/********** Copyright 1990 Regents of the University of California. All rights reserved. Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group **********/ /** \file cmath3.c \brief functions for the control language parser Routines to do complex mathematical functions. These routines require the -lm libraries. We sacrifice a lot of space to be able to avoid having to do a seperate call for every vector element, but it pays off in time savings. These routines should never allow FPE's to happen. Complex functions are called as follows: cx_something(data, type, length, &newlength, &newtype), and return a char * that is cast to complex or double. */ #include "ngspice/ngspice.h" #include "ngspice/cpdefs.h" #include "ngspice/dvec.h" #include "cmath.h" #include "cmath3.h" static ngcomplex_t *cexp_sp3(ngcomplex_t *c); /* cexp exist's in some newer compiler */ static int cln(ngcomplex_t *c, ngcomplex_t *rv); static void ctimes(ngcomplex_t *c1, ngcomplex_t *c2, ngcomplex_t *rv); void *cx_divide(void *data1, void *data2, short int datatype1, short int datatype2, int length) { int xrc = 0; void *rv; double *dd1 = (double *) data1; double *dd2 = (double *) data2; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t *c, c1, c2; int i; if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { double *d; rv = d = alloc_d(length); for (i = 0; i < length; i++) { rcheck(dd2[i] != 0, "divide"); d[i] = dd1[i] / dd2[i]; } } else { rv = c = alloc_c(length); for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } rcheck((realpart(c2) != 0) || (imagpart(c2) != 0), "divide"); #define xx5 realpart(c1) #define xx6 imagpart(c1) cdiv(xx5, xx6, realpart(c2), imagpart(c2), realpart(c[i]), imagpart(c[i])); } } EXITPOINT: if (xrc != 0) { /* Free resources on error */ tfree(rv); rv = NULL; } return rv; } /* end of function cx_divide */ /* Should just use "j( )" */ /* The comma operator. What this does (unless it is part of the argument * list of a user-defined function) is arg1 + j(arg2). */ void * cx_comma(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t *c, c1, c2; int i; c = alloc_c(length); for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } realpart(c[i]) = realpart(c1) + imagpart(c2); imagpart(c[i]) = imagpart(c1) + realpart(c2); } return ((void *) c); } void *cx_power(void *data1, void *data2, short int datatype1, short int datatype2, int length) { int xrc = 0; void *rv; double *dd1 = (double *) data1; double *dd2 = (double *) data2; if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { double *d; rv = d = alloc_d(length); int i; for (i = 0; i < length; i++) { rcheck((dd1[i] >= 0) || (floor(dd2[i]) == ceil(dd2[i])), "power"); d[i] = pow(dd1[i], dd2[i]); } } else { ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t *c, c1, c2, *t; rv = c = alloc_c(length); int i; for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } if ((realpart(c1) == 0.0) && (imagpart(c1) == 0.0)) { realpart(c[i]) = 0.0; imagpart(c[i]) = 0.0; } else { /* if ((imagpart(c1) != 0.0) && (imagpart(c2) != 0.0)) */ ngcomplex_t tmp, tmp2; if (cln(&c1, &tmp) != 0) { (void) fprintf(cp_err, "power of 0 + i 0 not allowed.\n"); xrc = -1; goto EXITPOINT; } ctimes(&c2, &tmp, &tmp2); t = cexp_sp3(&tmp2); c[i] = *t; /* } else { realpart(c[i]) = pow(realpart(c1), realpart(c2)); imagpart(c[i]) = 0.0; */ } } } EXITPOINT: if (xrc != 0) { /* Free resources on error */ txfree(rv); rv = NULL; } return rv; } /* end of function cx_power */ /* These are unnecessary... Only cx_power uses them... */ static ngcomplex_t * cexp_sp3(ngcomplex_t *c) { static ngcomplex_t r; double d; d = exp(realpart(*c)); realpart(r) = d * cos(imagpart(*c)); if (imagpart(*c) != 0.0) imagpart(r) = d * sin(imagpart(*c)); else imagpart(r) = 0.0; return (&r); } static int cln(ngcomplex_t *c, ngcomplex_t *rv) { double c_r = c->cx_real; double c_i = c->cx_imag; if (c_r == 0 && c_i == 0) { (void) fprintf(cp_err, "Complex log of 0 + i0 is undefined.\n"); return -1; } rv->cx_real = log(cmag(*c)); if (c_i != 0.0) { rv->cx_imag = atan2(c_i, c_r); } else { rv->cx_imag = 0.0; } return 0; } /* end of functon cln */ static void ctimes(ngcomplex_t *c1, ngcomplex_t *c2, ngcomplex_t *rv) { rv->cx_real = realpart(*c1) * realpart(*c2) - imagpart(*c1) * imagpart(*c2); rv->cx_imag = imagpart(*c1) * realpart(*c2) + realpart(*c1) * imagpart(*c2); return; } /* Now come all the relational and logical functions. It's overkill to put * them here, but... Note that they always return a real value, with the * result the same length as the arguments. */ void * cx_eq(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) if (dd1[i] == dd2[i]) d[i] = 1.0; else d[i] = 0.0; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } d[i] = ((realpart(c1) == realpart(c2)) && (imagpart(c1) == imagpart(c2))); } } return ((void *) d); } void * cx_gt(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) if (dd1[i] > dd2[i]) d[i] = 1.0; else d[i] = 0.0; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } d[i] = ((realpart(c1) > realpart(c2)) && (imagpart(c1) > imagpart(c2))); } } return ((void *) d); } void * cx_lt(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) if (dd1[i] < dd2[i]) d[i] = 1.0; else d[i] = 0.0; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } d[i] = ((realpart(c1) < realpart(c2)) && (imagpart(c1) < imagpart(c2))); } } return ((void *) d); } void * cx_ge(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) if (dd1[i] >= dd2[i]) d[i] = 1.0; else d[i] = 0.0; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } d[i] = ((realpart(c1) >= realpart(c2)) && (imagpart(c1) >= imagpart(c2))); } } return ((void *) d); } void * cx_le(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) if (dd1[i] <= dd2[i]) d[i] = 1.0; else d[i] = 0.0; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } d[i] = ((realpart(c1) <= realpart(c2)) && (imagpart(c1) <= imagpart(c2))); } } return ((void *) d); } void * cx_ne(void *data1, void *data2, short int datatype1, short int datatype2, int length) { double *dd1 = (double *) data1; double *dd2 = (double *) data2; double *d; ngcomplex_t *cc1 = (ngcomplex_t *) data1; ngcomplex_t *cc2 = (ngcomplex_t *) data2; ngcomplex_t c1, c2; int i; d = alloc_d(length); if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) { for (i = 0; i < length; i++) if (dd1[i] != dd2[i]) d[i] = 1.0; else d[i] = 0.0; } else { for (i = 0; i < length; i++) { if (datatype1 == VF_REAL) { realpart(c1) = dd1[i]; imagpart(c1) = 0.0; } else { c1 = cc1[i]; } if (datatype2 == VF_REAL) { realpart(c2) = dd2[i]; imagpart(c2) = 0.0; } else { c2 = cc2[i]; } d[i] = ((realpart(c1) != realpart(c2)) && (imagpart(c1) != imagpart(c2))); } } return ((void *) d); }