ngspice/src/spicelib/devices/vsrc/vsrcload.c

563 lines
23 KiB
C

/**********
Copyright 1990 Regents of the University of California. All rights reserved.
Author: 1985 Thomas L. Quarles
Modified: 2000 AlansFixes
$Id$
**********/
#include "ngspice.h"
#include "cktdefs.h"
#include "vsrcdefs.h"
#include "trandefs.h"
#include "sperror.h"
#include "suffix.h"
#undef WaGauss
#ifdef FastRand
#include "FastNorm3.h"
#elif defined (WaGauss)
#include "wallace.h"
#else
extern void rgauss(double* py1, double* py2);
#endif
#include "1-f-code.h"
#ifdef XSPICE_EXP
/* gtri - begin - wbk - modify for supply ramping option */
#include "cmproto.h"
/* gtri - end - wbk - modify for supply ramping option */
#endif /* XSPICE_EXP */
int
VSRCload(GENmodel *inModel, CKTcircuit *ckt)
/* actually load the current voltage value into the
* sparse matrix previously provided
*/
{
VSRCmodel *model = (VSRCmodel *)inModel;
VSRCinstance *here;
double time;
double value = 0.0;
/* loop through all the voltage source models */
for( ; model != NULL; model = model->VSRCnextModel ) {
/* loop through all the instances of the model */
for (here = model->VSRCinstances; here != NULL ;
here=here->VSRCnextInstance) {
if (here->VSRCowner != ARCHme) continue;
*(here->VSRCposIbrptr) += 1.0 ;
*(here->VSRCnegIbrptr) -= 1.0 ;
*(here->VSRCibrPosptr) += 1.0 ;
*(here->VSRCibrNegptr) -= 1.0 ;
if( (ckt->CKTmode & (MODEDCOP | MODEDCTRANCURVE)) &&
here->VSRCdcGiven ) {
/* grab dc value */
#ifdef XSPICE_EXP
value = here->VSRCdcValue;
#else
value = ckt->CKTsrcFact * here->VSRCdcValue;
#endif
} else {
if(ckt->CKTmode & (MODEDC)) {
time = 0;
} else {
time = ckt->CKTtime;
}
/* use the transient functions */
switch(here->VSRCfunctionType) {
default: { /* no function specified: use the DC value */
value = here->VSRCdcValue;
break;
}
case PULSE: {
double V1, V2, TD, TR, TF, PW, PER;
double basetime = 0;
#ifdef XSPICE
double PHASE;
double phase;
double deltat;
#endif
V1 = here->VSRCcoeffs[0];
V2 = here->VSRCcoeffs[1];
TD = here->VSRCfunctionOrder > 2
? here->VSRCcoeffs[2] : 0.0;
TR = here->VSRCfunctionOrder > 3
&& here->VSRCcoeffs[3] != 0.0
? here->VSRCcoeffs[3] : ckt->CKTstep;
TF = here->VSRCfunctionOrder > 4
&& here->VSRCcoeffs[4] != 0.0
? here->VSRCcoeffs[4] : ckt->CKTstep;
PW = here->VSRCfunctionOrder > 5
&& here->VSRCcoeffs[5] != 0.0
? here->VSRCcoeffs[5] : ckt->CKTfinalTime;
PER = here->VSRCfunctionOrder > 6
&& here->VSRCcoeffs[6] != 0.0
? here->VSRCcoeffs[6] : ckt->CKTfinalTime;
/* shift time by delay time TD */
time -= TD;
#ifdef XSPICE
/* gtri - begin - wbk - add PHASE parameter */
PHASE = here->VSRCfunctionOrder > 7
? here->VSRCcoeffs[7] : 0.0;
/* normalize phase to cycles */
phase = PHASE / 360.0;
phase = fmod(phase, 1.0);
deltat = phase * PER;
while (deltat > 0)
deltat -= PER;
/* shift time by pase (neg. for pos. phase value) */
time += deltat;
/* gtri - end - wbk - add PHASE parameter */
#endif
if(time > PER) {
/* repeating signal - figure out where we are */
/* in period */
basetime = PER * floor(time/PER);
time -= basetime;
}
if (time <= 0 || time >= TR + PW + TF) {
value = V1;
} else if (time >= TR && time <= TR + PW) {
value = V2;
} else if (time > 0 && time < TR) {
value = V1 + (V2 - V1) * (time) / TR;
} else { /* time > TR + PW && < TR + PW + TF */
value = V2 + (V1 - V2) * (time - (TR + PW)) / TF;
}
}
break;
case SINE: {
double VO, VA, FREQ, TD, THETA;
/* gtri - begin - wbk - add PHASE parameter */
#ifdef XSPICE
double PHASE;
double phase;
PHASE = here->VSRCfunctionOrder > 5
? here->VSRCcoeffs[5] : 0.0;
/* compute phase in radians */
phase = PHASE * M_PI / 180.0;
#endif
VO = here->VSRCcoeffs[0];
VA = here->VSRCcoeffs[1];
FREQ = here->VSRCfunctionOrder > 2
&& here->VSRCcoeffs[2] != 0.0
? here->VSRCcoeffs[2] : (1/ckt->CKTfinalTime);
TD = here->VSRCfunctionOrder > 3
? here->VSRCcoeffs[3] : 0.0;
THETA = here->VSRCfunctionOrder > 4
? here->VSRCcoeffs[4] : 0.0;
time -= TD;
if (time <= 0) {
#ifdef XSPICE
value = VO + VA * sin(phase);
} else {
value = VO + VA * sin(FREQ*time * 2.0 * M_PI + phase) *
exp(-time*THETA);
#else
value = VO;
} else {
value = VO + VA * sin(FREQ * time * 2.0 * M_PI) *
exp(-(time*THETA));
#endif
/* gtri - end - wbk - add PHASE parameter */
}
}
break;
case EXP: {
double V1, V2, TD1, TD2, TAU1, TAU2;
V1 = here->VSRCcoeffs[0];
V2 = here->VSRCcoeffs[1];
TD1 = here->VSRCfunctionOrder > 2
&& here->VSRCcoeffs[2] != 0.0
? here->VSRCcoeffs[2] : ckt->CKTstep;
TAU1 = here->VSRCfunctionOrder > 3
&& here->VSRCcoeffs[3] != 0.0
? here->VSRCcoeffs[3] : ckt->CKTstep;
TD2 = here->VSRCfunctionOrder > 4
&& here->VSRCcoeffs[4] != 0.0
? here->VSRCcoeffs[4] : TD1 + ckt->CKTstep;
TAU2 = here->VSRCfunctionOrder > 5
&& here->VSRCcoeffs[5]
? here->VSRCcoeffs[5] : ckt->CKTstep;
if(time <= TD1) {
value = V1;
} else if (time <= TD2) {
value = V1 + (V2-V1)*(1-exp(-(time-TD1)/TAU1));
} else {
value = V1 + (V2-V1)*(1-exp(-(time-TD1)/TAU1)) +
(V1-V2)*(1-exp(-(time-TD2)/TAU2)) ;
}
}
break;
case SFFM:{
double VO, VA, FC, MDI, FS;
/* gtri - begin - wbk - add PHASE parameters */
#ifdef XSPICE
double PHASEC, PHASES;
double phasec;
double phases;
PHASEC = here->VSRCfunctionOrder > 5
? here->VSRCcoeffs[5] : 0.0;
PHASES = here->VSRCfunctionOrder > 6
? here->VSRCcoeffs[6] : 0.0;
/* compute phases in radians */
phasec = PHASEC * M_PI / 180.0;
phases = PHASES * M_PI / 180.0;
#endif
VO = here->VSRCcoeffs[0];
VA = here->VSRCcoeffs[1];
FC = here->VSRCfunctionOrder > 2
&& here->VSRCcoeffs[2]
? here->VSRCcoeffs[2] : (1/ckt->CKTfinalTime);
MDI = here->VSRCfunctionOrder > 3
? here->VSRCcoeffs[3] : 0.0;
FS = here->VSRCfunctionOrder > 4
&& here->VSRCcoeffs[4]
? here->VSRCcoeffs[4] : (1/ckt->CKTfinalTime);
#ifdef XSPICE
/* compute waveform value */
value = VO + VA *
sin((2 * M_PI * FC * time + phasec) +
MDI * sin(2.0 * M_PI * FS * time + phases));
#else /* XSPICE */
value = VO + VA *
sin((2.0 * M_PI * FC * time) +
MDI * sin(2 * M_PI * FS * time));
#endif /* XSPICE */
/* gtri - end - wbk - add PHASE parameters */
}
break;
case AM:{
double VA, FC, MF, VO, TD;
/* gtri - begin - wbk - add PHASE parameters */
#ifdef XSPICE
double PHASEC, PHASES;
double phasec;
double phases;
PHASEC = here->VSRCfunctionOrder > 5
? here->VSRCcoeffs[5] : 0.0;
PHASES = here->VSRCfunctionOrder > 6
? here->VSRCcoeffs[6] : 0.0;
/* compute phases in radians */
phasec = PHASEC * M_PI / 180.0;
phases = PHASES * M_PI / 180.0;
#endif
VA = here->VSRCcoeffs[0];
VO = here->VSRCcoeffs[1];
MF = here->VSRCfunctionOrder > 2
&& here->VSRCcoeffs[2]
? here->VSRCcoeffs[2] : (1/ckt->CKTfinalTime);
FC = here->VSRCfunctionOrder > 3
? here->VSRCcoeffs[3] : 0.0;
TD = here->VSRCfunctionOrder > 4
&& here->VSRCcoeffs[4]
? here->VSRCcoeffs[4] : 0.0;
time -= TD;
if (time <= 0) {
value = 0;
} else {
#ifdef XSPICE
/* compute waveform value */
value = VA * (VO + sin(2.0 * M_PI * MF * time + phases )) *
sin(2 * M_PI * FC * time + phases);
#else /* XSPICE */
value = VA * (VO + sin(2.0 * M_PI * MF * time)) *
sin(2 * M_PI * FC * time);
#endif
}
/* gtri - end - wbk - add PHASE parameters */
}
break;
case PWL: {
int i = 0, num_repeat = 0, ii = 0;
double foo, repeat_time = 0, end_time, breakpt_time, itime;
time -= here->VSRCrdelay;
if(time < *(here->VSRCcoeffs)) {
foo = *(here->VSRCcoeffs + 1) ;
value = foo;
goto loadDone;
}
do {
for(i=ii ; i<(here->VSRCfunctionOrder/2)-1; i++ ) {
itime = *(here->VSRCcoeffs+2*i);
if ( AlmostEqualUlps(itime+repeat_time, time, 3 )) {
foo = *(here->VSRCcoeffs+2*i+1);
value = foo;
goto loadDone;
} else if ( (*(here->VSRCcoeffs+2*i)+repeat_time < time)
&& (*(here->VSRCcoeffs+2*(i+1))+repeat_time > time) ) {
foo = *(here->VSRCcoeffs+2*i+1) + (((time-(*(here->VSRCcoeffs+2*i)+repeat_time))/
(*(here->VSRCcoeffs+2*(i+1)) - *(here->VSRCcoeffs+2*i))) *
(*(here->VSRCcoeffs+2*i+3) - *(here->VSRCcoeffs+2*i+1)));
value = foo;
goto loadDone;
}
}
foo = *(here->VSRCcoeffs+ here->VSRCfunctionOrder-1) ;
value = foo;
if ( !here->VSRCrGiven ) goto loadDone;
end_time = *(here->VSRCcoeffs + here->VSRCfunctionOrder-2);
breakpt_time = *(here->VSRCcoeffs + here->VSRCrBreakpt);
repeat_time = end_time + (end_time - breakpt_time)*num_repeat++ - breakpt_time;
ii = here->VSRCrBreakpt/2;
} while ( here->VSRCrGiven );
break;
}
/**** tansient noise routines:
VNoi2 2 0 DC 0 TRNOISE(10n 0.5n 0 0n) : generate gaussian distributed noise
rms value, time step, 0 0
VNoi1 1 0 DC 0 TRNOISE(0n 0.5n 1 10n) : generate 1/f noise
0, time step, exponent < 2, rms value
*/
case TRNOISE: {
/* Generate voltage point every TS with amplitude NA * ra,
where ra is drawn from a random number generator with
gaussian distribution with mean 0 and standard deviation 1
*/
//#define PRVAL
// typedef int bool;
double newval=0.0, lastval=0.0, lasttime=0.0;
double NA, NT, TS;
double V1, V2, basetime = 0.;
double scalef, ra1, ra2;
float NALPHA, NAMP;
long int nosteps, newsteps = 1, newexp = 0;
bool aof = FALSE;
NA = here->VSRCcoeffs[0]; // input is rms value
NT = here->VSRCcoeffs[1]; // time step
scalef = NA;
// scalef = NA*1.32;
NALPHA = here->VSRCfunctionOrder > 2
? (float)here->VSRCcoeffs[2] : 0.0f;
NAMP = here->VSRCfunctionOrder > 3
&& here->VSRCcoeffs[3] != 0.0
&& here->VSRCcoeffs[2] != 0.0
? (float)here->VSRCcoeffs[3] : 0.0f;
if ((NT == 0.) || ((NA == 0.) && (NAMP == 0.))) {
value = here->VSRCdcValue;
goto noiDone;
}
else
TS = NT; /* time step for noise */
if ((NALPHA > 0.0) && (NAMP > 0.0)) aof = TRUE;
lasttime = here->VSRCprevTime;
lastval = here->VSRCprevVal;
newval = here->VSRCnewVal;
/* set all data: DC, white, 1of */
if (time <= 0 /*ckt->CKTstep*/) {
/* data are already set */
if ((here->VSRCprevVal != 0) || (here->VSRCnewVal != 0)) {
value = here->VSRCprevVal;
goto noiDone;
}
lasttime = 0.0;
here->VSRCsecRand = 2.; /* > 1, invalid number out of the random number range */
/* get two random samples */
#ifdef FastRand
// use FastNorm3
here->VSRCprevVal = scalef * GaussWa;
here->VSRCnewVal = scalef * GaussWa;
#elif defined (WaGauss)
// use WallaceHV
here->VSRCprevVal = scalef * GaussWa;
here->VSRCnewVal = scalef * GaussWa;
#else
// make use of two random variables per call to rgauss()
rgauss(&ra1, &ra2);
here->VSRCprevVal = scalef * ra1;
// choose to set start value to 0
here->VSRCprevVal = 0;
here->VSRCnewVal = scalef * ra2;
#endif
/* generate 1 over f noise at time 0 */
if (aof) {
if (here->VSRCncount==0) {
// add 10 steps for start up sequence
nosteps = (long)((ckt->CKTfinalTime)/TS) + 10;
// generate number of steps as power of 2
while(newsteps < nosteps) {
newsteps <<= 1;
newexp++;
}
here->VSRConeof = TMALLOC(float, newsteps); //(float *)tmalloc(sizeof(float) * newsteps);
#ifdef PRVAL
printf("ALPHA: %f, GAIN: %e\n", NALPHA, NAMP);
#endif
f_alpha(newsteps, newexp, here->VSRConeof, NAMP, NALPHA);
#ifdef PRVAL
printf("Noi1: %e, Noi2: %e\n", here->VSRConeof[10], here->VSRConeof[100]);
#endif
here->VSRCprevVal += here->VSRConeof[here->VSRCncount];
here->VSRCncount++;
here->VSRCnewVal += here->VSRConeof[here->VSRCncount];
here->VSRCncount++;
value = newval;
// add DC
here->VSRCprevVal += here->VSRCdcValue;
here->VSRCnewVal += here->VSRCdcValue;
value = here->VSRCprevVal;
#ifdef PRVAL
printf("start1, time: %e, outp: %e, rnd: %e\n", time, newval, testval);
#endif
} else { // here->VSRCncount > 0
// add DC
here->VSRCprevVal += here->VSRCdcValue;
here->VSRCnewVal += here->VSRCdcValue;
value = here->VSRCprevVal;
#ifdef PRVAL
printf("start2, time: %e, outp: %e, rnd: %e\n", time, here->VSRCprevVal, testval);
#endif
}
#ifdef PRVAL
printf("time 0 value: %e for %s\n", here->VSRCprevVal, here->VSRCname);
#endif
goto loadDone;
} //aof
// add DC
here->VSRCprevVal += here->VSRCdcValue;
here->VSRCnewVal += here->VSRCdcValue;
value = here->VSRCprevVal;
here->VSRCprevTime = 0.;
goto loadDone;
} // time < 0
V1 = here->VSRCprevVal;
V2 = here->VSRCnewVal;
if (here->VSRCprevTime == ckt->CKTtime) {
value = here->VSRCprevVal;
goto noiDone;
}
if (time > 0 && time < TS) {
value = V1 + (V2 - V1) * (time) / TS;
}
else if (time >= TS) {
/* repeating signal - figure out where we are in period */
/* numerical correction to avoid basetime less than
next step, e.g. 4.99999999999999995 delivers a floor
of 4 instead of 5 */
basetime = TS * floor(time*1.000000000001/TS);
time -= basetime;
#define NSAMETIME(a,b) (fabs((a)-(b))<= NTIMETOL * TS)
#define NTIMETOL 1e-7
if NSAMETIME(time,0.) {
/* get new random number */
#ifdef FastRand
// use FastNorm3
newval = scalef * FastNorm;
#elif defined (WaGauss)
// use WallaceHV
newval = scalef * GaussWa;
#else
// make use of two random variables per call to rgauss()
if (here->VSRCsecRand == 2.0) {
rgauss(&ra1, &ra2);
newval = scalef * ra1;
here->VSRCsecRand = scalef * ra2;
}
else {
newval = here->VSRCsecRand;
here->VSRCsecRand = 2.0;
}
#endif
V1 = here->VSRCprevVal = here->VSRCnewVal;
V2 = newval; // scale factor t.b.d.
if(here->VSRCdcGiven) V2 += here->VSRCdcValue;
if (aof) {
V2 += here->VSRConeof[here->VSRCncount];
#ifdef PRVAL
printf("aof: %d\n", here->VSRCncount);
#endif
}
here->VSRCncount++;
value = V1;
here->VSRCnewVal = V2;
} else if (time > 0 && time < TS) {
value = V1 + (V2 - V1) * (time) / TS;
#ifdef PRVAL
printf("if1, time: %e, outp: %e, rnd: %e\n", ckt->CKTtime,
V1 + (V2 - V1) * (time) / TS, V2);
#endif
} else { /* time > TS should be never reached */
value = V1 + (V2 - V1) * (time-TS) / TS;
#ifdef PRVAL
printf("if2, time: %e, outp: %e, rnd: %e\n", ckt->CKTtime,
V1 + (V2 - V1) * (time-TS) / TS, V2);
#endif
}
here->VSRCprevTime = ckt->CKTtime;
}
noiDone:
if (time >=ckt->CKTfinalTime) {
/* free the 1of memory */
if (here->VSRConeof) tfree(here->VSRConeof);
/* reset the 1of counter */
here->VSRCncount = 0;
}
goto loadDone;
} // case
break;
} // switch
}
loadDone:
/* gtri - begin - wbk - modify for supply ramping option */
#ifdef XSPICE_EXP
value *= ckt->CKTsrcFact;
value *= cm_analog_ramp_factor();
#else
if (ckt->CKTmode & MODETRANOP) value *= ckt->CKTsrcFact;
/* load the new voltage value into the matrix */
*(ckt->CKTrhs + (here->VSRCbranch)) += value;
#endif
/* gtri - end - wbk - modify to process srcFact, etc. for all sources */
} // for loop instances
} // for loop models
return(OK);
}