/* KLayout Layout Viewer Copyright (C) 2006-2023 Matthias Koefferlein This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "tlThreadedWorkers.h" #include "tlTimer.h" #include "tlUnitTest.h" #include "tlThreads.h" #include "tlSleep.h" #include class Sum { public: Sum () : m_sum(0), m_flag (false) { } void reset () { lock.lock (); m_sum = 0; lock.unlock (); m_flag = false; } void add(int n) { lock.lock (); m_sum += n; lock.unlock (); m_flag = true; } int sum() { int s; lock.lock (); s = m_sum; lock.unlock (); return s; } bool flag() const { return m_flag; } private: tl::Mutex lock; int m_sum; volatile bool m_flag; }; static Sum s_sum[4]; class SchedulerTask : public tl::Task { public: SchedulerTask (tl::JobBase *job, int m, int n) : mp_job (job), m_m (m), m_n (n) { } tl::JobBase *mp_job; int m_m, m_n; }; class MyTask : public tl::Task { public: MyTask (int n) : m_n (n) { } int m_n; }; class MyWorker : public tl::Worker { public: MyWorker () : tl::Worker () { } protected: void perform_task(tl::Task *task) { MyTask *mytask = dynamic_cast (task); if (mytask) { for (int i = 0; i < mytask->m_n; ++i) { checkpoint (); if (worker_index () >= 0) { s_sum[worker_index ()].add (1); } else { s_sum[0].add (1); } } } else { SchedulerTask *schtask = dynamic_cast (task); if (schtask) { for (int i = 0; i < schtask->m_m; ++i) { schtask->mp_job->schedule (new MyTask (schtask->m_n)); } } } } }; class MyJob : public tl::Job { public: MyJob (int w) : tl::Job (w) { } std::string m_name; }; TEST(1) { size_t n; tl::Boss boss1, boss2; MyJob *job1 = new MyJob (2); MyJob *job2 = new MyJob (1); boss1.register_job(job1); boss2.register_job(job1); n = 0; for (tl::Boss::iterator j = boss1.begin (); j != boss1.end (); ++j) { ++n; } EXPECT_EQ (n, size_t (1)); n = 0; for (tl::Boss::iterator j = boss2.begin (); j != boss2.end (); ++j) { ++n; } EXPECT_EQ (n, size_t (1)); delete job1; job1 = new MyJob (2); n = 0; for (tl::Boss::iterator j = boss1.begin (); j != boss1.end (); ++j) { ++n; } EXPECT_EQ (n, size_t (0)); n = 0; for (tl::Boss::iterator j = boss2.begin (); j != boss2.end (); ++j) { ++n; } EXPECT_EQ (n, size_t (0)); tl::Boss *tmp_boss = new tl::Boss (); tmp_boss->register_job(job1); tmp_boss->register_job(job2); boss1.register_job(job1); boss2.register_job(job1); boss2.register_job(job2); delete tmp_boss; n = 0; for (tl::Boss::iterator j = boss1.begin (); j != boss1.end (); ++j) { ++n; } EXPECT_EQ (n, size_t (1)); n = 0; for (tl::Boss::iterator j = boss2.begin (); j != boss2.end (); ++j) { ++n; } EXPECT_EQ (n, size_t (2)); delete job1; delete job2; n = 0; for (tl::Boss::iterator j = boss1.begin (); j != boss1.end (); ++j) { ++n; } EXPECT_EQ (n, size_t (0)); n = 0; for (tl::Boss::iterator j = boss2.begin (); j != boss2.end (); ++j) { ++n; } EXPECT_EQ (n, size_t (0)); } TEST(2) { MyJob job (1); s_sum[0].reset (); for (int i = 0; i < 100; ++i) { job.schedule (new MyTask (100000)); } job.start (); tl::usleep (2000000); EXPECT_EQ (s_sum[0].sum (), 10000000); } TEST(3) { MyJob job (1); s_sum[0].reset (); for (int i = 0; i < 100; ++i) { job.schedule (new MyTask (100000)); } job.start (); int status = job.wait (); EXPECT_EQ (status, 1); EXPECT_EQ (s_sum[0].sum (), 10000000); } TEST(4) { MyJob job (1); s_sum[0].reset (); for (int i = 0; i < 10000; ++i) { job.schedule (new MyTask (100000)); } job.start (); bool status = job.wait (100); EXPECT_EQ (status, false /*timed out*/); EXPECT_EQ (s_sum[0].sum () < 10000000, true); } TEST(5) { MyJob job (1); s_sum[0].reset (); for (int i = 0; i < 10000; ++i) { job.schedule (new MyTask (100000)); } job.start (); tl::usleep (100000); job.terminate (); EXPECT_EQ (s_sum[0].sum () < 10000000, true); } TEST(10) { MyJob job (4); s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 1000; ++i) { job.schedule (new MyTask (10000)); } job.start (); tl::usleep (2000000); EXPECT_EQ (s_sum[0].sum () > 0, true); EXPECT_EQ (s_sum[1].sum () > 0, true); EXPECT_EQ (s_sum[2].sum () > 0, true); EXPECT_EQ (s_sum[3].sum () > 0, true); EXPECT_EQ (s_sum[0].sum () % 1000, 0); EXPECT_EQ (s_sum[1].sum () % 1000, 0); EXPECT_EQ (s_sum[2].sum () % 1000, 0); EXPECT_EQ (s_sum[3].sum () % 1000, 0); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum(), 10000000); } TEST(11) { MyJob job (4); s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 10000; ++i) { job.schedule (new MyTask (1000)); } job.start (); int status = job.wait (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (status, 1); EXPECT_EQ (s_sum[0].sum () > 0, true); EXPECT_EQ (s_sum[1].sum () > 0, true); EXPECT_EQ (s_sum[2].sum () > 0, true); EXPECT_EQ (s_sum[3].sum () > 0, true); EXPECT_EQ (s_sum[0].sum () % 1000, 0); EXPECT_EQ (s_sum[1].sum () % 1000, 0); EXPECT_EQ (s_sum[2].sum () % 1000, 0); EXPECT_EQ (s_sum[3].sum () % 1000, 0); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum(), 10000000); // check the restart capabilities .. job.terminate (); for (int i = 0; i < 10000; ++i) { job.schedule (new MyTask (1000)); } job.start (); status = job.wait (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (status, 1); EXPECT_EQ (s_sum[0].sum () > 0, true); EXPECT_EQ (s_sum[1].sum () > 0, true); EXPECT_EQ (s_sum[2].sum () > 0, true); EXPECT_EQ (s_sum[3].sum () > 0, true); EXPECT_EQ (s_sum[0].sum () % 1000, 0); EXPECT_EQ (s_sum[1].sum () % 1000, 0); EXPECT_EQ (s_sum[2].sum () % 1000, 0); EXPECT_EQ (s_sum[3].sum () % 1000, 0); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum(), 20000000); } TEST(12) { MyJob job (4); s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 10000; ++i) { job.schedule (new MyTask (1000)); } job.start (); bool status = job.wait (100); EXPECT_EQ (status, false /*timed out*/); EXPECT_EQ (job.is_running (), true); // at least one must be caught in the perform task ... EXPECT_EQ ((s_sum[0].sum () % 1000) + (s_sum[1].sum () % 1000) + (s_sum[2].sum () % 1000) + (s_sum[3].sum () % 1000) > 0, true); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum() < 10000000, true); } void run_thread_tests (tl::TestBase *_this, int wait) { int tries = 4; bool stopped_in_action = false; for (int i = 0; i < tries && !stopped_in_action; ++i) { MyJob job (4); s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 10000; ++i) { job.schedule (new MyTask (100000)); } job.start (); tl::usleep (wait); job.terminate (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum() < 400000000, true); // at least one must be stopped in the perform task - as this is not always the case, // we retry a few times. stopped_in_action = (s_sum[0].sum () % 10000) + (s_sum[1].sum () % 10000) + (s_sum[2].sum () % 10000) + (s_sum[3].sum () % 10000) > 0; } EXPECT_EQ (stopped_in_action, true); } TEST(13) { run_thread_tests (_this, 20000); } TEST(14) { run_thread_tests (_this, 200000); } TEST(20) { MyJob job (4); for (int l = 0; l < 100; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 1000; ++i) { job.schedule (new MyTask (100)); } job.start (); job.wait (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum(), 100000); } } TEST(21) { MyJob job (1); for (int l = 0; l < 100; ++l) { s_sum[0].reset (); for (int i = 0; i < 1000; ++i) { job.schedule (new MyTask (100)); } job.start (); job.wait (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum (), 100000); } } TEST(22) { tl::SelfTimer timer ("4 threads, 20 iterations with all threads running"); MyJob job (4); for (int l = 0; l < 20; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 1000; ++i) { job.schedule (new MyTask (100000)); } job.start (); while (!s_sum[0].flag () || !s_sum[1].flag () || !s_sum[2].flag () || !s_sum[3].flag ()) { tl::usleep (10000); } job.stop (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum() < 100000000, true); } } TEST(23) { tl::SelfTimer timer ("2 threads, 40 iterations with all threads running"); MyJob job (2); for (int l = 0; l < 40; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 1000; ++i) { job.schedule (new MyTask (100000)); } job.start (); while (!s_sum[0].flag () || !s_sum[1].flag ()) { tl::usleep (10000); } job.stop (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() < 100000000, true); } } TEST(24) { tl::SelfTimer timer ("4 threads, 20 iterations with at least one thread running"); MyJob job (4); for (int l = 0; l < 20; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 1000; ++i) { job.schedule (new MyTask (100000)); } job.start (); while (!s_sum[0].flag () && !s_sum[1].flag () && !s_sum[2].flag () && !s_sum[3].flag ()) { tl::usleep (10000); } job.stop (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum() < 100000000, true); } } TEST(25) { tl::SelfTimer timer ("2 threads, 40 iterations with all at least one thread running"); MyJob job (2); for (int l = 0; l < 40; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 1000; ++i) { job.schedule (new MyTask (100000)); } job.start (); while (!s_sum[0].flag () && !s_sum[1].flag ()) { tl::usleep (10000); } job.stop (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() < 100000000, true); } } TEST(26) { tl::SelfTimer timer ("2 threads, 500 iterations with waiting"); MyJob job (2); for (int l = 0; l < 500; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 100; ++i) { job.schedule (new MyTask (100)); } job.start (); job.wait (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() == 10000, true); } } TEST(27) { tl::SelfTimer timer ("4 threads, 500 iterations with waiting"); MyJob job (4); for (int l = 0; l < 500; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); for (int i = 0; i < 100; ++i) { job.schedule (new MyTask (100)); } job.start (); job.wait (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum () == 10000, true); } } TEST(28) { tl::SelfTimer timer ("4 threads, 500 self-scheduled iterations with waiting"); MyJob job (4); for (int l = 0; l < 500; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); job.schedule (new SchedulerTask (&job, 100, 100)); job.start (); job.wait (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum () == 10000, true); } } TEST(29) { tl::SelfTimer timer ("0 threads, 500 self-scheduled iterations with waiting"); MyJob job (0); for (int l = 0; l < 500; ++l) { s_sum[0].reset (); s_sum[1].reset (); s_sum[2].reset (); s_sum[3].reset (); job.schedule (new SchedulerTask (&job, 100, 100)); job.start (); job.wait (); EXPECT_EQ (job.is_running (), false); EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum () == 10000, true); } }