/********** Copyright 1990 Regents of the University of California. All rights reserved. Author: 1985 Thomas L. Quarles Modified: 2000 AlansFixes $Id$ **********/ #include #include #include "vsrcdefs.h" #include #include #include #include #ifdef XSPICE_EXP /* gtri - begin - wbk - modify for supply ramping option */ #include /* gtri - end - wbk - modify for supply ramping option */ #endif int VSRCload(GENmodel *inModel, CKTcircuit *ckt) /* actually load the current value into the * sparse matrix previously provided */ { VSRCmodel *model = (VSRCmodel *) inModel; VSRCinstance *here; double time; double value = 0.0; /* loop through all the source models */ for( ; model != NULL; model = model->VSRCnextModel ) { /* loop through all the instances of the model */ for (here = model->VSRCinstances; here != NULL ; here=here->VSRCnextInstance) { if (here->VSRCowner != ARCHme) continue; *(here->VSRCposIbrptr) += 1.0 ; *(here->VSRCnegIbrptr) -= 1.0 ; *(here->VSRCibrPosptr) += 1.0 ; *(here->VSRCibrNegptr) -= 1.0 ; if( (ckt->CKTmode & (MODEDCOP | MODEDCTRANCURVE)) && here->VSRCdcGiven ) { /* load using DC value */ #ifdef XSPICE_EXP /* gtri - begin - wbk - modify to process srcFact, etc. for all sources */ value = here->VSRCdcValue; #else value = here->VSRCdcValue * ckt->CKTsrcFact; #endif } else { if(ckt->CKTmode & (MODEDC)) { time = 0; } else { time = ckt->CKTtime; } /* use the transient functions */ switch(here->VSRCfunctionType) { default: value = here->VSRCdcValue; break; case PULSE: { double V1, V2, TD, TR, TF, PW, PER; double basetime = 0; #ifdef XSPICE double PHASE; double phase; double deltat; #endif V1 = here->VSRCcoeffs[0]; V2 = here->VSRCcoeffs[1]; TD = here->VSRCfunctionOrder > 2 ? here->VSRCcoeffs[2] : 0.0; TR = here->VSRCfunctionOrder > 3 && here->VSRCcoeffs[3] != 0.0 ? here->VSRCcoeffs[3] : ckt->CKTstep; TF = here->VSRCfunctionOrder > 4 && here->VSRCcoeffs[4] != 0.0 ? here->VSRCcoeffs[4] : ckt->CKTstep; PW = here->VSRCfunctionOrder > 5 && here->VSRCcoeffs[5] != 0.0 ? here->VSRCcoeffs[5] : ckt->CKTfinalTime; PER = here->VSRCfunctionOrder > 6 && here->VSRCcoeffs[6] != 0.0 ? here->VSRCcoeffs[6] : ckt->CKTfinalTime; /* shift time by delay time TD */ time -= TD; #ifdef XSPICE /* gtri - begin - wbk - add PHASE parameter */ PHASE = here->VSRCfunctionOrder > 7 ? here->VSRCcoeffs[7] : 0.0; /* normalize phase to cycles */ phase = PHASE / 360.0; phase = fmod(phase, 1.0); deltat = phase * PER; while (deltat > 0) deltat -= PER; /* shift time by pase (neg. for pos. phase value) */ time += deltat; /* gtri - end - wbk - add PHASE parameter */ #endif if(time > PER) { /* repeating signal - figure out where we are */ /* in period */ basetime = PER * floor(time/PER); time -= basetime; } if (time <= 0 || time >= TR + PW + TF) { value = V1; } else if (time >= TR && time <= TR + PW) { value = V2; } else if (time > 0 && time < TR) { value = V1 + (V2 - V1) * (time) / TR; } else { /* time > TR + PW && < TR + PW + TF */ value = V2 + (V1 - V2) * (time - (TR + PW)) / TF; } } break; case SINE: { double VO, VA, FREQ, TD, THETA; /* gtri - begin - wbk - add PHASE parameter */ #ifdef XSPICE double PHASE; double phase; PHASE = here->VSRCfunctionOrder > 5 ? here->VSRCcoeffs[5] : 0.0; /* compute phase in radians */ phase = PHASE * M_PI / 180.0; #endif VO = here->VSRCcoeffs[0]; VA = here->VSRCcoeffs[1]; FREQ = here->VSRCfunctionOrder > 2 && here->VSRCcoeffs[2] != 0.0 ? here->VSRCcoeffs[2] : (1/ckt->CKTfinalTime); TD = here->VSRCfunctionOrder > 3 ? here->VSRCcoeffs[3] : 0.0; THETA = here->VSRCfunctionOrder > 4 ? here->VSRCcoeffs[4] : 0.0; time -= TD; if (time <= 0) { #ifdef XSPICE value = VO + VA * sin(phase); } else { value = VO + VA * sin(FREQ*time * 2.0 * M_PI + phase) * exp(-time*THETA); #else value = VO; } else { value = VO + VA * sin(FREQ * time * 2.0 * M_PI) * exp(-time*THETA); #endif /* gtri - end - wbk - add PHASE parameter */ } } break; case EXP: { double V1, V2, TD1, TD2, TAU1, TAU2; V1 = here->VSRCcoeffs[0]; V2 = here->VSRCcoeffs[1]; TD1 = here->VSRCfunctionOrder > 2 && here->VSRCcoeffs[2] != 0.0 ? here->VSRCcoeffs[2] : ckt->CKTstep; TAU1 = here->VSRCfunctionOrder > 3 && here->VSRCcoeffs[3] != 0.0 ? here->VSRCcoeffs[3] : ckt->CKTstep; TD2 = here->VSRCfunctionOrder > 4 && here->VSRCcoeffs[4] != 0.0 ? here->VSRCcoeffs[4] : TD1 + ckt->CKTstep; TAU2 = here->VSRCfunctionOrder > 5 && here->VSRCcoeffs[5] ? here->VSRCcoeffs[5] : ckt->CKTstep; if(time <= TD1) { value = V1; } else if (time <= TD2) { value = V1 + (V2-V1)*(1-exp(-(time-TD1)/TAU1)); } else { value = V1 + (V2-V1)*(1-exp(-(time-TD1)/TAU1)) + (V1-V2)*(1-exp(-(time-TD2)/TAU2)) ; } } break; case SFFM: { double VO, VA, FC, MDI, FS; /* gtri - begin - wbk - add PHASE parameters */ #ifdef XSPICE double PHASEC, PHASES; double phasec; double phases; PHASEC = here->VSRCfunctionOrder > 5 ? here->VSRCcoeffs[5] : 0.0; PHASES = here->VSRCfunctionOrder > 6 ? here->VSRCcoeffs[6] : 0.0; /* compute phases in radians */ phasec = PHASEC * M_PI / 180.0; phases = PHASES * M_PI / 180.0; #endif VO = here->VSRCcoeffs[0]; VA = here->VSRCcoeffs[1]; FC = here->VSRCfunctionOrder > 2 && here->VSRCcoeffs[2] ? here->VSRCcoeffs[2] : (1/ckt->CKTfinalTime); MDI = here->VSRCfunctionOrder > 3 ? here->VSRCcoeffs[3] : 0.0; FS = here->VSRCfunctionOrder > 4 && here->VSRCcoeffs[4] ? here->VSRCcoeffs[4] : (1/ckt->CKTfinalTime); #ifdef XSPICE /* compute waveform value */ value = VO + VA * sin((2.0 * M_PI * FC * time + phasec) + MDI * sin(2.0 * M_PI * FS * time + phases)); #else value = VO + VA * sin((2.0 * M_PI * FC * time) + MDI * sin(2.0 * M_PI * FS * time)); #endif /* gtri - end - wbk - add PHASE parameters */ } break; case AM: { double VA, FC, MF, VO, TD; /* gtri - begin - wbk - add PHASE parameters */ #ifdef XSPICE double PHASEC, PHASES; double phasec; double phases; PHASEC = here->VSRCfunctionOrder > 5 ? here->VSRCcoeffs[5] : 0.0; PHASES = here->VSRCfunctionOrder > 6 ? here->VSRCcoeffs[6] : 0.0; /* compute phases in radians */ phasec = PHASEC * M_PI / 180.0; phases = PHASES * M_PI / 180.0; #endif VA = here->VSRCcoeffs[0]; VO = here->VSRCcoeffs[1]; MF = here->VSRCfunctionOrder > 2 && here->VSRCcoeffs[2] ? here->VSRCcoeffs[2] : (1/ckt->CKTfinalTime); FC = here->VSRCfunctionOrder > 3 ? here->VSRCcoeffs[3] : 0.0; TD = here->VSRCfunctionOrder > 4 && here->VSRCcoeffs[4] ? here->VSRCcoeffs[4] : 0.0; time -= TD; if (time <= 0) { value = 0; } else { #ifdef XSPICE /* compute waveform value */ value = VA * (VO + sin(2.0 * M_PI * MF * time + phases )) * sin(2.0 * M_PI * FC * time + phases); #else value = VA * (VO + sin(2.0 * M_PI * MF * time)) * sin(2.0 * M_PI * FC * time); #endif } /* gtri - end - wbk - add PHASE parameters */ } break; case PWL: { int i = 0, num_repeat = 0, ii = 0; double foo, repeat_time = 0, end_time, breakpt_time, itime; time -= here->VSRCrdelay; if(time < *(here->VSRCcoeffs)) { foo = *(here->VSRCcoeffs + 1) ; value = foo; goto loadDone; } do { for(i=ii ; i<(here->VSRCfunctionOrder/2)-1; i++ ) { itime = *(here->VSRCcoeffs+2*i); if ( AlmostEqualUlps(itime+repeat_time, time, 3 )) { foo = *(here->VSRCcoeffs+2*i+1); value = foo; goto loadDone; } else if ( (*(here->VSRCcoeffs+2*i)+repeat_time < time) && (*(here->VSRCcoeffs+2*(i+1))+repeat_time > time) ) { foo = *(here->VSRCcoeffs+2*i+1) + (((time-(*(here->VSRCcoeffs+2*i)+repeat_time))/ (*(here->VSRCcoeffs+2*(i+1)) - *(here->VSRCcoeffs+2*i))) * (*(here->VSRCcoeffs+2*i+3) - *(here->VSRCcoeffs+2*i+1))); value = foo; goto loadDone; } } foo = *(here->VSRCcoeffs+ here->VSRCfunctionOrder-1) ; value = foo; if ( !here->VSRCrGiven ) goto loadDone; end_time = *(here->VSRCcoeffs + here->VSRCfunctionOrder-2); breakpt_time = *(here->VSRCcoeffs + here->VSRCrBreakpt); repeat_time = end_time + (end_time - breakpt_time)*num_repeat++ - breakpt_time; ii = here->VSRCrBreakpt/2; } while ( here->VSRCrGiven ); break; } /**** tansient noise routines: VNoi2 2 0 DC 0 TRNOISE(10n 0.5n 0 0n) : generate gaussian distributed noise rms value, time step, 0 0 VNoi1 1 0 DC 0 TRNOISE(0n 0.5n 1 10n) : generate 1/f noise 0, time step, exponent < 2, rms value VNoi3 3 0 DC 0 TRNOISE(0 0 0 0 15m 22u 50u) : generate RTS noise 0 0 0 0, amplitude, capture time, emission time */ case TRNOISE: { struct trnoise_state *state = here -> VSRCtrnoise_state; double TS = state -> TS; double RTSAM = state->RTSAM; /* no noise */ if(TS == 0.0) { value = 0.0; } else { /* 1/f and white noise */ size_t n1 = (size_t) floor(time / TS); double V1 = trnoise_state_get(state, ckt, n1); double V2 = trnoise_state_get(state, ckt, n1+1); value = V1 + (V2 - V1) * (time / TS - n1); } /* RTS noise */ if (RTSAM > 0) { double RTScapTime = state->RTScapTime; if (time >= RTScapTime) value += RTSAM; } /* DC value */ if(here -> VSRCdcGiven) value += here->VSRCdcValue; } break; case TRRANDOM: { struct trrandom_state *state = here -> VSRCtrrandom_state; value = state -> value; /* DC value */ if(here -> VSRCdcGiven) value += here->VSRCdcValue; } break; } // switch } // else (line 48) loadDone: /* gtri - begin - wbk - modify for supply ramping option */ #ifdef XSPICE_EXP value *= ckt->CKTsrcFact; value *= cm_analog_ramp_factor(); #else if (ckt->CKTmode & MODETRANOP) value *= ckt->CKTsrcFact; #endif /* gtri - end - wbk - modify to process srcFact, etc. for all sources */ /* load the new voltage value into the matrix */ *(ckt->CKTrhs + (here->VSRCbranch)) += value; } // for loop instances } // for loop models return(OK); }