTI state. X 0 10,000(1) */ _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(10000*12); /* * 9: Start loading the CFG_IN instruction, * LSB first: 00101 0 5 * 10: Load the MSB of CFG_IN instruction when * exiting SHIFT-IR, as defined in the 0 1 1 * IEEE standard. */ _jtag->shiftIR(get_ircode(_ircode_map, "CFG_IN"), NULL, _irlen); /* * 11: Enter the SELECT-DR state. X 1 2 */ _jtag->set_state(Jtag::SELECT_DR_SCAN); /* * 13: Shift in the FPGA bitstream. Bitn (MSB) * is the first bit in the bitstream(2). bit1...bitn 0 (bits in bitstream)-1 * 14: Shift in the last bit of the bitstream. * Bit0 (LSB) shifts on the transition to bit0 1 1 * EXIT1-DR. */ /* GGM: TODO */ int byte_length = bitfile->getLength() / 8; const uint8_t *data = bitfile->getData(); int tx_len; Jtag::tapState_t tx_end; int burst_len = byte_length / 100; ProgressBar progress("Load SRAM", byte_length, 50, _quiet); for (int i=0; i < byte_length; i+=burst_len) { if (i + burst_len > byte_length) { tx_len = (byte_length - i) * 8; /* * 15: Enter UPDATE-DR state. X 1 1 */ tx_end = Jtag::UPDATE_DR; } else { tx_len = burst_len * 8; /* * 12: Enter the SHIFT-DR state. X 0 2 */ tx_end = Jtag::SHIFT_DR; } _jtag->shiftDR(data+i, NULL, tx_len, tx_end); _jtag->flush(); progress.display(i); } progress.done(); /* * 16: Move into RTI state. X 0 1 */ _jtag->set_state(Jtag::RUN_TEST_IDLE); /* * 17: Enter the SELECT-IR state. X 1 2 * 18: Move to the SHIFT-IR state. X 0 2 * 19: Start loading the JSTART instruction * (optional). The JSTART instruction 01100 0 5 * initializes the startup sequence. * 20: Load the last bit of the JSTART instruction. 0 1 1 * 21: Move to the UPDATE-IR state. X 1 1 */ _jtag->shiftIR(get_ircode(_ircode_map, "JSTART"), NULL, _irlen, Jtag::UPDATE_IR); /* * 22: Move to the RTI state and clock the * startup sequence by applying a minimum X 0 2000 * of 2000 clock cycles to the TCK. */ _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); /* * 23: Move to the TLR state. The device is * now functional. X 1 3 */ _jtag->go_test_logic_reset(); /* Some xc7s50 does not detect correct connected flash w/o this shift*/ _jtag->shiftIR(tx_buf, rx_buf, _irlen); uint8_t ir_c = rx_buf[0] & 0x03; uint8_t isc_done = ((rx_buf[0] >> 2) & 0x01); uint8_t isc_ena = ((rx_buf[0] >> 3) & 0x01); uint8_t init = ((rx_buf[0] >> 4) & 0x01); uint8_t done = ((rx_buf[0] >> 5) & 0x01); printf("Shift IR %02x\n", rx_buf[0]); printf("ir: %x isc_done %x isc_ena %x init %x done %x\n", ir_c, isc_done, isc_ena, init, done); if (!done) { read_register("STAT"); } } static uint32_t reverseWord(uint32_t in) { uint32_t out = 0; for (int i = 0; i < 32; i++) { out <<= 1; out |= (in >> i) & 0x01; } return out; } static uint32_t char_array_to_word(uint8_t *in) { return (((uint32_t)in[3] << 24) | ((uint32_t)in[2] << 16) | ((uint32_t)in[1] << 8) | ((uint32_t)in[0] << 0)); } typedef struct { std::string description; uint8_t offset; uint8_t size; std::map reg_cnt; } reg_struct_t; #define REG_ENTRY(_description, _offset, _size, ...) \ {_description, _offset, _size, {__VA_ARGS__}} static const std::map> reg_content = { {"CTRL0", std::list{ REG_ENTRY("GTS USR B", 0, 1, {0, "I/Os 3-stated"}, {1, "I/Os active"}), REG_ENTRY("Reserved", 1, 2), REG_ENTRY("PERSIST", 3, 1, {0, "No"}, {1, "Yes"}), REG_ENTRY("SBITS", 4, 2, {0, "Read/Write OK"}, {1, "Readback disabled"}, {2, "Both Writes and Reads disabled"}, {3, "Both Writes and Reads disabled"}), REG_ENTRY("DEC", 6, 1, {0, "Disable"}, {1, "Enable"}), REG_ENTRY("FARSRC", 7, 1), REG_ENTRY("GLUMASK B", 8, 1), REG_ENTRY("Reserved", 9, 1), REG_ENTRY("ConfigFallback", 10, 1, {0, "Disable"}, {1, "Enable"}), REG_ENTRY("Reserved", 11, 1), REG_ENTRY("OverTempPwrDown",12, 1, {0, "Disable"}, {1, "Enable"}), REG_ENTRY("Reserved", 13, 17), REG_ENTRY("ICAP Select", 30, 1, {0, "Top ICAPE2 Port Enabled"}, {1, "Bottom ICAPE2 Port Enabled"}), REG_ENTRY("EFUSE key", 31, 1, {0, "Battery backed RAM"}, {1, "eFUSE"}), }}, {"STAT", std::list{ REG_ENTRY("CRC Error", 0, 1, {0, "No CRC error"}, {1, "CRC error"}), REG_ENTRY("Part Secured", 1, 1), REG_ENTRY("MMCM lock", 2, 1), REG_ENTRY("DCI match", 3, 1), REG_ENTRY("EOS", 4, 1), REG_ENTRY("GTS CFG B", 5, 1), REG_ENTRY("GWE", 6, 1), REG_ENTRY("GHIGH B", 7, 1), REG_ENTRY("MODE", 8, 3), REG_ENTRY("INIT Complete", 11, 1), REG_ENTRY("INIT B", 12, 1), REG_ENTRY("Release Done", 13, 1), REG_ENTRY("Done", 14, 1), REG_ENTRY("ID Error", 15, 1, {0, "No ID error"}, {1, "ID error"}), REG_ENTRY("DEC Error", 16, 1), REG_ENTRY("XADC Over temp", 17, 1), REG_ENTRY("STARTUP State", 18, 3), REG_ENTRY("Reserved", 21, 4), REG_ENTRY("BUS Width", 25, 2, {0, "x1"}, {1, "x8"}, {2, "x16"}, {3, "x32"}), REG_ENTRY("Reserved", 27, 5) }}, // UG470 Table 5-34 {"WBSTAR", std::list{ // Next bitstream start address. The default start address // is address zero. REG_ENTRY("START ADDR", 0, 29), REG_ENTRY("RS TS B", 29, 1, {0, "3-state enabled (RS[1:0] disabled) (default)"}, {1, "3-state disabled (RS[1:0] enabled)"}, ), // RS[1:0] pin value on next warm boot. The default is 00. REG_ENTRY("RS[1:0]", 30, 2), }}, // UG470 Table 5-39 {"BOOTSTS", std::list{ // Status 0 is valid REG_ENTRY("VALID 0", 0, 1), REG_ENTRY("FALLBACK 0", 1, 1, {0, "Normal configuration"}, {1, "Fallback to default reconfiguration, RS[1:0] actively drives 2'b00"} ), // Internal PROG triggered configuration REG_ENTRY("IPROG 0", 2, 1), // Watchdog time-out error REG_ENTRY("WTO Error 0", 3, 1), // ID_CODE error REG_ENTRY("ID Error 0", 4, 1), // CRC error REG_ENTRY("CRC Error 0", 5, 1), // BPI address counter wraparound error, supported in // asynchronous read mode REG_ENTRY("WRAP Error 0", 6, 1), // HMAC error REG_ENTRY("HMAC Error 0", 7, 1), REG_ENTRY("VALID 1", 8, 1), REG_ENTRY("FALLBACK 1", 9, 1, {0, "Normal configuration"}, {1, "Fallback to default reconfiguration, RS[1:0] actively drives 2'b00"} ), REG_ENTRY("IPROG 1", 10, 1), REG_ENTRY("WTO Error 1", 11, 1), REG_ENTRY("ID Error 1", 12, 1), REG_ENTRY("CRC Error 1", 13, 1), REG_ENTRY("WRAP Error 1", 14, 1), REG_ENTRY("HMAC Error 1", 15, 1), }}, }; /* UG470 table 5-23 */ static const std::map reg_code = { {"CTRL0", 0x05}, // Control register 0 {"STAT", 0x07}, // Status register {"CONF0", 0x09}, // Configuration Option 0 {"CONF1", 0x0e}, // Configuration Option 1 {"WBSTAR", 0x10}, // Warm Boot Start Address Register {"BOOTSTS", 0x16}, // Boot history status register {"CTRL1", 0x18}, // Control register 1 }; uint32_t Xilinx::dumpRegister(std::string reg_name) { uint8_t reg[4]; const uint8_t dummy[] = {0x00, 0x00, 0x00, 0x04}; /* opcode: * 0x0: NOP * 0x1: read * 0x2: write * 0x3: Reserved */ /* register code * 0x05: Control register 0 * 0x07: Status register * 0x09: Configuration Option 0 * 0x0e: Configuration Option 1 * 0x18: Control Register 1 * 0x16: Boot history Status register */ auto code = reg_code.find(reg_name); if (code == reg_code.end()) { printError("Unknown register " + reg_name); printError("Known Register are:"); for (auto reg :reg_code) printError("\t" + reg.first); return 0xdeadbeef; } /* packet type 1 */ const uint32_t regcode = static_cast(code->second); uint32_t cfg_packets[] = { 0xAA995566, // Sync Word 0x20000000, // NOOP ((0x01 & 0x0007) << 29) | // [31:29]: Header type ((0x01 & 0x0003) << 27) | // [28:27]: opcode ((regcode & 0x3fff) << 13) | // [26:13]: register code ((0x00 & 0x0003) << 11) | // [12:11]: Reserved must be set to 0 ((0x01 & 0x07ff) << 0), // [10:0 ]: word count 0x20000000, // NOOP 0x20000000, // NOOP }; _jtag->go_test_logic_reset(); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->shiftIR(get_ircode(_ircode_map, "CFG_IN"), NULL, _irlen, Jtag::SELECT_DR_SCAN); Jtag::tapState_t next_state = Jtag::SHIFT_DR; for (int i = 0; i < 5; i++) { if (i == 4) next_state = Jtag::SELECT_IR_SCAN; const uint32_t tmp = reverseWord(cfg_packets[i]); const uint8_t cfg[] = { static_cast((tmp >> 0) & 0xff), static_cast((tmp >> 8) & 0xff), static_cast((tmp >> 16) & 0xff), static_cast((tmp >> 24) & 0xff) }; _jtag->shiftDR(cfg, NULL, 32, next_state); } _jtag->shiftIR(get_ircode(_ircode_map, "CFG_OUT"), NULL, _irlen, Jtag::SELECT_DR_SCAN); _jtag->shiftDR(dummy, reg, 32); _jtag->go_test_logic_reset(); uint32_t reg_word = char_array_to_word(reg); reg_word = reverseWord(reg_word); return reg_word; } void Xilinx::displayRegister(const std::string reg_name, const uint32_t reg_val) { auto reg = reg_content.find(reg_name); if (reg == reg_content.end()) { printError("Unknown register " + reg_name); return; } std::stringstream raw_val; raw_val << "0x" << std::hex << reg_val; printSuccess("Register raw value: " + raw_val.str()); const std::list regs = reg->second; for (reg_struct_t r: regs) { uint8_t offset = r.offset; uint8_t size = r.size; uint32_t mask = (1 << size) - 1; uint32_t val = (reg_val >> offset) & mask; std::stringstream ss, desc; desc << r.description; ss << std::setw(16) << std::left << r.description; if (r.reg_cnt.size() != 0) { ss << r.reg_cnt[val]; } else { std::stringstream hex_val; hex_val << "0x" << std::hex << val; ss << hex_val.str(); } printInfo(ss.str()); } } bool Xilinx::dumpFlash(uint32_t base_addr, uint32_t len) { if (_fpga_family == XC95_FAMILY || _fpga_family == XCF_FAMILY) { std::string buffer; if (_fpga_family == XC95_FAMILY) { /* enable ISC */ flow_enable(); buffer = flow_read(); /* disable ISC */ flow_disable(); } else { /* enable ISC */ xcf_flow_enable(0x34); buffer = xcf_read(); /* disable ISC */ xcf_flow_disable(); } printInfo("Open dump file ", false); FILE *fd = fopen(_filename.c_str(), "wb"); if (!fd) { printError("FAIL"); return false; } printSuccess("DONE"); printInfo("Read flash ", false); fwrite(buffer.c_str(), sizeof(uint8_t), buffer.size(), fd); printSuccess("DONE"); fclose(fd); return true; } if (_flash_chips & PRIMARY_FLASH) { select_flash_chip(PRIMARY_FLASH); SPIInterface::set_filename(_filename); if (!SPIInterface::dump(base_addr, len)) return false; } if (_flash_chips & SECONDARY_FLASH) { select_flash_chip(SECONDARY_FLASH); SPIInterface::set_filename(_secondary_filename); if (!SPIInterface::dump(base_addr, len)) return false; } return true; } bool Xilinx::detect_flash() { if (_flash_chips & PRIMARY_FLASH) { select_flash_chip(PRIMARY_FLASH); if (!SPIInterface::detect_flash()) return false; } if (_flash_chips & SECONDARY_FLASH) { select_flash_chip(SECONDARY_FLASH); if (!SPIInterface::detect_flash()) return false; } return true; } bool Xilinx::protect_flash(uint32_t len) { if (_flash_chips & PRIMARY_FLASH) { select_flash_chip(PRIMARY_FLASH); if (!SPIInterface::protect_flash(len)) return false; } if (_flash_chips & SECONDARY_FLASH) { select_flash_chip(SECONDARY_FLASH); if (!SPIInterface::protect_flash(len)) return false; } return true; } bool Xilinx::unprotect_flash() { if (_flash_chips & PRIMARY_FLASH) { select_flash_chip(PRIMARY_FLASH); if (!SPIInterface::unprotect_flash()) return false; } if (_flash_chips & SECONDARY_FLASH) { select_flash_chip(SECONDARY_FLASH); if (!SPIInterface::unprotect_flash()) return false; } return true; } bool Xilinx::set_quad_bit(bool set_quad) { if (_flash_chips & PRIMARY_FLASH) { select_flash_chip(PRIMARY_FLASH); if (!SPIInterface::set_quad_bit(set_quad)) return false; } if (_flash_chips & SECONDARY_FLASH) { select_flash_chip(SECONDARY_FLASH); if (!SPIInterface::set_quad_bit(set_quad)) return false; } return true; } bool Xilinx::bulk_erase_flash() { if (_flash_chips & PRIMARY_FLASH) { select_flash_chip(PRIMARY_FLASH); if (!SPIInterface::bulk_erase_flash()) return false; } if (_flash_chips & SECONDARY_FLASH) { select_flash_chip(SECONDARY_FLASH); if (!SPIInterface::bulk_erase_flash()) return false; } return true; } /* flow program for xc3s (legacy mode) */ /* based on ISE spartan3/data/xx_1532.bsd files */ /* */ bool Xilinx::xc3s_flow_program(ConfigBitstreamParser *bit) { int byte_length = bit->getLength() / 8; int burst_len = byte_length / 100; const uint8_t *data = bit->getData(); int tx_len = burst_len * 8; Jtag::tapState_t tx_end = Jtag::SHIFT_DR; ProgressBar progress("Load SRAM", byte_length, 50, _quiet); flow_enable(); if (_jtag->shiftIR(JPROGRAM, _irlen) < 0) return false; /* wait until memory cleared (DS099 v3.1 fig.30 p.52) */ uint8_t tx_buf = BYPASS, rx_buf; do { if (_jtag->shiftIR(&tx_buf, &rx_buf, _irlen) < 0) return false; } while (!(rx_buf & 0x10)); // wait until INIT if (_jtag->shiftIR(JSHUTDOWN, _irlen) < 0) return false; _jtag->toggleClk(16); if (_jtag->shiftIR(CFG_IN, _irlen) < 0) return false; for (int i = 0; byte_length > 0; byte_length-=burst_len, data+=burst_len) { if (burst_len > byte_length) { tx_len = byte_length * 8; tx_end = Jtag::RUN_TEST_IDLE; } if (_jtag->shiftDR(data, NULL, tx_len, tx_end) < 0) { progress.fail(); return false; } _jtag->flush(); progress.display(i); i+= burst_len; } progress.done(); _jtag->toggleClk(1); if (_jtag->shiftIR(JSTART, _irlen) < 0) return false; _jtag->toggleClk(32); if (_jtag->shiftIR(BYPASS, _irlen) < 0) return false; uint8_t d = 0; if (_jtag->shiftDR(&d, NULL, 1) < 0) return false; _jtag->toggleClk(1); flow_disable(); uint8_t mask = 0x20; // Done bit uint32_t idcode = _jtag->get_target_device_id(); if (fpga_list[idcode].family == "spartan3e") { mask = 0x10; // ISC done dit } int retry = 100; do { if (_jtag->shiftIR(&tx_buf, &rx_buf, _irlen) < 0) return false; if (_jtag->shiftDR(data, NULL, 1) < 0) return false; } while (!(rx_buf & mask) && (retry-- > 0)); // wait until mask return true; } void Xilinx::flow_enable() { uint8_t xfer_buf = 0x15; uint8_t isc_enable = XC95_ISC_ENABLE; int drlen = 6, tcklen = 1; if (_fpga_family == SPARTAN3_FAMILY) { xfer_buf = 0x00; isc_enable = ISC_ENABLE; drlen = 5; tcklen = 16; } if (_jtag->shiftIR(isc_enable, _irlen) < 0) return; if (_jtag->shiftDR(&xfer_buf, NULL, drlen) < 0) return; _jtag->toggleClk(tcklen); } void Xilinx::flow_disable() { uint8_t isc_disable = XC95_ISC_DISABLE; int tcklen = ((_jtag->getClkFreq() * 100) / 1000000); if (_fpga_family == SPARTAN3_FAMILY) { isc_disable = ISC_DISABLE; tcklen = 16; } if (_jtag->shiftIR(isc_disable, _irlen) < 0) return; _jtag->toggleClk(tcklen); if (_jtag->shiftIR(BYPASS, _irlen) < 0) return; if (_fpga_family == SPARTAN3_FAMILY) { uint8_t xfer_buf = 0; if (_jtag->shiftDR(&xfer_buf, NULL, 1) < 0) return; } _jtag->toggleClk(1); } /* */ /* internal flash (xc95) */ /* based on ISE xc9500yy/data/xx_1532.bsd files */ /* */ bool Xilinx::flow_erase() { uint8_t xfer_buf[3] = {0x03, 0x00, 0x00}; printInfo("Erase flash ", false); _jtag->shiftIR(XC95_ISC_ERASE, 8); _jtag->shiftDR(xfer_buf, NULL, 18); _jtag->toggleClk((_jtag->getClkFreq() * 400) / 1000); _jtag->shiftDR(NULL, xfer_buf, 18); if ((xfer_buf[0] & 0x03) != 0x01) { printError("FAIL"); return false; } if (_verify) { xfer_buf[0] = 0x03; xfer_buf[1] = xfer_buf[2] = 0x00; _jtag->shiftIR(XC95_XSC_BLANK_CHECK, 8); _jtag->shiftDR(xfer_buf, NULL, 18); _jtag->toggleClk(500); _jtag->shiftDR(NULL, xfer_buf, 18); if ((xfer_buf[0] & 0x03) != 0x01) { printError("FAIL"); return false; } } printSuccess("DONE"); return true; } bool Xilinx::flow_program(JedParser *jed) { uint8_t wr_buf[16+2]; // largest section length uint8_t rd_buf[16+3]; /* enable ISC */ flow_enable(); /* erase internal flash */ if (!flow_erase()) return false; /* xc95 internal flash is written by sector * for each one them 15 jed sections are used */ size_t nb_section = jed->nb_section() / (15); ProgressBar progress("Write Flash", nb_section, 50, _quiet); for (size_t i = 0; i < nb_section; i++) { uint16_t addr2 = i * 32; for (int ii = 0; ii < 15; ii++) { uint8_t mode = (ii == 14) ? 0x3 : 0x1; int id = i * 15 + ii; memcpy(wr_buf, jed->data_for_section(id)[0].c_str(), _xc95_line_len); wr_buf[_xc95_line_len] = (uint8_t) addr2&0xff; wr_buf[_xc95_line_len+ 1 ] = (uint8_t)((addr2 >> 8) & 0xff); _jtag->shiftIR(XC95_ISC_PROGRAM, 8); _jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR); _jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2)); if (ii == 14) _jtag->toggleClk((_jtag->getClkFreq() * 50) / 1000); else _jtag->toggleClk(1); if (ii == 14) { mode = 0x00; for (int loop_try = 0; loop_try < 32; loop_try++) { _jtag->shiftIR(XC95_ISC_PROGRAM, 8); _jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR); _jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2)); _jtag->toggleClk((_jtag->getClkFreq() * 50) / 1000); _jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2) + 2); if ((rd_buf[0] & 0x03) == 0x01) break; } if ((rd_buf[0] & 0x03) != 0x01) { progress.fail(); return false; } } addr2 += ((ii+1) % 0x05) ? 1 : 4; } progress.display(i); } progress.done(); /* TODO: verify */ if (_verify) { std::string flash = flow_read(); int flash_pos = 0; ProgressBar progress2("Verify Flash", nb_section, 50, _quiet); for (size_t section = 0; section < nb_section; section++) { for (size_t subsection = 0; subsection < 15; subsection++) { int id = section * 15 + subsection; std::string content = jed->data_for_section(id)[0]; for (int col = 0; col < _xc95_line_len; col++, flash_pos++) { if ((uint8_t)content[col] != (uint8_t)flash[flash_pos]) { char error[256]; progress2.fail(); snprintf(error, sizeof(error), "Error: wrong value: read %02x instead of %02x", (uint8_t)flash[flash_pos], (uint8_t)content[col]); printError(error); flow_disable(); return false; } } } } progress2.done(); } /* disable ISC */ flow_disable(); return true; } std::string Xilinx::flow_read() { uint8_t mode; std::string buffer; uint8_t wr_buf[16+2]; // largest section length uint8_t rd_buf[16+2]; memset(wr_buf, 0xff, sizeof(wr_buf)); /* limit JTAG clock frequency to 1MHz */ if (_jtag->getClkFreq() > 1e6) _jtag->setClkFreq(1e6); ProgressBar progress("Read Flash", 108, 50, _quiet); for (size_t section = 0; section < 108; section++) { uint16_t addr2 = section * 32; for (int subsection = 0; subsection < 15; subsection++) { wr_buf[_xc95_line_len ] = (uint8_t)((addr2 ) & 0xff); wr_buf[_xc95_line_len + 1] = (uint8_t)((addr2 >> 8) & 0xff); mode = 3; _jtag->shiftIR(XC95_ISC_READ, 8); _jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR); _jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2)); _jtag->toggleClk(1); mode = 0; _jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR); _jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2)); for (int pos = 0; pos < _xc95_line_len; pos++) buffer += rd_buf[pos]; addr2 += ((subsection+1) % 0x05) ? 1 : 4; } progress.display(section); } progress.done(); return buffer; } /* */ /* XCF Prom */ /* */ #define XCF_FVFY3 0xE2 #define XCF_ISCTESTSTATUS 0xE3 #define XCF_ISC_ENABLE 0xE8 #define XCF_ISC_PROGRAM 0xEA #define XCF_ISC_ADDR_SHIFT 0xEB #define XCF_ISC_ERASE 0xEC #define XCF_ISC_DATA_SHIFT 0xED #define XCF_CONFIG 0xEE #define XCF_ISC_READ 0xeF #define XCF_ISC_DISABLE 0xF0 void Xilinx::xcf_flow_enable(uint8_t mode) { _jtag->shiftIR(XCF_ISC_ENABLE, 8); _jtag->shiftDR(&mode, NULL, 6); _jtag->toggleClk(1); } void Xilinx::xcf_flow_disable() { _jtag->shiftIR(XCF_ISC_DISABLE, 8); _jtag->flush(); usleep(110000); _jtag->shiftIR(BYPASS, 8); _jtag->toggleClk(1); } bool Xilinx::xcf_flow_erase() { uint8_t xfer_buf[2] = {0x01, 0x00}; printInfo("Erase flash ", false); xcf_flow_enable(); _jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8); _jtag->shiftDR(xfer_buf, NULL, 16); _jtag->toggleClk(1); _jtag->shiftIR(XCF_ISC_ERASE, 8); _jtag->flush(); usleep(500000); int i; for (i = 0; i < 32; i++) { _jtag->shiftIR(XCF_ISCTESTSTATUS, 8); _jtag->flush(); usleep(500000); _jtag->shiftDR(NULL, xfer_buf, 8); if ((xfer_buf[0] & 0x04)) break; } if (i == 32) { printError("FAIL"); return false; } printSuccess("DONE"); xcf_flow_disable(); return true; } bool Xilinx::xcf_program(ConfigBitstreamParser *bitfile) { uint8_t tx_buf[4096 / 8]; uint16_t pkt_len = ((_jtag->get_target_device_id() == 0x05044093) ? 2048 : 4096) / 8; if (!bitfile) throw std::runtime_error("called with null bitstream"); const uint8_t *data = bitfile->getData(); uint32_t data_len = bitfile->getLength() / 8; uint32_t xfer_len, offset = 0; uint32_t addr = 0; Jtag::tapState_t xfer_end; /* limit JTAG clock frequency to 15MHz */ if (_jtag->getClkFreq() > 15e6) _jtag->setClkFreq(15e6); if (!xcf_flow_erase()) { printError("flow erase failed"); return false; } xcf_flow_enable(); int blk_id = 0; ProgressBar progress("Write PROM", (data_len / pkt_len), 50, _quiet); while (data_len > 0) { if (data_len < pkt_len) { xfer_len = data_len; xfer_end = Jtag::SHIFT_DR; } else { xfer_len = pkt_len; xfer_end = Jtag::RUN_TEST_IDLE; } /* send data to PROM */ _jtag->shiftIR(XCF_ISC_DATA_SHIFT, 8); _jtag->shiftDR(data+offset, NULL, xfer_len * 8, xfer_end); if (xfer_len != pkt_len) { uint32_t res = pkt_len - xfer_len; memset(tx_buf, 0xff, res); _jtag->shiftDR(tx_buf, NULL, res * 8); } _jtag->toggleClk(1); /* send address */ tx_buf[0] = (addr >> 0) & 0x00ff; tx_buf[1] = (addr >> 8) & 0x00ff; _jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8); _jtag->shiftDR(tx_buf, NULL, 16); _jtag->toggleClk(1); /* send program instruction */ _jtag->shiftIR(XCF_ISC_PROGRAM, 8); _jtag->flush(); usleep((addr == 0) ? 14000: 500); /* wait until bit 3 != 1 */ int i; for (i = 0; i < 29; i++) { _jtag->shiftIR(XCF_ISCTESTSTATUS, 8); _jtag->flush(); usleep(500); _jtag->shiftDR(NULL, tx_buf, 8); if ((tx_buf[0] & 0x04)) break; } if (i == 29) { progress.fail(); return false; } blk_id++; offset += xfer_len; addr += 32; data_len -= xfer_len; progress.display(blk_id); } progress.done(); /* program done */ _jtag->shiftIR(BYPASS, 8); _jtag->toggleClk(1); if (_verify) { std::string flash = xcf_read(); uint32_t file_size = bitfile->getLength() / 8; uint32_t prom_size = (uint32_t)flash.size(); uint32_t nb_bytes = (file_size > prom_size) ? prom_size : file_size; ProgressBar progress2("Verify Flash", nb_bytes, 50, _quiet); for (uint32_t pos = 0; pos < nb_bytes; pos++) { if (data[pos] != (uint8_t)flash[pos]) { progress2.fail(); char error[64]; snprintf(error, sizeof(error), "Error: wrong value: read %02x instead of %02x", (uint8_t)flash[pos], (uint8_t)data[pos]); printError(error); xcf_flow_disable(); return false; } progress.display(pos); } progress2.done(); } _jtag->go_test_logic_reset(); xcf_flow_disable(); /* reconfigure FPGA */ _jtag->shiftIR(XCF_CONFIG, 8); _jtag->toggleClk(1); _jtag->shiftIR(BYPASS, 8); _jtag->toggleClk(1); return true; } std::string Xilinx::xcf_read() { uint32_t addr = 0; uint8_t rx_buf[4096 / 8]; uint16_t pkt_len = ((_jtag->get_target_device_id() == 0x05044093) ? 2048 : 4096) / 8; uint16_t nb_section = ((_jtag->get_target_device_id() == 0x05046093) ? 1024 : 512); std::string buffer; /* limit JTAG clock frequency to 15MHz */ if (_jtag->getClkFreq() > 15e6) _jtag->setClkFreq(15e6); ProgressBar progress("Read PROM", nb_section, 50, _quiet); for (size_t section = 0; section < nb_section; section++) { /* send address */ rx_buf[0] = (addr >> 0) & 0x00ff; rx_buf[1] = (addr >> 8) & 0x00ff; _jtag->shiftIR(XCF_ISC_ADDR_SHIFT, 8); _jtag->shiftDR(rx_buf, NULL, 16); _jtag->toggleClk(1); /* send data to PROM */ _jtag->shiftIR(XCF_ISC_READ, 8); _jtag->flush(); usleep(50); _jtag->shiftDR(NULL, rx_buf, pkt_len * 8); for (int i = 0; i < pkt_len; i++) buffer += rx_buf[i]; progress.display(section); addr += 32; } progress.done(); return buffer; } /*--------------------------------------------------------*/ /* xc2c */ /*--------------------------------------------------------*/ #define XC2C_IDCODE 0x01 #define XC2C_ISC_DISABLE 0xc0 #define XC2C_VERIFY 0xd1 #define XC2C_ISC_ENABLE_OTF 0xe4 #define XC2C_ISC_WRITE 0xe6 #define XC2C_ISC_SRAM_READ 0xe7 #define XC2C_ISC_ENABLE 0xe8 #define XC2C_ISC_PROGRAM 0xea #define XC2C_ISC_ERASE 0xed #define XC2C_ISC_READ 0xee #define XC2C_ISC_INIT 0xf0 #define XC2C_USERCODE 0xfd /* xilinx programmer qualification specification 6.2 * directly reversed */ static constexpr uint8_t _gray_code[256] = { 0x00, 0x80, 0xc0, 0x40, 0x60, 0xe0, 0xa0, 0x20, 0x30, 0xb0, 0xf0, 0x70, 0x50, 0xd0, 0x90, 0x10, 0x18, 0x98, 0xd8, 0x58, 0x78, 0xf8, 0xb8, 0x38, 0x28, 0xa8, 0xe8, 0x68, 0x48, 0xc8, 0x88, 0x08, 0x0c, 0x8c, 0xcc, 0x4c, 0x6c, 0xec, 0xac, 0x2c, 0x3c, 0xbc, 0xfc, 0x7c, 0x5c, 0xdc, 0x9c, 0x1c, 0x14, 0x94, 0xd4, 0x54, 0x74, 0xf4, 0xb4, 0x34, 0x24, 0xa4, 0xe4, 0x64, 0x44, 0xc4, 0x84, 0x04, 0x06, 0x86, 0xc6, 0x46, 0x66, 0xe6, 0xa6, 0x26, 0x36, 0xb6, 0xf6, 0x76, 0x56, 0xd6, 0x96, 0x16, 0x1e, 0x9e, 0xde, 0x5e, 0x7e, 0xfe, 0xbe, 0x3e, 0x2e, 0xae, 0xee, 0x6e, 0x4e, 0xce, 0x8e, 0x0e, 0x0a, 0x8a, 0xca, 0x4a, 0x6a, 0xea, 0xaa, 0x2a, 0x3a, 0xba, 0xfa, 0x7a, 0x5a, 0xda, 0x9a, 0x1a, 0x12, 0x92, 0xd2, 0x52, 0x72, 0xf2, 0xb2, 0x32, 0x22, 0xa2, 0xe2, 0x62, 0x42, 0xc2, 0x82, 0x02, 0x03, 0x83, 0xc3, 0x43, 0x63, 0xe3, 0xa3, 0x23, 0x33, 0xb3, 0xf3, 0x73, 0x53, 0xd3, 0x93, 0x13, 0x1b, 0x9b, 0xdb, 0x5b, 0x7b, 0xfb, 0xbb, 0x3b, 0x2b, 0xab, 0xeb, 0x6b, 0x4b, 0xcb, 0x8b, 0x0b, 0x0f, 0x8f, 0xcf, 0x4f, 0x6f, 0xef, 0xaf, 0x2f, 0x3f, 0xbf, 0xff, 0x7f, 0x5f, 0xdf, 0x9f, 0x1f, 0x17, 0x97, 0xd7, 0x57, 0x77, 0xf7, 0xb7, 0x37, 0x27, 0xa7, 0xe7, 0x67, 0x47, 0xc7, 0x87, 0x07, 0x05, 0x85, 0xc5, 0x45, 0x65, 0xe5, 0xa5, 0x25, 0x35, 0xb5, 0xf5, 0x75, 0x55, 0xd5, 0x95, 0x15, 0x1d, 0x9d, 0xdd, 0x5d, 0x7d, 0xfd, 0xbd, 0x3d, 0x2d, 0xad, 0xed, 0x6d, 0x4d, 0xcd, 0x8d, 0x0d, 0x09, 0x89, 0xc9, 0x49, 0x69, 0xe9, 0xa9, 0x29, 0x39, 0xb9, 0xf9, 0x79, 0x59, 0xd9, 0x99, 0x19, 0x11, 0x91, 0xd1, 0x51, 0x71, 0xf1, 0xb1, 0x31, 0x21, 0xa1, 0xe1, 0x61, 0x41, 0xc1, 0x81, 0x01, }; void Xilinx::xc2c_init(uint32_t idcode) { _fpga_family = XC2C_FAMILY; std::string model = fpga_list[idcode].model; size_t underscore_pos = model.find_first_of('_', 0); if (underscore_pos == model.npos) { underscore_pos = model.length(); } snprintf(_cpld_base_name, underscore_pos, "%s", model.substr(0, underscore_pos).c_str()); switch ((idcode >> 16) & 0x3f) { case 0x01: /* xc2c32 */ case 0x11: /* xc2c32a PC44 */ case 0x21: /* xc2c32a */ _cpld_nb_col = 260; _cpld_nb_row = 48; _cpld_addr_size = 6; break; case 0x05: /* xc2c64 */ case 0x25: /* xc2c64a */ _cpld_nb_col = 274; _cpld_nb_row = 96; _cpld_addr_size = 7; break; case 0x18: /* xc2c128 */ _cpld_nb_col = 752; _cpld_nb_row = 80; _cpld_addr_size = 7; break; case 0x14: /* xc2c256 */ _cpld_nb_col = 1364; _cpld_nb_row = 96; _cpld_addr_size = 7; break; case 0x15: /* xc2c384 */ _cpld_nb_col = 1868; _cpld_nb_row = 120; _cpld_addr_size = 7; break; case 0x17: /* xc2c512 */ _cpld_nb_col = 1980; _cpld_nb_row = 160; _cpld_addr_size = 8; break; default: throw std::runtime_error("Error: unknown XC2C version"); } _cpld_nb_row += 2; // 2 more row: done + sec and usercode // datasheet table 2 p.15 } /* reinit device * datasheet table 47-48 p.61-62 */ void Xilinx::xc2c_flow_reinit() { uint8_t c = 0; _jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8); _jtag->shiftIR(XC2C_ISC_INIT, 8); _jtag->toggleClk((_jtag->getClkFreq() * 20) / 1000); _jtag->shiftIR(XC2C_ISC_INIT, 8); _jtag->shiftDR(&c, NULL, 8); _jtag->toggleClk((_jtag->getClkFreq() * 800) / 1000); _jtag->shiftIR(XC2C_ISC_DISABLE, 8); _jtag->shiftIR(BYPASS, 8); } /* full flash erase (with optional blank check) * datasheet 12.1 (table41) p.56 */ bool Xilinx::xc2c_flow_erase() { _jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8, Jtag::UPDATE_IR); _jtag->shiftIR(XC2C_ISC_ERASE, 8); _jtag->toggleClk((_jtag->getClkFreq() * 100) / 1000); _jtag->shiftIR(XC2C_ISC_DISABLE, 8); if (_verify) { std::string rx_buf = xc2c_flow_read(); for (auto &val : rx_buf) { if ((uint8_t)val != 0xff) { printError("Erase: fails to verify blank check"); return false; } } } return true; } /* read flash full content * return it has string buffer * table 45 - 46 p. 59-60 */ std::string Xilinx::xc2c_flow_read() { uint8_t rx_buf[249]; uint32_t delay_loop = (_jtag->getClkFreq() * 20) / 1000000; uint16_t pos = 0; uint8_t addr_shift = 8 - _cpld_addr_size; std::string buffer; buffer.resize(((_cpld_nb_col * _cpld_nb_row) + 7) / 8); ProgressBar progress("Read Flash", _cpld_nb_row + 1, 50, _quiet); _jtag->shiftIR(BYPASS, 8); _jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8); _jtag->shiftIR(XC2C_ISC_READ, 8); /* send address * send addr 0 before loop because each row content * is followed by next addr (or dummy for the last row */ /* send address */ uint8_t addr = _gray_code[0] >> addr_shift; _jtag->shiftDR(&addr, NULL, _cpld_addr_size); /* wait 20us */ _jtag->toggleClk(delay_loop); for (size_t row = 1; row <= _cpld_nb_row; row++) { /* read nb_col bits, stay in shift_dr to send next addr */ _jtag->shiftDR(NULL, rx_buf, _cpld_nb_col, Jtag::SHIFT_DR); /* send address */ addr = _gray_code[row] >> addr_shift; _jtag->shiftDR(&addr, NULL, _cpld_addr_size); /* wait 20us */ _jtag->toggleClk(delay_loop); for (int i = 0; i < _cpld_nb_col; i++, pos++) if (rx_buf[i >> 3] & (1 << (i & 0x07))) buffer[pos >> 3] |= (1 << (pos & 0x07)); else buffer[pos >> 3] &= ~(1 << (pos & 0x07)); progress.display(row); } progress.done(); _jtag->shiftIR(XC2C_ISC_DISABLE, Jtag::TEST_LOGIC_RESET); return buffer; } bool Xilinx::xc2c_flow_program(JedParser *jed) { uint32_t delay_loop = (_jtag->getClkFreq() * 20) / 1000; uint8_t shift_addr = 8 - _cpld_addr_size; /* map jed fuse using device map */ printInfo("Map jed fuses: ", false); XilinxMapParser *map_parser; try { std::string mapname = ISE_DIR "/ISE_DS/ISE/xbr/data/" + std::string(_cpld_base_name) + ".map"; map_parser = new XilinxMapParser(mapname, _cpld_nb_row, _cpld_nb_col, jed, 0xffffffff, _verbose); map_parser->parse(); } catch(std::exception &e) { printError("FAIL"); throw std::runtime_error(e.what()); } printSuccess("DONE"); std::vector listfuse = map_parser->cfg_data(); /* erase internal flash */ printInfo("Erase Flash: ", false); if (!xc2c_flow_erase()) { printError("FAIL"); throw std::runtime_error("Fail to erase interface flash"); } else { printSuccess("DONE"); } ProgressBar progress("Write Flash", _cpld_nb_row, 50, _quiet); _jtag->shiftIR(XC2C_ISC_ENABLE_OTF, 8); _jtag->shiftIR(XC2C_ISC_PROGRAM, 8); uint16_t iter = 0; for (const auto &row : listfuse) { uint16_t pos = 0; uint8_t addr = _gray_code[iter] >> shift_addr; uint8_t wr_buf[249] = {0}; // largest section length for (auto col : row) { if (col) wr_buf[pos >> 3] |= (1 << (pos & 0x07)); else wr_buf[pos >> 3] &= ~(1 << (pos & 0x07)); pos++; } _jtag->shiftDR(wr_buf, NULL, _cpld_nb_col, Jtag::SHIFT_DR); _jtag->shiftDR(&addr, NULL, _cpld_addr_size); _jtag->toggleClk(delay_loop); iter++; } /* done bit and usercode are shipped into listfuse * so only needs to send isc disable */ _jtag->shiftIR(XC2C_ISC_DISABLE, 8); if (_verify) { std::string rx_buffer = xc2c_flow_read(); iter = 0; for (const auto &row : listfuse) { for (auto col : row) { if ((rx_buffer[iter >> 3] >> (iter & 0x07)) != col) { throw std::runtime_error("Program: verify failed"); } iter++; } } } /* reload */ xc2c_flow_reinit(); return true; } /* */ /* SPI interface */ /* */ /* * jtag : jtag interface * cmd : opcode for SPI flash * tx : buffer to send * rx : buffer to fill * len : number of byte to send/receive (cmd not comprise) * so to send only a cmd set len to 0 (or omit this param) */ int Xilinx::spi_put(uint8_t cmd, const uint8_t *tx, uint8_t *rx, uint32_t len) { int xfer_len = len + 1 + ((rx == NULL) ? 0 : 1); uint8_t jtx[xfer_len]; jtx[0] = McsParser::reverseByte(cmd); /* uint8_t jtx[xfer_len] = {McsParser::reverseByte(cmd)}; */ uint8_t jrx[xfer_len]; if (tx != NULL) { for (uint32_t i=0; i < len; i++) jtx[i+1] = McsParser::reverseByte(tx[i]); } /* addr BSCAN user1 */ _jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen); /* send first already stored cmd, * in the same time store each byte * to next */ _jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len); if (rx != NULL) { for (uint32_t i=0; i < len; i++) rx[i] = McsParser::reverseByte(jrx[i+1] >> 1) | (jrx[i+2] & 0x01); } return 0; } int Xilinx::spi_put(const uint8_t *tx, uint8_t *rx, uint32_t len) { int xfer_len = len + ((rx == NULL) ? 0 : 1); uint8_t jtx[xfer_len]; uint8_t jrx[xfer_len]; if (tx != NULL) { for (uint32_t i=0; i < len; i++) jtx[i] = McsParser::reverseByte(tx[i]); } /* addr BSCAN user1 */ _jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen); /* send first already stored cmd, * in the same time store each byte * to next */ _jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len); if (rx != NULL) { for (uint32_t i=0; i < len; i++) rx[i] = McsParser::reverseByte(jrx[i] >> 1) | (jrx[i+1] & 0x01); } return 0; } int Xilinx::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond, uint32_t timeout, bool verbose) { uint8_t rx[2]; uint8_t dummy[2]; memset(dummy, 0xff, sizeof(dummy)); uint8_t tmp; uint8_t tx = McsParser::reverseByte(cmd); uint32_t count = 0; _jtag->shiftIR(get_ircode(_ircode_map, _user_instruction), NULL, _irlen, Jtag::UPDATE_IR); _jtag->shiftDR(&tx, NULL, 8, Jtag::SHIFT_DR); do { _jtag->shiftDR(dummy, rx, 8*2, Jtag::SHIFT_DR); tmp = (McsParser::reverseByte(rx[0]>>1)) | (0x01 & rx[1]); count++; if (count == timeout){ printf("timeout: %x %x %x\n", tmp, rx[0], rx[1]); break; } if (verbose) { printf("%x %x %x %u\n", tmp, mask, cond, count); } } while ((tmp & mask) != cond); _jtag->shiftDR(dummy, rx, 8*2, Jtag::EXIT1_DR); _jtag->go_test_logic_reset(); if (count == timeout) { printf("%x\n", tmp); std::cout << "wait: Error" << std::endl; return -ETIME; } else { return 0; } } void Xilinx::select_flash_chip(xilinx_flash_chip_t flash_chip) { switch (flash_chip) { case SECONDARY_FLASH: _user_instruction = "USER2"; break; case PRIMARY_FLASH: default: _user_instruction = "USER1"; break; } }