/********** Copyright 1990 Regents of the University of California. All rights reserved. Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group **********/ /* * Routines to do complex mathematical functions. These routines require * the -lm libraries. We sacrifice a lot of space to be able * to avoid having to do a seperate call for every vector element, * but it pays off in time savings. These routines should never * allow FPE's to happen. * * Complex functions are called as follows: * cx_something(data, type, length, &newlength, &newtype), * and return a char * that is cast to complex or double. */ #include #include #include #include #include #include #include #include #include "cmath.h" #include "cmath4.h" #include /* To get SV_TIME */ extern bool cx_degrees; void * cx_and(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) d[i] = dd1[i] && dd2[i]; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(&c1) = dd1[i]; imagpart(&c1) = 0.0; } else { realpart(&c1) = realpart(&cc1[i]); imagpart(&c1) = imagpart(&cc1[i]); } if (datatype2 == VF_REAL) { realpart(&c2) = dd2[i]; imagpart(&c2) = 0.0; } else { realpart(&c2) = realpart(&cc2[i]); imagpart(&c2) = imagpart(&cc2[i]); } d[i] = ((realpart(&c1) && realpart(&c2)) && (imagpart(&c1) && imagpart(&c2))); } } return ((void *) d); } void * cx_or(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) d[i] = dd1[i] || dd2[i]; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(&c1) = dd1[i]; imagpart(&c1) = 0.0; } else { realpart(&c1) = realpart(&cc1[i]); imagpart(&c1) = imagpart(&cc1[i]); } if (datatype2 == VF_REAL) { realpart(&c2) = dd2[i]; imagpart(&c2) = 0.0; } else { realpart(&c2) = realpart(&cc2[i]); imagpart(&c2) = imagpart(&cc2[i]); } d[i] = ((realpart(&c1) || realpart(&c2)) && (imagpart(&c1) || imagpart(&c2))); } } return ((void *) d); } void * cx_not(void *data, short int type, int length, int *newlength, short int *newtype) { double *d; double *dd = (double *) data; ngcomplex_t *cc = (ngcomplex_t *) data; int i; d = alloc_d(length); *newtype = VF_REAL; *newlength = length; if (type == VF_COMPLEX) { for (i = 0; i < length; i++) { /* gcc doens't like !double */ d[i] = realpart(&cc[i]) ? 0 : 1; d[i] = imagpart(&cc[i]) ? 0 : 1; } } else { for (i = 0; i < length; i++) d[i] = ! dd[i]; } return ((void *) d); } /* This is a strange function. What we do is fit a polynomial to the * curve, of degree $polydegree, and then evaluate it at the points * in the time scale. What we do is this: for every set of points that * we fit a polynomial to, fill in as much of the new vector as we can * (i.e, between the last value of the old scale we went from to this * one). At the ends we just use what we have... We have to detect * badness here too... * * Note that we pass arguments differently for this one cx_ function... */ void * cx_interpolate(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping) { struct dvec *ns, *os; double *d; int degree; register int i, oincreasing = 1, nincreasing = 1; int base; if (grouping == 0) grouping = length; /* First do some sanity checks. */ if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) { fprintf(cp_err, "Internal error: cx_interpolate: bad scale\n"); return (NULL); } ns = newpl->pl_scale; os = pl->pl_scale; if (iscomplex(ns)) { fprintf(cp_err, "Error: new scale has complex data\n"); return (NULL); } if (iscomplex(os)) { fprintf(cp_err, "Error: old scale has complex data\n"); return (NULL); } if (length != os->v_length) { fprintf(cp_err, "Error: lengths don't match\n"); return (NULL); } if (type != VF_REAL) { fprintf(cp_err, "Error: argument has complex data\n"); return (NULL); } /* Now make sure that either both scales are strictly increasing * or both are strictly decreasing. */ if (os->v_realdata[0] < os->v_realdata[1]) oincreasing = TRUE; else oincreasing = FALSE; for (i = 0; i < os->v_length - 1; i++) if ((os->v_realdata[i] < os->v_realdata[i + 1]) != oincreasing) { fprintf(cp_err, "Error: old scale not monotonic\n"); return (NULL); } if (ns->v_realdata[0] < ns->v_realdata[1]) nincreasing = TRUE; else nincreasing = FALSE; for (i = 0; i < ns->v_length - 1; i++) if ((ns->v_realdata[i] < ns->v_realdata[i + 1]) != nincreasing) { fprintf(cp_err, "Error: new scale not monotonic\n"); return (NULL); } *newtype = VF_REAL; *newlength = ns->v_length; d = alloc_d(ns->v_length); if (!cp_getvar("polydegree", CP_NUM, °ree)) degree = 1; for (base = 0; base < length; base += grouping) { if (!ft_interpolate((double *) data + base, d + base, os->v_realdata + base, grouping, ns->v_realdata + base, grouping, degree)) { tfree(d); return (NULL); } } return ((void *) d); } void * cx_deriv(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping) { double *scratch; double *spare; double x; int i, j, k; int degree; int n, base; if (grouping == 0) grouping = length; /* First do some sanity checks. */ if (!pl || !pl->pl_scale || !newpl || !newpl->pl_scale) { fprintf(cp_err, "Internal error: cx_deriv: bad scale\n"); return (NULL); } if (!cp_getvar("dpolydegree", CP_NUM, °ree)) degree = 2; /* default quadratic */ n = degree + 1; spare = alloc_d(n); scratch = alloc_d(n * (n + 1)); *newlength = length; *newtype = type; if (type == VF_COMPLEX) { ngcomplex_t *c_outdata, *c_indata; double *r_coefs, *i_coefs; double *scale; r_coefs = alloc_d(n); i_coefs = alloc_d(n); c_indata = (ngcomplex_t *) data; c_outdata = alloc_c(length); scale = alloc_d(length); /* XXX */ if (pl->pl_scale->v_type == VF_COMPLEX) /* Not ideal */ for (i = 0; i < length; i++) scale[i] = realpart(&pl->pl_scale->v_compdata[i]); else for (i = 0; i < length; i++) scale[i] = pl->pl_scale->v_realdata[i]; for (base = 0; base < length; base += grouping) { k = 0; for (i = degree; i < grouping; i += 1) { /* real */ for (j = 0; j < n; j++) spare[j] = c_indata[j + i + base].cx_real; if (!ft_polyfit(scale + i + base - degree, spare, r_coefs, degree, scratch)) { fprintf(stderr, "ft_polyfit @ %d failed\n", i); } ft_polyderiv(r_coefs, degree); /* for loop gets the beginning part */ for (j = k; j <= i + degree / 2; j++) { x = scale[j + base]; c_outdata[j + base].cx_real = ft_peval(x, r_coefs, degree - 1); } /* imag */ for (j = 0; j < n; j++) spare[j] = c_indata[j + i + base].cx_imag; if (!ft_polyfit(scale + i - degree + base, spare, i_coefs, degree, scratch)) { fprintf(stderr, "ft_polyfit @ %d failed\n", i); } ft_polyderiv(i_coefs, degree); /* for loop gets the beginning part */ for (j = k; j <= i - degree / 2; j++) { x = scale[j + base]; c_outdata[j + base].cx_imag = ft_peval(x, i_coefs, degree - 1); } k = j; } /* get the tail */ for (j = k; j < length; j++) { x = scale[j + base]; /* real */ c_outdata[j + base].cx_real = ft_peval(x, r_coefs, degree - 1); /* imag */ c_outdata[j + base].cx_imag = ft_peval(x, i_coefs, degree - 1); } } tfree(r_coefs); tfree(i_coefs); tfree(scale); return (void *) c_outdata; } else { /* all-real case */ double *coefs; double *outdata, *indata; double *scale; coefs = alloc_d(n); indata = (double *) data; outdata = alloc_d(length); scale = alloc_d(length); /* XXX */ /* Here I encountered a problem because when we issue an instruction like this: * plot -deriv(vp(3)) to calculate something similar to the group delay, the code * detects that vector vp(3) is real and it is believed that the frequency is also * real. The frequency is COMPLEX and the program aborts so I'm going to put the * check that the frequency is complex vector not to abort. */ /* Original problematic code * for (i = 0; i < length; i++) * scale[i] = pl->pl_scale->v_realdata[i]; */ /* Modified to deal with complex frequency vector */ if (pl->pl_scale->v_type == VF_COMPLEX) for (i = 0; i < length; i++) scale[i] = realpart(&pl->pl_scale->v_compdata[i]); else for (i = 0; i < length; i++) scale[i] = pl->pl_scale->v_realdata[i]; for (base = 0; base < length; base += grouping) { k = 0; for (i = degree; i < grouping; i += 1) { if (!ft_polyfit(scale + i - degree + base, indata + i - degree + base, coefs, degree, scratch)) { fprintf(stderr, "ft_polyfit @ %d failed\n", i + base); } ft_polyderiv(coefs, degree); /* for loop gets the beginning part */ for (j = k; j <= i - degree / 2; j++) { /* Seems the same problem because the frequency vector is complex * and the real part of the complex should be accessed because if we * run x = pl-> pl_scale-> v_realdata [base + j]; the execution will * abort. */ if (pl->pl_scale->v_type == VF_COMPLEX) x = realpart(&pl->pl_scale->v_compdata[j+base]); /* For complex scale vector */ else x = pl->pl_scale->v_realdata[j + base]; /* For real scale vector */ outdata[j + base] = ft_peval(x, coefs, degree - 1); } k = j; } for (j = k; j < length; j++) { /* Again the same error */ /* x = pl->pl_scale->v_realdata[j + base]; */ if (pl->pl_scale->v_type == VF_COMPLEX) x = realpart(&pl->pl_scale->v_compdata[j+base]); /* For complex scale vector */ else x = pl->pl_scale->v_realdata[j + base]; /* For real scale vector */ outdata[j + base] = ft_peval(x, coefs, degree - 1); } } tfree(coefs); tfree(scale); /* XXX */ return (char *) outdata; } } void * cx_group_delay(void *data, short int type, int length, int *newlength, short int *newtype, struct plot *pl, struct plot *newpl, int grouping) { ngcomplex_t *cc = (ngcomplex_t *) data; double *v_phase = alloc_d(length); double *datos,adjust_final; double *group_delay = alloc_d(length); int i; /* char *datos_aux; */ /* Check to see if we have the frequency vector for the derivative */ if (!eq(pl->pl_scale->v_name, "frequency")) { fprintf(cp_err, "Internal error: cx_group_delay: need frequency based complex vector.\n"); return (NULL); } if (type == VF_COMPLEX) for (i = 0; i < length; i++) { v_phase[i] = radtodeg(cph(&cc[i])); } else { fprintf(cp_err, "Signal must be complex to calculate group delay\n"); return (NULL); } type = VF_REAL; /* datos_aux = (char *)cx_deriv((char *)v_phase, type, length, newlength, newtype, pl, newpl, grouping); * datos = (double *) datos_aux; */ datos = (double *)cx_deriv((char *)v_phase, type, length, newlength, newtype, pl, newpl, grouping); /* With this global variable I will change how to obtain the group delay because * it is defined as: * * gd()=-dphase[rad]/dw[rad/s] * * if you have degrees in phase and frequency in Hz, must be taken into account * * gd()=-dphase[deg]/df[Hz]/360 * gd()=-dphase[rad]/df[Hz]/(2*pi) */ if(cx_degrees) { adjust_final=1.0/360; } else { adjust_final=1.0/(2*M_PI); } for (i = 0; i < length; i++) { group_delay[i] = -datos[i]*adjust_final; } /* Adjust to Real because the result is Real */ *newtype = VF_REAL; /* Set the type of Vector to "Time" because the speed of group units' s' * The different types of vectors are INCLUDE \ Fte_cons.h */ pl->pl_dvecs->v_type= SV_TIME; return ((char *) group_delay); }