#include #include #include "jtag.hpp" #include "bitparser.hpp" #include "mcsParser.hpp" #include "spiFlash.hpp" #include "xilinx.hpp" #include "part.hpp" #include "progressBar.hpp" Xilinx::Xilinx(Jtag *jtag, std::string filename, bool verbose): Device(jtag, filename, verbose) { if (_filename != ""){ if (_file_extension == "bit") _mode = Device::MEM_MODE; else _mode = Device::SPI_MODE; } } Xilinx::~Xilinx() {} #define USER1 0x02 #define CFG_IN 0x05 #define USERCODE 0x08 #define IDCODE 0x09 #define ISC_ENABLE 0x10 #define JPROGRAM 0x0B #define JSTART 0x0C #define JSHUTDOWN 0x0D #define ISC_DISABLE 0x16 #define BYPASS 0x3f void Xilinx::reset() { _jtag->shiftIR(JSHUTDOWN, 6); _jtag->shiftIR(JPROGRAM, 6); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(10000*12); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); _jtag->shiftIR(BYPASS, 6); _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); } int Xilinx::idCode() { unsigned char tx_data[4]= {0x00, 0x00, 0x00, 0x00}; unsigned char rx_data[4]; _jtag->go_test_logic_reset(); _jtag->shiftIR(IDCODE, 6); _jtag->shiftDR(tx_data, rx_data, 32); return ((rx_data[0] & 0x000000ff) | ((rx_data[1] << 8) & 0x0000ff00) | ((rx_data[2] << 16) & 0x00ff0000) | ((rx_data[3] << 24) & 0xff000000)); } void Xilinx::program(unsigned int offset) { switch (_mode) { case Device::NONE_MODE: return; break; case Device::SPI_MODE: program_spi(offset); reset(); break; case Device::MEM_MODE: BitParser bitfile(_filename, _verbose); bitfile.parse(); program_mem(bitfile); break; } } void Xilinx::program_spi(unsigned int offset) { // DATA_DIR is defined at compile time. std::string bitname = DATA_DIR "/openFPGALoader/spiOverJtag_"; bitname += fpga_list[idCode()].model + ".bit"; /* first: load spi over jtag */ BitParser bitfile(bitname, _verbose); bitfile.parse(); program_mem(bitfile); /* last: read file and erase/flash spi flash */ McsParser mcs(_filename, false, _verbose); mcs.parse(); SPIFlash spiFlash(this, _verbose); spiFlash.erase_and_prog(offset, mcs.getData(), mcs.getLength()/8); } void Xilinx::program_mem(BitParser &bitfile) { if (_filename == "") return; std::cout << "load program" << std::endl; unsigned char tx_buf, rx_buf; /* comment TDI TMS TCK * 1: On power-up, place a logic 1 on the TMS, * and clock the TCK five times. This ensures X 1 5 * starting in the TLR (Test-Logic-Reset) state. */ _jtag->go_test_logic_reset(); /* * 2: Move into the RTI state. X 0 1 * 3: Move into the SELECT-IR state. X 1 2 * 4: Enter the SHIFT-IR state. X 0 2 * 5: Start loading the JPROGRAM instruction, 01011(4) 0 5 * LSB first: * 6: Load the MSB of the JPROGRAM instruction * when exiting SHIFT-IR, as defined in the 0 1 1 * IEEE standard. * 7: Place a logic 1 on the TMS and clock the * TCK five times. This ensures starting in X 1 5 * the TLR (Test-Logic-Reset) state. */ _jtag->shiftIR(JPROGRAM, 6); /* test */ tx_buf = BYPASS; do { _jtag->shiftIR(&tx_buf, &rx_buf, 6); } while (!(rx_buf &0x01)); /* * 8: Move into the RTI state. X 0 10,000(1) */ _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(10000*12); /* * 9: Start loading the CFG_IN instruction, * LSB first: 00101 0 5 * 10: Load the MSB of CFG_IN instruction when * exiting SHIFT-IR, as defined in the 0 1 1 * IEEE standard. */ _jtag->shiftIR(CFG_IN, 6); /* * 11: Enter the SELECT-DR state. X 1 2 */ _jtag->set_state(Jtag::SELECT_DR_SCAN); /* * 12: Enter the SHIFT-DR state. X 0 2 */ _jtag->set_state(Jtag::SHIFT_DR); /* * 13: Shift in the FPGA bitstream. Bitn (MSB) * is the first bit in the bitstream(2). bit1...bitn 0 (bits in bitstream)-1 * 14: Shift in the last bit of the bitstream. * Bit0 (LSB) shifts on the transition to bit0 1 1 * EXIT1-DR. */ /* GGM: TODO */ int byte_length = bitfile.getLength(); uint8_t *data = bitfile.getData(); int tx_len, tx_end; int burst_len = byte_length / 100; ProgressBar progress("Flash SRAM", byte_length, 50); for (int i=0; i < byte_length; i+=burst_len) { if (i + burst_len > byte_length) { tx_len = (byte_length - i) * 8; tx_end = 1; } else { tx_len = burst_len * 8; tx_end = 0; } _jtag->read_write(data+i, NULL, tx_len, tx_end); _jtag->flush(); progress.display(i); } progress.done(); /* * 15: Enter UPDATE-DR state. X 1 1 */ _jtag->set_state(Jtag::UPDATE_DR); /* * 16: Move into RTI state. X 0 1 */ _jtag->set_state(Jtag::RUN_TEST_IDLE); /* * 17: Enter the SELECT-IR state. X 1 2 * 18: Move to the SHIFT-IR state. X 0 2 * 19: Start loading the JSTART instruction * (optional). The JSTART instruction 01100 0 5 * initializes the startup sequence. * 20: Load the last bit of the JSTART instruction. 0 1 1 * 21: Move to the UPDATE-IR state. X 1 1 */ _jtag->shiftIR(JSTART, 6, Jtag::UPDATE_IR); /* * 22: Move to the RTI state and clock the * startup sequence by applying a minimum X 0 2000 * of 2000 clock cycles to the TCK. */ _jtag->set_state(Jtag::RUN_TEST_IDLE); _jtag->toggleClk(2000); /* * 23: Move to the TLR state. The device is * now functional. X 1 3 */ _jtag->go_test_logic_reset(); } /* * jtag : jtag interface * cmd : opcode for SPI flash * tx : buffer to send * rx : buffer to fill * len : number of byte to send/receive (cmd not comprise) * so to send only a cmd set len to 0 (or omit this param) */ int Xilinx::spi_put(uint8_t cmd, uint8_t *tx, uint8_t *rx, uint16_t len) { int xfer_len = len + 1 + ((rx == NULL) ? 0 : 1); uint8_t jtx[xfer_len]; jtx[0] = McsParser::reverseByte(cmd); /* uint8_t jtx[xfer_len] = {McsParser::reverseByte(cmd)}; */ uint8_t jrx[xfer_len]; if (tx != NULL) { for (int i=0; i < len; i++) jtx[i+1] = McsParser::reverseByte(tx[i]); } /* addr BSCAN user1 */ _jtag->shiftIR(USER1, 6); /* send first already stored cmd, * in the same time store each byte * to next */ _jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len); if (rx != NULL) { for (int i=0; i < len; i++) rx[i] = McsParser::reverseByte(jrx[i+1] >> 1) | (jrx[i+2] & 0x01); } return 0; } int Xilinx::spi_put(uint8_t *tx, uint8_t *rx, uint16_t len) { int xfer_len = len + ((rx == NULL) ? 0 : 1); uint8_t jtx[xfer_len]; uint8_t jrx[xfer_len]; if (tx != NULL) { for (int i=0; i < len; i++) jtx[i] = McsParser::reverseByte(tx[i]); } /* addr BSCAN user1 */ _jtag->shiftIR(USER1, 6); /* send first already stored cmd, * in the same time store each byte * to next */ _jtag->shiftDR(jtx, (rx == NULL)? NULL: jrx, 8*xfer_len); if (rx != NULL) { for (int i=0; i < len; i++) rx[i] = McsParser::reverseByte(jrx[i] >> 1) | (jrx[i+1] & 0x01); } return 0; } int Xilinx::spi_wait(uint8_t cmd, uint8_t mask, uint8_t cond, uint32_t timeout, bool verbose) { uint8_t rx[2]; uint8_t dummy[2]; uint8_t tmp; uint8_t tx = McsParser::reverseByte(cmd); uint32_t count = 0; _jtag->shiftIR(USER1, 6, Jtag::UPDATE_IR); _jtag->set_state(Jtag::SHIFT_DR); _jtag->read_write(&tx, NULL, 8, 0); do { _jtag->read_write(dummy, rx, 8*2, 0); tmp = (McsParser::reverseByte(rx[0]>>1)) | (0x01 & rx[1]); count++; if (count == timeout){ printf("timeout: %x %x %x\n", tmp, rx[0], rx[1]); break; } if (tmp & ~0x3) { printf("Error: rx %x %x %x\n", tmp, McsParser::reverseByte(rx[0]), rx[1]); count = timeout; break; } if (verbose) { printf("%x %x %x %d\n", tmp, mask, cond, count); } } while ((tmp & mask) != cond); _jtag->go_test_logic_reset(); if (count == timeout) { printf("%x\n", tmp); std::cout << "wait: Error" << std::endl; return -ETIME; } else { return 0; } }