/* KLayout Layout Viewer Copyright (C) 2006-2020 Matthias Koefferlein This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "dbLEFDEFImporter.h" #include "dbLayoutUtils.h" #include "dbTechnology.h" #include "tlStream.h" #include "tlProgress.h" #include "tlFileUtils.h" #include namespace db { // ----------------------------------------------------------------------------------- // Path resolution utility std::string correct_path (const std::string &fn, const db::Layout &layout, const std::string &base_path) { if (! tl::is_absolute (fn)) { // if a technology is given and the file can be found in the technology's base path, take it // from there. std::string tn = layout.meta_info_value ("technology"); const db::Technology *tech = 0; if (! tn.empty ()) { tech = db::Technologies::instance ()->technology_by_name (tn); } if (tech && ! tech->base_path ().empty ()) { std::string new_fn = tl::combine_path (tech->base_path (), fn); if (tl::file_exists (new_fn)) { return new_fn; } } if (! base_path.empty ()) { return tl::combine_path (base_path, fn); } else { return fn; } } else { return fn; } } // ----------------------------------------------------------------------------------- // Utilities static bool is_hex_digit (char c) { char cup = toupper (c); return (cup >= 'A' && cup <= 'F') || (c >= '0' && c <= '9'); } static unsigned int hex_value (char c) { char cup = toupper (c); if (cup >= 'A' && cup <= 'F') { return (cup - 'A') + 10; } else if (c >= '0' && c <= '9') { return c - '0'; } else { return 0; } } std::vector string2masks (const std::string &s) { std::vector res; res.reserve (s.size ()); for (const char *cp = s.c_str (); *cp; ++cp) { if (! is_hex_digit (*cp)) { throw tl::Exception ("Not a hex string: " + s); } res.push_back (hex_value (*cp)); } std::reverse (res.begin (), res.end ()); return res; } static unsigned int mask (const std::vector &masks, unsigned int index) { if (index < (unsigned int) masks.size ()) { return masks [index]; } else { return 0; } } // ----------------------------------------------------------------------------------- // RuleBasedViaGenerator implementation RuleBasedViaGenerator::RuleBasedViaGenerator () : LEFDEFLayoutGenerator (), m_bottom_mask (0), m_cut_mask (0), m_top_mask (0), m_rows (1), m_columns (1) { } void RuleBasedViaGenerator::create_cell (LEFDEFReaderState &reader, Layout &layout, db::Cell &cell, const std::vector *maskshift_layers, const std::vector &masks, const LEFDEFNumberOfMasks *nm) { // will not be used with an external maskshift layer stack tl_assert (maskshift_layers == 0); unsigned int mask_bottom = mask (masks, 0), mask_cut = mask (masks, 1), mask_top = mask (masks, 2); if (mask_bottom == 0) { mask_bottom = m_bottom_mask; } if (mask_cut == 0) { mask_cut = m_cut_mask; } if (mask_top == 0) { mask_top = m_top_mask; } unsigned int num_cut_masks = nm ? nm->number_of_masks (m_cut_layer) : 1; // NOTE: missing cuts due to pattern holes don't change mask assignment db::Vector vs ((m_cutsize.x () * m_columns + m_cutspacing.x () * (m_columns - 1)) / 2, (m_cutsize.y () * m_rows + m_cutspacing.y () * (m_rows - 1)) / 2); db::Box via_box (m_offset - vs, m_offset + vs); std::pair dl (false, 0); dl = reader.open_layer (layout, m_bottom_layer, ViaGeometry, mask_bottom); if (dl.first) { cell.shapes (dl.second).insert (db::Polygon (via_box.enlarged (m_be).moved (m_bo))); } dl = reader.open_layer (layout, m_top_layer, ViaGeometry, mask_top); if (dl.first) { cell.shapes (dl.second).insert (db::Polygon (via_box.enlarged (m_te).moved (m_bo))); } const char *p = m_pattern.c_str (); int rp = m_pattern.empty () ? -1 : 0; const char *p0 = p, *p1 = p; for (int r = 0; r < m_rows; ++r) { if (rp == 0) { if (*p) { // read a new row specification rp = 0; while (*p && is_hex_digit (*p)) { rp = (rp * 16) + hex_value (*p++); } if (*p == '_') { ++p; } p0 = p; if (*p) { while (*p && (is_hex_digit (*p) || toupper (*p) == 'R')) { ++p; } } p1 = p; if (*p == '_') { ++p; } } } if (rp != 0) { if (rp > 0) { --rp; } const char *pp = p0; unsigned int d = 0; int cp = (p == p0 ? -1 : 0); int bit = 0; for (int c = 0; c < m_columns; ++c) { if (cp == 0) { d = 0; cp = 4; bit = 0; if (*pp && pp < p1 && toupper (*pp) == 'R') { ++pp; if (*pp && pp < p1) { cp = 4 * hex_value (*pp++); if (*pp && pp < p1) { d = (unsigned int) hex_value (*pp++); } } } else if (*pp && pp < p1) { d = (unsigned int) hex_value (*pp++); } if (cp > 0) { --cp; } } else if (cp > 0) { --cp; } else { d = 0xf; } if ((d & (0x8 >> (bit++ % 4))) != 0) { db::Vector vbl ((m_cutsize + m_cutspacing).x () * c, (m_cutsize + m_cutspacing).y () * r); db::Box vb (via_box.lower_left () + vbl, via_box.lower_left () + vbl + m_cutsize); unsigned int cm = 0; if (mask_cut > 0) { // This is the core algorithm for mask assignment in patterned vias cm = (mask_cut + r + c - 1) % num_cut_masks + 1; } dl = reader.open_layer (layout, m_cut_layer, ViaGeometry, cm); if (dl.first) { cell.shapes (dl.second).insert (db::Polygon (vb)); } } } } } } // ----------------------------------------------------------------------------------- // GeometryBasedViaGenerator implementation GeometryBasedLayoutGenerator::GeometryBasedLayoutGenerator () : LEFDEFLayoutGenerator (), m_fixedmask (false) { // .. nothing yet .. } unsigned int GeometryBasedLayoutGenerator::get_maskshift (const std::string &ln, const std::vector *msl, const std::vector &masks) { if (! msl) { msl = &m_maskshift_layers; } for (std::vector::const_iterator l = msl->begin (); l != msl->end (); ++l) { if (! l->empty () && *l == ln) { return mask (masks, (unsigned int) (l - msl->begin ())); } } return 0; } unsigned int GeometryBasedLayoutGenerator::mask_for (const std::string &ln, unsigned int m, unsigned int mshift, const LEFDEFNumberOfMasks *nm) const { // for FIXEDMASK we don't do any mask shifting if (m_fixedmask || mshift == 0) { return m; } else if (m == 0) { return mshift; } else { return (m + mshift - 2) % nm->number_of_masks (ln) + 1; } } unsigned int GeometryBasedLayoutGenerator::combine_maskshifts (const std::string &ln, unsigned int mshift1, unsigned int mshift2, const LEFDEFNumberOfMasks *nm) const { if (mshift1 == 0 || mshift2 == 0) { return mshift1 + mshift2; } else { return (mshift1 + mshift2 - 2) % nm->number_of_masks (ln) + 1; } } void GeometryBasedLayoutGenerator::create_cell (LEFDEFReaderState &reader, Layout &layout, db::Cell &cell, const std::vector *ext_msl, const std::vector &masks, const LEFDEFNumberOfMasks *nm) { for (std::map >, db::Shapes>::const_iterator g = m_shapes.begin (); g != m_shapes.end (); ++g) { unsigned int mshift = get_maskshift (g->first.first, ext_msl, masks); unsigned int mask = mask_for (g->first.first, g->first.second.second, mshift, nm); std::pair dl = reader.open_layer (layout, g->first.first, g->first.second.first, mask); if (dl.first) { cell.shapes (dl.second).insert (g->second); } } for (std::list::const_iterator v = m_vias.begin (); v != m_vias.end (); ++v) { LEFDEFLayoutGenerator *g = reader.via_generator (v->name); if (! g) { continue; } std::vector msl = g->maskshift_layers (); msl.resize (3, std::string ()); unsigned mshift_bottom = get_maskshift (msl [0], ext_msl, masks); unsigned mshift_cut = get_maskshift (msl [1], ext_msl, masks); unsigned mshift_top = get_maskshift (msl [2], ext_msl, masks); db::Cell *vc = reader.via_cell (v->name, layout, combine_maskshifts (msl [0], v->bottom_mask, mshift_bottom, nm), combine_maskshifts (msl [1], v->cut_mask, mshift_cut, nm), combine_maskshifts (msl [2], v->top_mask, mshift_top, nm), nm); if (vc) { cell.insert (db::CellInstArray (db::CellInst (vc->cell_index ()), v->trans)); } } } template static db::Shape insert_shape (db::Shapes &shapes, const Shape &shape, db::properties_id_type prop_id) { if (prop_id == 0) { return shapes.insert (shape); } else { return shapes.insert (db::object_with_properties (shape, prop_id)); } } void GeometryBasedLayoutGenerator::add_polygon (const std::string &ln, LayerPurpose purpose, const db::Polygon &poly, unsigned int mask, db::properties_id_type prop_id) { insert_shape (m_shapes [std::make_pair (ln, std::make_pair (purpose, mask))], poly, prop_id); } void GeometryBasedLayoutGenerator::add_box (const std::string &ln, LayerPurpose purpose, const db::Box &box, unsigned int mask, db::properties_id_type prop_id) { insert_shape (m_shapes [std::make_pair (ln, std::make_pair (purpose, mask))], box, prop_id); } void GeometryBasedLayoutGenerator::add_path (const std::string &ln, LayerPurpose purpose, const db::Path &path, unsigned int mask, db::properties_id_type prop_id) { insert_shape (m_shapes [std::make_pair (ln, std::make_pair (purpose, mask))], path, prop_id); } void GeometryBasedLayoutGenerator::add_text (const std::string &ln, LayerPurpose purpose, const db::Text &text, unsigned int mask, db::properties_id_type prop_id) { insert_shape (m_shapes [std::make_pair (ln, std::make_pair (purpose, mask))], text, prop_id); } void GeometryBasedLayoutGenerator::add_via (const std::string &vn, const db::Trans &trans, unsigned int bottom_mask, unsigned int cut_mask, unsigned int top_mask) { m_vias.push_back (Via ()); m_vias.back ().name = vn; m_vias.back ().trans = trans; m_vias.back ().bottom_mask = bottom_mask; m_vias.back ().cut_mask = cut_mask; m_vias.back ().top_mask = top_mask; } // ----------------------------------------------------------------------------------- // LEFDEFTechnologyComponent implementation LEFDEFReaderOptions::LEFDEFReaderOptions () : m_read_all_layers (true), m_dbu (0.001), m_produce_net_names (true), m_net_property_name (1), m_produce_inst_names (true), m_inst_property_name (1), m_produce_pin_names (false), m_pin_property_name (1), m_produce_cell_outlines (true), m_cell_outline_layer ("OUTLINE"), m_produce_placement_blockages (true), m_placement_blockage_layer ("PLACEMENT_BLK"), m_produce_regions (true), m_region_layer ("REGIONS"), m_produce_via_geometry (true), m_via_geometry_suffix (""), m_via_geometry_datatype (0), m_via_cellname_prefix ("VIA_"), m_produce_pins (true), m_pins_suffix (".PIN"), m_pins_datatype (2), m_produce_lef_pins (true), m_lef_pins_suffix (".PIN"), m_lef_pins_datatype (2), m_produce_obstructions (true), m_obstructions_suffix (".OBS"), m_obstructions_datatype (3), m_produce_blockages (true), m_blockages_suffix (".BLK"), m_blockages_datatype (4), m_produce_labels (true), m_labels_suffix (".LABEL"), m_labels_datatype (1), m_produce_routing (true), m_routing_suffix (""), m_routing_datatype (0), m_produce_special_routing (true), m_special_routing_suffix (""), m_special_routing_datatype (0), m_separate_groups (false), m_map_file (), m_macro_resolution_mode (false), m_read_lef_with_def (true) { // .. nothing yet .. } LEFDEFReaderOptions::LEFDEFReaderOptions (const LEFDEFReaderOptions &d) : db::FormatSpecificReaderOptions () { operator= (d); } LEFDEFReaderOptions &LEFDEFReaderOptions::operator= (const LEFDEFReaderOptions &d) { if (this != &d) { db::FormatSpecificReaderOptions::operator= (d); m_read_all_layers = d.m_read_all_layers; m_layer_map = d.m_layer_map; m_dbu = d.m_dbu; m_produce_net_names = d.m_produce_net_names; m_net_property_name = d.m_net_property_name; m_produce_inst_names = d.m_produce_inst_names; m_inst_property_name = d.m_inst_property_name; m_produce_pin_names = d.m_produce_pin_names; m_pin_property_name = d.m_pin_property_name; m_produce_cell_outlines = d.m_produce_cell_outlines; m_cell_outline_layer = d.m_cell_outline_layer; m_produce_placement_blockages = d.m_produce_placement_blockages; m_placement_blockage_layer = d.m_placement_blockage_layer; m_produce_regions = d.m_produce_regions; m_region_layer = d.m_region_layer; m_produce_via_geometry = d.m_produce_via_geometry; m_via_geometry_suffix = d.m_via_geometry_suffix; m_via_geometry_suffixes = d.m_via_geometry_suffixes; m_via_geometry_datatype = d.m_via_geometry_datatype; m_via_geometry_datatypes = d.m_via_geometry_datatypes; m_via_cellname_prefix = d.m_via_cellname_prefix; m_produce_pins = d.m_produce_pins; m_pins_suffix = d.m_pins_suffix; m_pins_suffixes = d.m_pins_suffixes; m_pins_datatype = d.m_pins_datatype; m_pins_datatypes = d.m_pins_datatypes; m_produce_lef_pins = d.m_produce_lef_pins; m_lef_pins_suffix = d.m_lef_pins_suffix; m_lef_pins_suffixes = d.m_lef_pins_suffixes; m_lef_pins_datatype = d.m_lef_pins_datatype; m_lef_pins_datatypes = d.m_lef_pins_datatypes; m_produce_obstructions = d.m_produce_obstructions; m_obstructions_suffix = d.m_obstructions_suffix; m_obstructions_datatype = d.m_obstructions_datatype; m_produce_blockages = d.m_produce_blockages; m_blockages_suffix = d.m_blockages_suffix; m_blockages_datatype = d.m_blockages_datatype; m_produce_labels = d.m_produce_labels; m_labels_suffix = d.m_labels_suffix; m_labels_datatype = d.m_labels_datatype; m_produce_routing = d.m_produce_routing; m_routing_suffix = d.m_routing_suffix; m_routing_suffixes = d.m_routing_suffixes; m_routing_datatype = d.m_routing_datatype; m_routing_datatypes = d.m_routing_datatypes; m_produce_special_routing = d.m_produce_special_routing; m_special_routing_suffix = d.m_special_routing_suffix; m_special_routing_suffixes = d.m_special_routing_suffixes; m_special_routing_datatype = d.m_special_routing_datatype; m_special_routing_datatypes = d.m_special_routing_datatypes; m_separate_groups = d.m_separate_groups; m_map_file = d.m_map_file; m_macro_resolution_mode = d.m_macro_resolution_mode; m_lef_files = d.m_lef_files; m_read_lef_with_def = d.m_read_lef_with_def; } return *this; } db::FormatSpecificReaderOptions * LEFDEFReaderOptions::clone () const { return new LEFDEFReaderOptions (*this); } const std::string & LEFDEFReaderOptions::format_name () const { static const std::string n ("LEFDEF"); return n; } static void set_datatypes (db::LEFDEFReaderOptions *data, void (db::LEFDEFReaderOptions::*clear) (), void (db::LEFDEFReaderOptions::*set_datatype) (int datatype), void (db::LEFDEFReaderOptions::*set_datatype_per_mask) (unsigned int mask, int datatype), const std::string &s) { (data->*clear) (); tl::Extractor ex (s.c_str ()); while (! ex.at_end ()) { tl::Extractor ex_saved = ex; unsigned int mask = 0; if (ex.try_read (mask) && ex.test (":")) { int dt = 0; ex.read (dt); (data->*set_datatype_per_mask) (std::max ((unsigned int) 1, mask), dt); } else { ex = ex_saved; int dt = 0; ex.read (dt); (data->*set_datatype) (dt); } if (ex.at_end ()) { break; } else { ex.expect (","); } } } static void set_suffixes (db::LEFDEFReaderOptions *data, void (db::LEFDEFReaderOptions::*clear) (), void (db::LEFDEFReaderOptions::*set_suffix) (const std::string &suffix), void (db::LEFDEFReaderOptions::*set_suffix_per_mask) (unsigned int mask, const std::string &suffix), const std::string &s) { (data->*clear) (); tl::Extractor ex (s.c_str ()); while (! ex.at_end ()) { tl::Extractor ex_saved = ex; unsigned int mask = 0; if (ex.try_read (mask) && ex.test (":")) { std::string sfx; ex.read_word_or_quoted (sfx); (data->*set_suffix_per_mask) (std::max ((unsigned int) 1, mask), sfx); } else { ex = ex_saved; std::string sfx; ex.read_word_or_quoted (sfx); (data->*set_suffix) (sfx); } if (ex.at_end ()) { break; } else { ex.expect (","); } } } static std::string get_datatypes (const db::LEFDEFReaderOptions *data, int (db::LEFDEFReaderOptions::*get_datatype) () const, int (db::LEFDEFReaderOptions::*get_datatype_per_mask) (unsigned int mask) const, unsigned int max_mask) { std::string res; int dt0 = (data->*get_datatype) (); if (dt0 >= 0) { res += tl::to_string (dt0); } for (unsigned int i = 0; i <= max_mask; ++i) { int dt = (data->*get_datatype_per_mask) (i); if (dt >= 0 && dt != dt0) { if (! res.empty ()) { res += ","; } res += tl::to_string (i); res += ":"; res += tl::to_string (dt); } } return res; } static std::string get_suffixes (const db::LEFDEFReaderOptions *data, const std::string &(db::LEFDEFReaderOptions::*get_suffix) () const, const std::string &(db::LEFDEFReaderOptions::*get_suffix_per_mask) (unsigned int mask) const, unsigned int max_mask) { std::string res; std::string sfx0 = (data->*get_suffix) (); if (! sfx0.empty ()) { res += tl::to_word_or_quoted_string (sfx0); } for (unsigned int i = 0; i <= max_mask; ++i) { std::string sfx = (data->*get_suffix_per_mask) (i); if (! sfx.empty () && sfx != sfx0) { if (! res.empty ()) { res += ","; } res += tl::to_string (i); res += ":"; res += tl::to_word_or_quoted_string (sfx); } } return res; } void LEFDEFReaderOptions::set_via_geometry_suffix_str (const std::string &s) { set_suffixes (this, &LEFDEFReaderOptions::clear_via_geometry_suffixes_per_mask, &LEFDEFReaderOptions::set_via_geometry_suffix, &LEFDEFReaderOptions::set_via_geometry_suffix_per_mask, s); } std::string LEFDEFReaderOptions::via_geometry_suffix_str () const { return get_suffixes (this, &LEFDEFReaderOptions::via_geometry_suffix, &LEFDEFReaderOptions::via_geometry_suffix_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_via_geometry_datatype_str (const std::string &s) { set_datatypes (this, &LEFDEFReaderOptions::clear_via_geometry_datatypes_per_mask, &LEFDEFReaderOptions::set_via_geometry_datatype, &LEFDEFReaderOptions::set_via_geometry_datatype_per_mask, s); } std::string LEFDEFReaderOptions::via_geometry_datatype_str () const { return get_datatypes (this, &LEFDEFReaderOptions::via_geometry_datatype, &LEFDEFReaderOptions::via_geometry_datatype_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_pins_suffix_str (const std::string &s) { set_suffixes (this, &LEFDEFReaderOptions::clear_pins_suffixes_per_mask, &LEFDEFReaderOptions::set_pins_suffix, &LEFDEFReaderOptions::set_pins_suffix_per_mask, s); } std::string LEFDEFReaderOptions::pins_suffix_str () const { return get_suffixes (this, &LEFDEFReaderOptions::pins_suffix, &LEFDEFReaderOptions::pins_suffix_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_pins_datatype_str (const std::string &s) { set_datatypes (this, &LEFDEFReaderOptions::clear_pins_datatypes_per_mask, &LEFDEFReaderOptions::set_pins_datatype, &LEFDEFReaderOptions::set_pins_datatype_per_mask, s); } std::string LEFDEFReaderOptions::pins_datatype_str () const { return get_datatypes (this, &LEFDEFReaderOptions::pins_datatype, &LEFDEFReaderOptions::pins_datatype_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_lef_pins_suffix_str (const std::string &s) { set_suffixes (this, &LEFDEFReaderOptions::clear_lef_pins_suffixes_per_mask, &LEFDEFReaderOptions::set_lef_pins_suffix, &LEFDEFReaderOptions::set_lef_pins_suffix_per_mask, s); } std::string LEFDEFReaderOptions::lef_pins_suffix_str () const { return get_suffixes (this, &LEFDEFReaderOptions::lef_pins_suffix, &LEFDEFReaderOptions::lef_pins_suffix_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_lef_pins_datatype_str (const std::string &s) { set_datatypes (this, &LEFDEFReaderOptions::clear_lef_pins_datatypes_per_mask, &LEFDEFReaderOptions::set_lef_pins_datatype, &LEFDEFReaderOptions::set_lef_pins_datatype_per_mask, s); } std::string LEFDEFReaderOptions::lef_pins_datatype_str () const { return get_datatypes (this, &LEFDEFReaderOptions::lef_pins_datatype, &LEFDEFReaderOptions::lef_pins_datatype_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_routing_suffix_str (const std::string &s) { set_suffixes (this, &LEFDEFReaderOptions::clear_routing_suffixes_per_mask, &LEFDEFReaderOptions::set_routing_suffix, &LEFDEFReaderOptions::set_routing_suffix_per_mask, s); } std::string LEFDEFReaderOptions::routing_suffix_str () const { return get_suffixes (this, &LEFDEFReaderOptions::routing_suffix, &LEFDEFReaderOptions::routing_suffix_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_routing_datatype_str (const std::string &s) { set_datatypes (this, &LEFDEFReaderOptions::clear_routing_datatypes_per_mask, &LEFDEFReaderOptions::set_routing_datatype, &LEFDEFReaderOptions::set_routing_datatype_per_mask, s); } std::string LEFDEFReaderOptions::routing_datatype_str () const { return get_datatypes (this, &LEFDEFReaderOptions::routing_datatype, &LEFDEFReaderOptions::routing_datatype_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_special_routing_suffix_str (const std::string &s) { set_suffixes (this, &LEFDEFReaderOptions::clear_special_routing_suffixes_per_mask, &LEFDEFReaderOptions::set_special_routing_suffix, &LEFDEFReaderOptions::set_special_routing_suffix_per_mask, s); } std::string LEFDEFReaderOptions::special_routing_suffix_str () const { return get_suffixes (this, &LEFDEFReaderOptions::special_routing_suffix, &LEFDEFReaderOptions::special_routing_suffix_per_mask, max_mask_number ()); } void LEFDEFReaderOptions::set_special_routing_datatype_str (const std::string &s) { set_datatypes (this, &LEFDEFReaderOptions::clear_special_routing_datatypes_per_mask, &LEFDEFReaderOptions::set_special_routing_datatype, &LEFDEFReaderOptions::set_special_routing_datatype_per_mask, s); } std::string LEFDEFReaderOptions::special_routing_datatype_str () const { return get_datatypes (this, &LEFDEFReaderOptions::special_routing_datatype, &LEFDEFReaderOptions::special_routing_datatype_per_mask, max_mask_number ()); } // ----------------------------------------------------------------------------------- // LEFDEFLayerDelegate implementation LEFDEFReaderState::LEFDEFReaderState (const LEFDEFReaderOptions *tc, db::Layout &layout, const std::string &base_path) : m_create_layers (true), m_has_explicit_layer_mapping (false), m_laynum (1), mp_tech_comp (tc) { if (! tc->map_file ().empty ()) { read_map_file (correct_path (tc->map_file (), layout, base_path), layout); } else { if (tc) { m_layer_map = tc->layer_map (); m_create_layers = tc->read_all_layers (); } } } LEFDEFReaderState::~LEFDEFReaderState () { for (std::map::const_iterator i = m_via_generators.begin (); i != m_via_generators.end (); ++i) { delete i->second; } m_via_generators.clear (); for (std::map::const_iterator i = m_macro_generators.begin (); i != m_macro_generators.end (); ++i) { delete i->second; } m_macro_generators.clear (); } void LEFDEFReaderState::register_layer (const std::string &ln) { m_default_number.insert (std::make_pair (ln, m_laynum)); ++m_laynum; } void LEFDEFReaderState::map_layer_explicit (const std::string &n, LayerPurpose purpose, const db::LayerProperties &lp, unsigned int layer, unsigned int mask) { tl_assert (m_has_explicit_layer_mapping); m_layers [std::make_pair (n, std::make_pair (purpose, mask))] = std::make_pair (true, layer); m_layer_map.map (lp, layer); } void LEFDEFReaderState::read_map_file (const std::string &path, db::Layout &layout) { m_has_explicit_layer_mapping = true; tl::log << tl::to_string (tr ("Reading LEF/DEF map file")) << " " << path; tl::InputFile file (path); tl::InputStream file_stream (file); tl::TextInputStream ts (file_stream); std::map purpose_translation; purpose_translation ["LEFPIN"] = LEFPins; purpose_translation ["PIN"] = Pins; purpose_translation ["LEFOBS"] = Obstructions; purpose_translation ["SPNET"] = SpecialRouting; purpose_translation ["NET"] = Routing; purpose_translation ["VIA"] = ViaGeometry; purpose_translation ["BLOCKAGE"] = Blockage; std::map purpose_translation_rev; for (std::map::const_iterator i = purpose_translation.begin (); i != purpose_translation.end (); ++i) { purpose_translation_rev.insert (std::make_pair (i->second, i->first)); } std::map >, db::LayerProperties> layer_map; while (! ts.at_end ()) { const std::string &l = ts.get_line (); tl::Extractor ex (l.c_str ()); if (ex.at_end () || ex.test ("#")) { // ignore empty of comment lines } else { std::string w1, w2; int layer = 0, datatype = 0; size_t max_purpose_str = 10; if (ex.try_read_word (w1) && ex.try_read_word (w2, "._$,/:") && ex.try_read (layer) && ex.try_read (datatype)) { if (w1 == "DIEAREA") { layer_map [std::make_pair (std::string (), std::make_pair (Outline, (unsigned int) 0))] = db::LayerProperties (layer, datatype, "OUTLINE"); } else if (w1 == "REGIONS") { layer_map [std::make_pair (std::string (), std::make_pair (Regions, (unsigned int) 0))] = db::LayerProperties (layer, datatype, "REGIONS"); } else if (w1 == "BLOCKAGE") { layer_map [std::make_pair (std::string (), std::make_pair (PlacementBlockage, (unsigned int) 0))] = db::LayerProperties (layer, datatype, "PLACEMENT_BLK"); } else if (w1 == "NAME") { // converts a line like // "NAME M1/PINS,M2/PINS ..." // into a canonical name mapping like // "(M1/LABELS): M1.LABEL" // "(M2/LABELS): M2.LABEL" std::vector layers; std::vector purposes = tl::split (w2, ","); for (std::vector::const_iterator p = purposes.begin (); p != purposes.end (); ++p) { layers.push_back (tl::split (*p, "/").front ()); } std::string final_name = tl::join (layers, "/") + ".LABEL"; for (std::vector::const_iterator l = layers.begin (); l != layers.end (); ++l) { layer_map [std::make_pair (*l, std::make_pair (Label, (unsigned int) 0))] = db::LayerProperties (layer, datatype, final_name); } } else { // converts a line like // "M1 SPNET,NET,PINS,LEFPINS ..." // into a canonical name mapping like // "(M1,NET): M1.NET/PINS" // "(M1,PINS): M1.NET/PINS" // (separating, translating and recombing the purposes) std::set > translated_purposes; std::vector purposes = tl::split (w2, ","); std::reverse (purposes.begin (), purposes.end ()); unsigned int mask = 0; for (std::vector::const_iterator p = purposes.begin (); p != purposes.end (); ++p) { std::string p_uc = tl::to_upper_case (*p); tl::Extractor ex (p_uc.c_str ()); std::string ps; ex.read_word_or_quoted (ps); if (ex.test (":")) { if (ex.test ("MASK") && ex.test (":")) { ex.read (mask); } } std::map::const_iterator i = purpose_translation.find (ps); if (i != purpose_translation.end ()) { translated_purposes.insert (std::make_pair (i->second, mask)); } } // create a visual description string for the combined purposes std::string purpose_str; for (std::set >::const_iterator p = translated_purposes.begin (); p != translated_purposes.end (); ++p) { if (p != translated_purposes.begin ()) { purpose_str += "/"; } std::string ps = purpose_translation_rev [p->first]; if (p->second > 0) { ps += ":"; ps += tl::to_string (p->second); } if ((purpose_str + ps).size () > max_purpose_str) { purpose_str += "..."; break; } else { purpose_str += ps; } } std::string final_name = w1 + "." + purpose_str; for (std::set >::const_iterator p = translated_purposes.begin (); p != translated_purposes.end (); ++p) { layer_map [std::make_pair (w1, *p)] = db::LayerProperties (layer, datatype, final_name); } } } } } db::DirectLayerMapping lm (&layout); for (std::map >, db::LayerProperties>::const_iterator i = layer_map.begin (); i != layer_map.end (); ++i) { map_layer_explicit (i->first.first, i->first.second.first, i->second, lm.map_layer (i->second).second, i->first.second.second); } } std::pair LEFDEFReaderState::open_layer (db::Layout &layout, const std::string &n, LayerPurpose purpose, unsigned int mask) { std::map >, std::pair >::const_iterator nl = m_layers.find (std::make_pair (n, std::make_pair (purpose, mask))); if (nl == m_layers.end ()) { std::pair ll (false, 0); if (n.empty () || ! m_has_explicit_layer_mapping) { ll = open_layer_uncached (layout, n, purpose, mask); } m_layers.insert (std::make_pair (std::make_pair (n, std::make_pair (purpose, mask)), ll)); return ll; } else { return nl->second; } } std::pair LEFDEFReaderState::open_layer_uncached (db::Layout &layout, const std::string &n, LayerPurpose purpose, unsigned int mask) { if (n.empty ()) { // NOTE: the canonical name is independent from the tech component's settings // as is "(name)". It's used for implementing the automatic map file import // feature. std::string ld; bool produce = false; if (purpose == Outline) { produce = mp_tech_comp->produce_cell_outlines (); ld = mp_tech_comp->cell_outline_layer (); } else if (purpose == Regions) { produce = mp_tech_comp->produce_regions (); ld = mp_tech_comp->region_layer (); } else if (purpose == PlacementBlockage) { produce = mp_tech_comp->produce_placement_blockages (); ld = mp_tech_comp->placement_blockage_layer (); } if (! produce) { return std::make_pair (false, 0); } db::LayerProperties lp; tl::Extractor ex (ld.c_str ()); try { ex.read (lp); } catch (...) { lp.layer = 0; lp.datatype = 0; } for (db::Layout::layer_iterator l = layout.begin_layers (); l != layout.end_layers (); ++l) { if ((*l).second->log_equal (lp)) { return std::make_pair (true, (*l).first); } } return std::make_pair (true, layout.insert_layer (lp)); } else { if (mp_tech_comp) { bool produce = true; switch (purpose) { case Routing: default: produce = mp_tech_comp->produce_routing (); break; case SpecialRouting: produce = mp_tech_comp->produce_special_routing (); break; case ViaGeometry: produce = mp_tech_comp->produce_via_geometry (); break; case Label: produce = mp_tech_comp->produce_labels (); break; case Pins: produce = mp_tech_comp->produce_pins (); break; case LEFPins: produce = mp_tech_comp->produce_lef_pins (); break; case Obstructions: produce = mp_tech_comp->produce_obstructions (); break; case Blockage: produce = mp_tech_comp->produce_blockages (); break; } if (! produce) { return std::make_pair (false, 0); } } // Note: "name" is the decorated name as provided by the tech component's // x_suffix specifications. std::string name_suffix; int dt = 0; if (mp_tech_comp) { switch (purpose) { case Routing: default: name_suffix = mp_tech_comp->routing_suffix_per_mask (mask); dt = mp_tech_comp->routing_datatype_per_mask (mask); break; case SpecialRouting: name_suffix = mp_tech_comp->special_routing_suffix_per_mask (mask); dt = mp_tech_comp->special_routing_datatype_per_mask (mask); break; case ViaGeometry: name_suffix = mp_tech_comp->via_geometry_suffix_per_mask (mask); dt = mp_tech_comp->via_geometry_datatype_per_mask (mask); break; case Label: name_suffix = mp_tech_comp->labels_suffix (); dt = mp_tech_comp->labels_datatype (); break; case Pins: name_suffix = mp_tech_comp->pins_suffix_per_mask (mask); dt = mp_tech_comp->pins_datatype_per_mask (mask); break; case LEFPins: name_suffix = mp_tech_comp->lef_pins_suffix_per_mask (mask); dt = mp_tech_comp->lef_pins_datatype_per_mask (mask); break; case Obstructions: name_suffix = mp_tech_comp->obstructions_suffix (); dt = mp_tech_comp->obstructions_datatype (); break; case Blockage: name_suffix = mp_tech_comp->blockages_suffix (); dt = mp_tech_comp->blockages_datatype (); break; } } std::string name = n + name_suffix; db::LayerProperties lp (name); lp.datatype = dt; std::map::const_iterator ldef = m_default_number.find (n); if (ldef != m_default_number.end ()) { lp.layer = ldef->second; } std::pair ll = m_layer_map.logical (name, layout); if (! ll.first) { ll = m_layer_map.logical (n, layout); } if (ll.first) { const db::LayerProperties *lpp = m_layer_map.target (ll.second); if (lpp) { lp = *lpp; if (lp.datatype >= 0) { lp.datatype += dt; } if (lp.name.empty ()) { lp.name = name; } } } else if (! m_create_layers) { return std::make_pair (false, 0); } if (lp.layer >= 0 && lp.datatype >= 0) { for (db::Layout::layer_iterator l = layout.begin_layers (); l != layout.end_layers (); ++l) { if ((*l).second->log_equal (lp)) { return std::make_pair (true, (*l).first); } } } return std::make_pair (true, layout.insert_layer (lp)); } } void LEFDEFReaderState::finish (db::Layout &layout) { int lnum = 0; std::set used_numbers; for (db::Layout::layer_iterator l = layout.begin_layers (); l != layout.end_layers (); ++l) { if ((*l).second->layer >= 0) { used_numbers.insert ((*l).second->layer); } } std::map number_for_name = m_default_number; for (std::map::const_iterator ln = number_for_name.begin (); ln != number_for_name.end (); ++ln) { used_numbers.insert (ln->second); } // Assign default numbers and generate a canonical mapping db::LayerMap lm; for (std::map >, std::pair >::const_iterator l = m_layers.begin (); l != m_layers.end (); ++l) { if (! l->second.first) { continue; } std::string ps; switch (l->first.second.first) { case Outline: ps = "OUTLINE"; break; case Regions: ps = "REGION"; break; case PlacementBlockage: ps = "PLACEMENT_BLK"; break; case Routing: default: ps = "NET"; break; case SpecialRouting: ps = "SPNET"; break; case ViaGeometry: ps = "VIA"; break; case Label: ps = "LABEL"; break; case Pins: ps = "PIN"; break; case LEFPins: ps = "LEFPIN"; break; case Obstructions: ps = "OBS"; break; case Blockage: ps = "BLK"; break; } unsigned int layer_index = l->second.second; db::LayerProperties lp = layout.get_properties (layer_index); if (lp.layer < 0) { std::map::const_iterator n4n = number_for_name.end (); if (! l->first.first.empty ()) { n4n = number_for_name.find (l->first.first); } if (n4n == number_for_name.end ()) { do { ++lnum; } while (used_numbers.find (lnum) != used_numbers.end ()); number_for_name.insert (std::make_pair (l->first.first, lnum)); lp.layer = lnum; } else { lp.layer = n4n->second; } } if (lp.datatype < 0) { lp.datatype = 0; } layout.set_properties (layer_index, lp); std::string n = l->first.first; if (! n.empty ()) { n += "."; } n += ps; if (l->first.second.second > 0) { n += ":"; n += tl::to_string (l->first.second.second); } lm.map (db::LayerProperties (n), l->second.second, lp); } // On return we deliver the "canonical" map m_layer_map = lm; } void LEFDEFReaderState::register_via_cell (const std::string &vn, LEFDEFLayoutGenerator *generator) { if (m_via_generators.find (vn) != m_via_generators.end ()) { delete m_via_generators [vn]; } m_via_generators [vn] = generator; } LEFDEFLayoutGenerator * LEFDEFReaderState::via_generator (const std::string &vn) { std::map::const_iterator g = m_via_generators.find (vn); if (g != m_via_generators.end ()) { return g->second; } else { return 0; } } db::Cell * LEFDEFReaderState::via_cell (const std::string &vn, db::Layout &layout, unsigned int mask_bottom, unsigned int mask_cut, unsigned int mask_top, const LEFDEFNumberOfMasks *nm) { ViaKey vk (vn, mask_bottom, mask_cut, mask_top); std::map::const_iterator i = m_via_cells.find (vk); if (i == m_via_cells.end ()) { db::Cell *cell = 0; std::map::const_iterator g = m_via_generators.find (vn); if (g != m_via_generators.end ()) { LEFDEFLayoutGenerator *vg = g->second; std::string mask_suffix; if (mask_bottom > 0 || mask_cut > 0 || mask_top > 0) { mask_suffix += "_"; mask_suffix += tl::to_string (mask_bottom); mask_suffix += "_"; mask_suffix += tl::to_string (mask_cut); mask_suffix += "_"; mask_suffix += tl::to_string (mask_top); } std::string cn = mp_tech_comp->via_cellname_prefix () + vn + mask_suffix; cell = &layout.cell (layout.add_cell (cn.c_str ())); std::vector masks; masks.reserve (3); masks.push_back (mask_bottom); masks.push_back (mask_cut); masks.push_back (mask_top); vg->create_cell (*this, layout, *cell, 0, masks, nm); } m_via_cells[vk] = cell; return cell; } else { tl_assert (! i->second || i->second->layout () == &layout); return i->second; } } void LEFDEFReaderState::register_macro_cell (const std::string &mn, LEFDEFLayoutGenerator *generator) { if (m_macro_generators.find (mn) != m_macro_generators.end ()) { delete m_macro_generators [mn]; } m_macro_generators [mn] = generator; } LEFDEFLayoutGenerator * LEFDEFReaderState::macro_generator (const std::string &mn) { std::map::const_iterator g = m_macro_generators.find (mn); if (g != m_macro_generators.end ()) { return g->second; } else { return 0; } } std::pair LEFDEFReaderState::macro_cell (const std::string &mn, Layout &layout, const std::vector &maskshift_layers, const std::vector &masks, const MacroDesc ¯o_desc, const LEFDEFNumberOfMasks *nm) { std::map::const_iterator g = m_macro_generators.find (mn); if (g == m_macro_generators.end ()) { return std::make_pair ((db::Cell *) 0, db::Trans ()); } LEFDEFLayoutGenerator *mg = g->second; MacroKey mk; if (mg->is_fixedmask ()) { mk = MacroKey (mn, std::vector ()); } else { mk = MacroKey (mn, masks); } std::map >::const_iterator i = m_macro_cells.find (mk); if (i != m_macro_cells.end ()) { tl_assert (! i->second.first || i->second.first->layout () == &layout); return i->second; } db::Cell *cell = 0; db::Trans tr; if (! macro_desc.foreign_name.empty ()) { db::cell_index_type ci; std::pair c = layout.cell_by_name (macro_desc.foreign_name.c_str ()); if (c.first) { ci = c.second; } else { ci = layout.add_cell (macro_desc.foreign_name.c_str ()); layout.cell (ci).set_ghost_cell (true); } db::Cell *foreign_cell = &layout.cell (ci); if (macro_desc.foreign_name != mn) { // create an indirection for renaming the cell cell = &layout.cell (layout.add_cell (mn.c_str ())); cell->insert (db::CellInstArray (db::CellInst (foreign_cell->cell_index ()), db::Trans (db::Point () - macro_desc.origin) * macro_desc.foreign_trans)); } else { // use FOREIGN cell instead of new one cell = foreign_cell; tr = db::Trans (db::Point () - macro_desc.origin) * macro_desc.foreign_trans; } } else if (tech_comp ()->macro_resolution_mode () == 2) { // create a ghost cell always db::cell_index_type ci; std::pair c = layout.cell_by_name (mn.c_str ()); if (c.first) { ci = c.second; } else { ci = layout.add_cell (mn.c_str ()); layout.cell (ci).set_ghost_cell (true); } cell = &layout.cell (ci); } else { // actually implement the real cell std::string mask_suffix; if (! mg->is_fixedmask ()) { for (std::vector::const_iterator m = masks.begin (); m != masks.end (); ++m) { mask_suffix += "_"; mask_suffix += tl::to_string (*m); } } std::string cn = mn + mask_suffix; cell = &layout.cell (layout.add_cell (cn.c_str ())); if (mg->is_fixedmask ()) { mg->create_cell (*this, layout, *cell, 0, std::vector (), nm); } else { mg->create_cell (*this, layout, *cell, &maskshift_layers, masks, nm); } } m_macro_cells [mk] = std::make_pair (cell, tr); return std::make_pair (cell, tr); } // ----------------------------------------------------------------------------------- // LEFDEFImporter implementation LEFDEFImporter::LEFDEFImporter () : mp_progress (0), mp_stream (0), mp_reader_state (0), m_produce_net_props (false), m_net_prop_name_id (0), m_produce_inst_props (false), m_inst_prop_name_id (0), m_produce_pin_props (false), m_pin_prop_name_id (0) { // .. nothing yet .. } LEFDEFImporter::~LEFDEFImporter () { // .. nothing yet .. } unsigned int LEFDEFImporter::get_mask (long m) { return (unsigned int) m; } void LEFDEFImporter::read (tl::InputStream &stream, db::Layout &layout, LEFDEFReaderState &state) { m_fn = stream.filename (); tl::AbsoluteProgress progress (tl::to_string (tr ("Reading ")) + m_fn, 1000); progress.set_format (tl::to_string (tr ("%.0fk lines"))); progress.set_format_unit (1000.0); progress.set_unit (10000.0); mp_reader_state = &state; if (state.tech_comp ()) { m_options = *state.tech_comp (); } m_produce_net_props = false; m_net_prop_name_id = 0; if (m_options.produce_net_names ()) { m_produce_net_props = true; m_net_prop_name_id = layout.properties_repository ().prop_name_id (m_options.net_property_name ()); } m_produce_inst_props = false; m_inst_prop_name_id = 0; if (m_options.produce_inst_names ()) { m_produce_inst_props = true; m_inst_prop_name_id = layout.properties_repository ().prop_name_id (m_options.inst_property_name ()); } m_produce_pin_props = false; m_pin_prop_name_id = 0; if (m_options.produce_pin_names ()) { m_produce_pin_props = true; m_pin_prop_name_id = layout.properties_repository ().prop_name_id (m_options.pin_property_name ()); } try { mp_progress = &progress; mp_stream = new tl::TextInputStream (stream); do_read (layout); delete mp_stream; mp_stream = 0; mp_progress = 0; } catch (...) { delete mp_stream; mp_stream = 0; mp_progress = 0; throw; } } void LEFDEFImporter::error (const std::string &msg) { throw LEFDEFReaderException (msg, int (mp_stream->line_number ()), m_cellname, m_fn); } void LEFDEFImporter::warn (const std::string &msg) { tl::warn << msg << tl::to_string (tr (" (line=")) << mp_stream->line_number () << tl::to_string (tr (", cell=")) << m_cellname << tl::to_string (tr (", file=")) << m_fn << ")"; } bool LEFDEFImporter::at_end () { if (m_last_token.empty ()) { if (next ().empty ()) { return true; } } return false; } bool LEFDEFImporter::peek (const std::string &token) { if (m_last_token.empty ()) { if (next ().empty ()) { error ("Unexpected end of file"); } } const char *a = m_last_token.c_str (); const char *b = token.c_str (); while (*a && *b) { if (std::toupper (*a) != std::toupper (*b)) { return false; } ++a, ++b; } return *a == *b; } bool LEFDEFImporter::test (const std::string &token) { if (peek (token)) { // consume when successful m_last_token.clear (); return true; } else { return false; } } void LEFDEFImporter::expect (const std::string &token) { if (! test (token)) { error ("Expected token: " + token); } } void LEFDEFImporter::expect (const std::string &token1, const std::string &token2) { if (! test (token1) && ! test (token2)) { error ("Expected token: " + token1 + " or " + token2); } } void LEFDEFImporter::expect (const std::string &token1, const std::string &token2, const std::string &token3) { if (! test (token1) && ! test (token2) && ! test (token3)) { error ("Expected token: " + token1 + ", " + token2 + " or " + token3); } } double LEFDEFImporter::get_double () { if (m_last_token.empty ()) { if (next ().empty ()) { error ("Unexpected end of file"); } } double d = 0; try { tl::from_string (m_last_token, d); } catch (...) { error ("Not a floating-point value: " + m_last_token); } m_last_token.clear (); return d; } long LEFDEFImporter::get_long () { if (m_last_token.empty ()) { if (next ().empty ()) { error ("Unexpected end of file"); } } long l = 0; try { tl::from_string (m_last_token, l); } catch (...) { error ("Not an integer value: " + m_last_token); } m_last_token.clear (); return l; } void LEFDEFImporter::take () { if (m_last_token.empty ()) { if (next ().empty ()) { error ("Unexpected end of file"); } } m_last_token.clear (); } std::string LEFDEFImporter::get () { if (m_last_token.empty ()) { if (next ().empty ()) { error ("Unexpected end of file"); } } std::string r; r.swap (m_last_token); return r; } const std::string & LEFDEFImporter::next () { unsigned int last_line = (unsigned int) mp_stream->line_number (); m_last_token.clear (); char c; do { while ((c = mp_stream->get_char ()) != 0 && isspace (c)) ; if (c == '#') { while ((c = mp_stream->get_char ()) != 0 && (c != '\015' && c != '\012')) ; } else if (c == '\'' || c == '"') { char quot = c; while ((c = mp_stream->get_char ()) != 0 && c != quot) { if (c == '\\') { c = mp_stream->get_char (); } if (c) { m_last_token += c; } } break; } else if (c) { m_last_token += c; while ((c = mp_stream->get_char ()) != 0 && ! isspace (c)) { if (c == '\\') { c = mp_stream->get_char (); } if (c) { m_last_token += c; } } break; } } while (c); if (mp_stream->line_number () != last_line) { ++*mp_progress; } return m_last_token; } db::FTrans LEFDEFImporter::get_orient (bool optional) { if (test ("N")) { return db::FTrans (db::FTrans::r0); } else if (test ("S")) { return db::FTrans (db::FTrans::r180); } else if (test ("W")) { return db::FTrans (db::FTrans::r90); } else if (test ("E")) { return db::FTrans (db::FTrans::r270); } else if (test ("FN")) { return db::FTrans (db::FTrans::m90); } else if (test ("FS")) { return db::FTrans (db::FTrans::m0); } else if (test ("FW")) { return db::FTrans (db::FTrans::m45); } else if (test ("FE")) { return db::FTrans (db::FTrans::m135); } else if (optional) { return db::FTrans (db::FTrans::r0); } else { error (tl::to_string (tr ("Invalid orientation specification: ")) + get ()); return db::FTrans (db::FTrans::r0); } } db::Point LEFDEFImporter::get_point (double scale) { double x = get_double (); double y = get_double (); return db::Point (db::DPoint (x * scale, y * scale)); } db::Vector LEFDEFImporter::get_vector (double scale) { double x = get_double (); double y = get_double (); return db::Vector (db::DVector (x * scale, y * scale)); } }