// SPDX-License-Identifier: Apache-2.0 /* * Copyright (C) 2019 Gwenhael Goavec-Merou */ #include #include #include #include #include #include "jtag.hpp" #include "bitparser.hpp" #include "configBitstreamParser.hpp" #include "jedParser.hpp" #include "mcsParser.hpp" #include "spiFlash.hpp" #include "rawParser.hpp" #include "display.hpp" #include "xilinx.hpp" #include "part.hpp" #include "progressBar.hpp" Xilinx::Xilinx(Jtag *jtag, const std::string &filename, const std::string &file_type, Device::prog_type_t prg_type, const std::string &device_package, bool verify, int8_t verbose): Device(jtag, filename, file_type, verify, verbose), _device_package(device_package) { if (prg_type == Device::RD_FLASH) { _mode = Device::READ_MODE; } else if (!_file_extension.empty()) { if (_file_extension == "mcs") { _mode = Device::SPI_MODE; } else if (_file_extension == "bit" || _file_extension == "bin") { if (prg_type == Device::WR_SRAM) _mode = Device::MEM_MODE; else _mode = Device::SPI_MODE; } else if (_file_extension == "jed") { _mode = Device::FLASH_MODE; } else { _mode = Device::SPI_MODE; } } uint32_t idcode = _jtag->get_target_device_id(); std::string family = fpga_list[idcode].family; if (family.substr(0, 5) == "artix") { _fpga_family = ARTIX_FAMILY; } else if (family == "spartan7") { _fpga_family = SPARTAN7_FAMILY; } else if (family == "zynq") { _fpga_family = ZYNQ_FAMILY; } else if (family == "kintex7") { _fpga_family = KINTEX_FAMILY; } else if (family == "spartan6") { _fpga_family = SPARTAN6_FAMILY; } else if (family == "xc9500xl") { _fpga_family = XC95_FAMILY; if (idcode == 0x59602093) _xc95_line_len = 2; else if (idcode == 0x59604093) _xc95_line_len = 4; else if (idcode == 0x59608093) _xc95_line_len = 8; else if (idcode == 0x59616093) _xc95_line_len = 16; } else { _fpga_family = UNKNOWN_FAMILY; } } Xilinx::~Xilinx() {} #define USER1 0x02 #define CFG_IN 0x05 #define USERCODE 0x08 #define IDCODE 0x09 #define ISC_ENABLE 0x10 #define JPROGRAM 0x0B #define JSTART 0x0C #define JSHUTDOWN 0x0D #define ISC_DISABLE 0x16 #define BYPASS 0xff /* xc95 instructions set */ #define XC95_IDCODE 0xfe #define XC95_ISC_ERASE 0xed #define XC95_ISC_ENABLE 0xe9 #define XC95_ISC_DISABLE 0xf0 #define XC95_XSC_BLANK_CHECK 0xe5 #define XC95_ISC_PROGRAM 0xea #define XC95_ISC_READ 0xee void Xilinx::reset() { _jtag->shiftIR(JSHUTDOWN, 6); _jtag->shiftIR(JPROGRAM, 6); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(10000*12); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); _jtag->shiftIR(BYPASS, 6); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); } int Xilinx::idCode() { int id = 0; unsigned char tx_data[4]= {0x00, 0x00, 0x00, 0x00}; unsigned char rx_data[4]; _jtag->go_test_logic_reset(); _jtag->shiftIR(IDCODE, 6); _jtag->shiftDR(tx_data, rx_data, 32); id = ((rx_data[0] & 0x000000ff) | ((rx_data[1] << 8) & 0x0000ff00) | ((rx_data[2] << 16) & 0x00ff0000) | ((rx_data[3] << 24) & 0xff000000)); /* workaround for XC95 with different * IR length and IDCODE value */ if (id == 0) { _jtag->go_test_logic_reset(); _jtag->shiftIR(XC95_IDCODE, 8); _jtag->shiftDR(tx_data, rx_data, 32); id = ((rx_data[0] & 0x000000ff) | ((rx_data[1] << 8) & 0x0000ff00) | ((rx_data[2] << 16) & 0x00ff0000) | ((rx_data[3] << 24) & 0xff000000)); } return id; } void Xilinx::program(unsigned int offset) { ConfigBitstreamParser *bit; bool reverse = false; /* nothing to do */ if (_mode == Device::NONE_MODE || _mode == Device::READ_MODE) return; if (_mode == Device::FLASH_MODE && _file_extension == "jed") { flow_program(); return; } if (_fpga_family == XC95_FAMILY) { printError("Only jed file and flash mode supported for XC95 CPLD"); return; } if (_mode == Device::MEM_MODE) reverse = true; printInfo("Open file ", false); try { if (_file_extension == "bit") bit = new BitParser(_filename, reverse, _verbose); else if (_file_extension == "mcs") bit = new McsParser(_filename, reverse, _verbose); else bit = new RawParser(_filename, reverse); } catch (std::exception &e) { printError("FAIL"); return; } printSuccess("DONE"); printInfo("Parse file ", false); if (bit->parse() == EXIT_FAILURE) { printError("FAIL"); delete bit; return; } else { printSuccess("DONE"); } if (_verbose) bit->displayHeader(); if (_mode == Device::SPI_MODE) { program_spi(bit, offset); reset(); } else { program_mem(bit); } delete bit; } bool Xilinx::load_bridge() { if (_device_package.empty()) { printError("Can't program SPI flash: missing device-package information"); return false; } // DATA_DIR is defined at compile time. std::string bitname = DATA_DIR "/openFPGALoader/spiOverJtag_"; bitname += _device_package + ".bit"; std::cout << "use: " << bitname << std::endl; /* first: load spi over jtag */ try { BitParser bridge(bitname, true, _verbose); bridge.parse(); program_mem(&bridge); } catch (std::exception &e) { printError(e.what()); throw std::runtime_error(e.what()); } return true; } void Xilinx::program_spi(ConfigBitstreamParser * bit, unsigned int offset) { /* first need to have bridge in RAM */ if (load_bridge() == false) return; uint8_t *data = bit->getData(); int length = bit->getLength() / 8; SPIFlash spiFlash(this, (_verbose ? 1 : (_quiet ? -1 : 0))); spiFlash.reset(); spiFlash.read_id(); spiFlash.read_status_reg(); spiFlash.erase_and_prog(offset, data, length); /* verify write if required */ if (_verify) spiFlash.verify(offset, data, length, 256); } void Xilinx::program_mem(ConfigBitstreamParser *bitfile) { if (_file_extension.empty()) return; std::cout << "load program" << std::endl; unsigned char tx_buf, rx_buf; /* comment TDI TMS TCK * 1: On power-up, place a logic 1 on the TMS, * and clock the TCK five times. This ensures X 1 5 * starting in the TLR (Test-Logic-Reset) state. */ _jtag->go_test_logic_reset(); /* * 2: Move into the RTI state. X 0 1 * 3: Move into the SELECT-IR state. X 1 2 * 4: Enter the SHIFT-IR state. X 0 2 * 5: Start loading the JPROGRAM instruction, 01011(4) 0 5 * LSB first: * 6: Load the MSB of the JPROGRAM instruction * when exiting SHIFT-IR, as defined in the 0 1 1 * IEEE standard. * 7: Place a logic 1 on the TMS and clock the * TCK five times. This ensures starting in X 1 5 * the TLR (Test-Logic-Reset) state. */ _jtag->shiftIR(JPROGRAM, 6); /* test */ tx_buf = BYPASS; do { _jtag->shiftIR(&tx_buf, &rx_buf, 6); } while (!(rx_buf &0x01)); /* * 8: Move into the RTI state. X 0 10,000(1) */ _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(10000*12); /* * 9: Start loading the CFG_IN instruction, * LSB first: 00101 0 5 * 10: Load the MSB of CFG_IN instruction when * exiting SHIFT-IR, as defined in the 0 1 1 * IEEE standard. */ _jtag->shiftIR(CFG_IN, 6); /* * 11: Enter the SELECT-DR state. X 1 2 */ _jtag->set_state(Jtag::SELECT_DR_SCAN); /* * 13: Shift in the FPGA bitstream. Bitn (MSB) * is the first bit in the bitstream(2). bit1...bitn 0 (bits in bitstream)-1 * 14: Shift in the last bit of the bitstream. * Bit0 (LSB) shifts on the transition to bit0 1 1 * EXIT1-DR. */ /* GGM: TODO */ int byte_length = bitfile->getLength() / 8; uint8_t *data = bitfile->getData(); int tx_len, tx_end; int burst_len = byte_length / 100; ProgressBar progress("Flash SRAM", byte_length, 50, _quiet); for (int i=0; i < byte_length; i+=burst_len) { if (i + burst_len > byte_length) { tx_len = (byte_length - i) * 8; /* * 15: Enter UPDATE-DR state. X 1 1 */ tx_end = Jtag::UPDATE_DR; } else { tx_len = burst_len * 8; /* * 12: Enter the SHIFT-DR state. X 0 2 */ tx_end = Jtag::SHIFT_DR; } _jtag->shiftDR(data+i, NULL, tx_len, tx_end); _jtag->flush(); progress.display(i); } progress.done(); /* * 16: Move into RTI state. X 0 1 */ _jtag->set_state(Jtag::RUN_TEST_IDLE); /* * 17: Enter the SELECT-IR state. X 1 2 * 18: Move to the SHIFT-IR state. X 0 2 * 19: Start loading the JSTART instruction * (optional). The JSTART instruction 01100 0 5 * initializes the startup sequence. * 20: Load the last bit of the JSTART instruction. 0 1 1 * 21: Move to the UPDATE-IR state. X 1 1 */ _jtag->shiftIR(JSTART, 6, Jtag::UPDATE_IR); /* * 22: Move to the RTI state and clock the * startup sequence by applying a minimum X 0 2000 * of 2000 clock cycles to the TCK. */ _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); /* * 23: Move to the TLR state. The device is * now functional. X 1 3 */ _jtag->go_test_logic_reset(); } bool Xilinx::dumpFlash(const std::string &filename, uint32_t base_addr, uint32_t len) { if (_fpga_family == XC95_FAMILY) { /* enable ISC */ flow_enable(); std::string buffer = flow_read(); printInfo("Open dump file ", false); FILE *fd = fopen(filename.c_str(), "wb"); if (!fd) { printError("FAIL"); return false; } printSuccess("DONE"); printInfo("Read flash ", false); fwrite(buffer.c_str(), sizeof(uint8_t), buffer.size(), fd); printSuccess("DONE"); fclose(fd); /* disable ISC */ flow_disable(); return true; } int ret = true; /* first need to have bridge in RAM */ if (load_bridge() == false) return false; /* prepare SPI access */ SPIFlash flash(this, _verbose); try { flash.reset(); ret = flash.dump(filename, base_addr, len, 256); } catch (std::exception &e) { printError(e.what()); ret = false; } /* reset device */ reset(); return ret; } /* */ /* internal flash (xc95) */ /* based on ISE xx_1532.bsd files */ /* */ void Xilinx::flow_enable() { uint8_t xfer_buf = 0x15; _jtag->shiftIR(XC95_ISC_ENABLE, 8); _jtag->shiftDR(&xfer_buf, NULL, 6); _jtag->toggleClk(1); } void Xilinx::flow_disable() { _jtag->shiftIR(XC95_ISC_DISABLE, 8); usleep(100); _jtag->shiftIR(BYPASS, 8); _jtag->toggleClk(1); } bool Xilinx::flow_erase() { uint8_t xfer_buf[3] = {0x03, 0x00, 0x00}; printInfo("Erase flash ", false); _jtag->shiftIR(XC95_ISC_ERASE, 8); _jtag->shiftDR(xfer_buf, NULL, 18); _jtag->toggleClk(2000000); _jtag->shiftDR(NULL, xfer_buf, 18); if ((xfer_buf[0] & 0x03) != 0x01) { printError("FAIL"); return false; } if (_verify) { xfer_buf[0] = 0x03; xfer_buf[1] = xfer_buf[2] = 0x00; _jtag->shiftIR(XC95_XSC_BLANK_CHECK, 8); _jtag->shiftDR(xfer_buf, NULL, 18); _jtag->toggleClk(500); _jtag->shiftDR(NULL, xfer_buf, 18); if ((xfer_buf[0] & 0x03) != 0x01) { printError("FAIL"); return false; } } printSuccess("DONE"); return true; } bool Xilinx::flow_program() { uint8_t wr_buf[16+2]; // largest section length uint8_t rd_buf[16+3]; JedParser *jed; printInfo("Open file ", false); try { jed = new JedParser(_filename, _verbose); jed->parse(); } catch (std::exception &e) { printError("FAIL"); return false; } printSuccess("DONE"); /* limit JTAG clock frequency to 1MHz */ if (_jtag->getClkFreq() > 1e6) _jtag->setClkFreq(1e6); /* enable ISC */ flow_enable(); /* erase internal flash */ if (!flow_erase()) return false; /* xc95 internal flash is written by sector * for each one them 15 jed sections are used */ size_t nb_section = jed->nb_section() / (15); ProgressBar progress("Write Flash", nb_section, 50, _quiet); for (size_t i = 0; i < nb_section; i++) { uint16_t addr2 = i * 32; for (int ii = 0; ii < 15; ii++) { uint8_t mode = (ii == 14) ? 0x3 : 0x1; int id = i * 15 + ii; memcpy(wr_buf, jed->data_for_section(id)[0].c_str(), _xc95_line_len); wr_buf[_xc95_line_len] = (uint8_t) addr2&0xff; wr_buf[_xc95_line_len+ 1 ] = (uint8_t)((addr2 >> 8) & 0xff); _jtag->shiftIR(XC95_ISC_PROGRAM, 8); _jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR); _jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2)); if (ii == 14) _jtag->toggleClk(20000); else _jtag->toggleClk(1); if (ii == 14) { mode = 0x00; for (int loop_try = 0; loop_try < 32; loop_try++) { _jtag->shiftIR(XC95_ISC_PROGRAM, 8); _jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR); _jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2)); _jtag->toggleClk(50000); _jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2) + 2); if ((rd_buf[0] & 0x03) == 0x01) break; } if ((rd_buf[0] & 0x03) != 0x01) { progress.fail(); return false; } } addr2 += ((ii+1) % 0x05) ? 1 : 4; } progress.display(i); } progress.done(); /* TODO: verify */ if (_verify) { std::string flash = flow_read(); int flash_pos = 0; ProgressBar progress2("Verify Flash", nb_section, 50, _quiet); for (size_t section = 0; section < 108; section++) { for (size_t subsection = 0; subsection < 15; subsection++) { int id = section * 15 + subsection; std::string content = jed->data_for_section(id)[0]; for (int col = 0; col < _xc95_line_len; col++, flash_pos++) { if ((uint8_t)content[col] != (uint8_t)flash[flash_pos]) { char error[256]; progress2.fail(); snprintf(error, sizeof(error), "Error: wrong value: read %02x instead of %02x", (uint8_t)flash[flash_pos], (uint8_t)content[col]); printError(error); flow_disable(); return false; } } } } progress2.done(); } /* disable ISC */ flow_disable(); return true; } std::string Xilinx::flow_read() { uint8_t mode; std::string buffer; uint8_t wr_buf[16+2]; // largest section length uint8_t rd_buf[16+2]; memset(wr_buf, 0xff, 16); /* limit JTAG clock frequency to 1MHz */ if (_jtag->getClkFreq() > 1e6) _jtag->setClkFreq(1e6); ProgressBar progress("Read Flash", 108, 50, _quiet); for (size_t section = 0; section < 108; section++) { uint16_t addr2 = section * 32; for (int subsection = 0; subsection < 15; subsection++) { wr_buf[_xc95_line_len ] = (uint8_t)((addr2 ) & 0xff); wr_buf[_xc95_line_len + 1] = (uint8_t)((addr2 >> 8) & 0xff); mode = 3; _jtag->shiftIR(XC95_ISC_READ, 8); _jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR); _jtag->shiftDR(wr_buf, NULL, 8 * (_xc95_line_len + 2)); _jtag->toggleClk(1); mode = 0; _jtag->shiftDR(&mode, NULL, 2, Jtag::SHIFT_DR); _jtag->shiftDR(NULL, rd_buf, 8 * (_xc95_line_len + 2)); for (int pos = 0; pos < _xc95_line_len; pos++) buffer += rd_buf[pos]; addr2 += ((subsection+1) % 0x05) ? 1 : 4; } progress.display(section); } progress.done(); return buffer; } /* */ /* SPI interface */ /* */ /* * jtag : jtag interface * cmd : opcode for SPI flash * tx : buffer to send * rx : buffer to fill * len : number of byte to send/receive (cmd not comprise) * so to send only a cmd set len to 0 (or omit this param) */ int Xilinx::spi_put(uint8_t cmd, uint8_t *tx, uint8_t *rx, uint32_t len) { int xfer_len = len + 1 + ((rx == NULL) ? 0 : 1); uint8_t jtx[xfer_len]; jtx[0] = McsParser::reverseByte(cmd); /* uint8_t jtx[xfer_len] = {McsParser::reverseByte(cmd)}; */ uint8_t jrx[xfer_len]; if (tx != NULL) { for (uint32_t i=0; i < len; i++) jtx[i+1] = McsParser::reverseByte(tx[i]); } /* addr BSCAN user1 */ _jtag->shiftIR(USER1, 6); /* send first already stored cmd, * in the same time store each byte * to next */ _jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len); if (rx != NULL) { for (uint32_t i=0; i < len; i++) rx[i] = McsParser::reverseByte(jrx[i+1] >> 1) | (jrx[i+2] & 0x01); } return 0; } int Xilinx::spi_put(uint8_t *tx, uint8_t *rx, uint32_t len) { int xfer_len = len + ((rx == NULL) ? 0 : 1); uint8_t jtx[xfer_len]; uint8_t jrx[xfer_len]; if (tx != NULL) { for (uint32_t i=0; i < len; i++) jtx[i] = McsParser::reverseByte(tx[i]); } /* addr BSCAN user1 */ _jtag->shiftIR(USER1, 6); /* send first already stored cmd, * in the same time store each byte * to next */ _jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len); if (rx != NULL) { for (uint32_t i=0; i < len; i++) rx[i] = McsParser::reverseByte(jrx[i] >> 1) | (jrx[i+1] & 0x01); } return 0; } int Xilinx::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond, uint32_t timeout, bool verbose) { uint8_t rx[2]; uint8_t dummy[2]; uint8_t tmp; uint8_t tx = McsParser::reverseByte(cmd); uint32_t count = 0; _jtag->shiftIR(USER1, 6, Jtag::UPDATE_IR); _jtag->shiftDR(&tx, NULL, 8, Jtag::SHIFT_DR); do { _jtag->shiftDR(dummy, rx, 8*2, Jtag::SHIFT_DR); tmp = (McsParser::reverseByte(rx[0]>>1)) | (0x01 & rx[1]); count++; if (count == timeout){ printf("timeout: %x %x %x\n", tmp, rx[0], rx[1]); break; } if (verbose) { printf("%x %x %x %u\n", tmp, mask, cond, count); } } while ((tmp & mask) != cond); _jtag->shiftDR(dummy, rx, 8*2, Jtag::EXIT1_DR); _jtag->go_test_logic_reset(); if (count == timeout) { printf("%x\n", tmp); std::cout << "wait: Error" << std::endl; return -ETIME; } else { return 0; } }