**************************************************************** * Pi attenuator pad. * Parameters: R0 = impedance * DB = attenuation in dB (positive) .SUBCKT PIPAD 1 2 { R0 DB } R1 1 0 {R0*(1+2/(10**(DB/20)-1))} R2 1 2 {(R0/2)*(10**(DB/20)-10**(DB/-20))} R3 2 0 {R0*(1+2/(10**(DB/20)-1))} .ENDS **************************************************************** * PCB Via inductance + extra L. * H = substrate height in inches * D = via diameter in inches * L = extra inductance in henries. .SUBCKT VIA 1 2 { H D L } LV 1 2 {L+ + 5.08E-9*H*(log((2+sqrt(4+D*D/(H*H)))*H/D)+ + .75*(D/H-sqrt(4+D*D/(H*H))))} .ENDS **************************************************************** * Voltage-controlled oscillator. * Parameters: F = frequency @ Vc = 0 in Hz * KV = tuning sensitivity in Hz/volt * A = peak output amplitude * RO = output port resistance * Connections: Vc Out .SUBCKT VCO 20 2 { F KV A RO } RIN1 20 0 1E12 VSW 30 0 DC 0 PULSE 0 1 RSW 30 0 1E12 BIN 3 0 V=(V(20)+{F/KV})*V(30) R3 3 0 1E6 GSIN 2 0 22 0 {1/RO} RSIN 2 0 {RO} B1 1 0 I=-(V(22)*V(3)) B2 22 0 I=V(1)*V(3) R2 1 0 1E9 I1 0 1 PULSE {1E-9*A} 0 C2 1 0 {.159154943/KV} C1 22 0 {.159154943/KV} R1 22 0 1E9 .ENDS **************************************************************** * Ideal Frequency converter. * Parameters: F = Oscillator frequency * RI = input port resistance * RO = output port resistance * Connections: In Out .SUBCKT FCNVT 1 2 { F RI RO } RIN 1 0 {RI} VLO 3 0 DC 0 SIN 0 1 {F} RLO 3 0 1E12 BMIX 0 2 I=(V(1)*V(3))/{RO} RO 2 0 {RO} .ENDS **************************************************************** * Sine wave RF power source. * Parameters: F = Frequency * R = Output resistance * P = Power in dBm * V = DC (EMF) .SUBCKT RFGEN 1 2 { F R P V } * + - Is 2 1 DC {V/R} SIN {V/R} {sqrt((10**(P/10))/(125*R))} {F} Ro 1 2 {R} .ENDS **************************************************************** * Sine wave 2-tone RF power source. * Parameters: F1 = 1st tone frequency * F2 = 2nd tone frequency * R = output resistance * P = power per tone in dBm * V = DC (EMF) .SUBCKT 2TGEN 1 2 { F1 F2 R P V } * + - I1 2 1 DC {V/R} SIN {V/R} {sqrt((10**(P/10))/(125*R))} {F1} I2 2 1 DC 0 SIN 0 {sqrt((10**(P/10))/(125*R))} {F2} Ro 1 2 {R} .ENDS **************************************************************** * Transmission lines * All ports must have external connections. * Parameters: Z0 = impedance * L = length in inches * VP = velocity-of-propagation rel. to air * Connections: 1+ 1- 2+ 2- .SUBCKT TXL 1 2 3 4 { Z0 L VP } T1 1 2 3 4 Z0={Z0} TD={L/(1.180315E10*VP)} .ENDS **************************************************************** * Lossy transmission line. * All ports must have external connections. * Parameters: Z0 = impedance * L = length in inches * VP = velocity-of-propagation rel. to air * A = loss in dB/inch * Connections: 1+ 1- 2+ 2- .SUBCKT LTXL 1 2 3 4 { Z0 L VP A } O1 1 2 3 4 LOSSY .MODEL LOSSY LTRA LEN={L} + R={5.848492e-3*A*Z0} + L={Z0/(1.180315E10*VP)} + C={1/(1.180315E10*VP*Z0)} .ENDS **************************************************************** * 2 coupled transmission lines * All ports must have external connections. * Parameters: Z0E = even-mode impedance * Z0O = odd-mode impedance * L = length in inches * VP = velocity-of-propagation rel. to air * Connections: 1+ 1- 2+ 2- { Z0E Z0O L VP } .SUBCKT CPL2 1 2 3 4 T1 1 0 3 0 Z0={Z0E} TD={L/(1.180315E10*VP)} T2 1 2 3 4 Z0={2*Z0E*Z0O/(Z0E-Z0O)} TD={L/(1.180315E10*VP)} T3 2 0 4 0 Z0={Z0E} TD={L/(1.180315E10*VP)} .ENDS **************************************************************** * Generic Bipolar OpAmp - linear model * Parameters: G = open-loop gain in dB * FT = unity gain frequency in Hz * IOS = input offset current in amps * VOS = input offset voltage * IB = input bias current in amps .SUBCKT BIPOPA 2 3 6 7 4 { G FT IOS VOS IB } * - In + Out Vcc Vee RP 4 7 10K RXX 4 0 10MEG IBP 3 0 {IB-IOS} RIP 3 0 10MEG CIP 3 0 1.4PF IBN 2 0 {IB} RIN 2 0 10MEG CIN 2 0 1.4PF VOFST 2 10 {VOS} RID 10 3 200K EA 11 0 10 3 1 R1 11 12 5K R2 12 13 50K C1 12 0 {13E-6/FT} GA 0 14 0 13 {0.0135*(10**(G/20))} C2 13 14 {2.7E-6/FT} RO 14 0 75 L 14 6 {30/FT} RL 14 6 1000 CL 6 0 3PF .ENDS **************************************************************** * Generic FET OpAmp - linear model * Parameters: G = open-loop gain in dB * FT = unity gain frequency in Hz * VOS = input offset voltage .SUBCKT FETOPA 2 3 6 7 4 { G FT VOS } * - In + Out Vcc Vee RP 4 7 6K RXX 4 0 10MEG IBP 3 0 33E-12 RIP 3 0 1E12 CIP 3 0 3PF IBN 2 0 30E-12 RIN 2 0 1E12 CIN 2 0 3PF VOFST 2 10 {VOS} RID 10 3 1E12 EA 11 0 10 3 1 R1 11 12 5K R2 12 13 50K C1 12 0 {24E-6/FT} GA 0 14 0 13 {0.0135*(10**(G/20))} C2 13 14 {2.33E-6/FT} RO 14 0 75 L 14 6 {4E-6/FT} RL 14 6 100 CL 6 0 3PF .ENDS ****************************************************************