# encoding: UTF-8 # KLayout Layout Viewer # Copyright (C) 2006-2021 Matthias Koefferlein # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import pya import unittest import sys import os class DBLayoutToNetlistTests(unittest.TestCase): def test_1_Basic(self): ut_testsrc = os.getenv("TESTSRC") ly = pya.Layout() ly.read(os.path.join(ut_testsrc, "testdata", "algo", "device_extract_l1.gds")) l2n = pya.LayoutToNetlist(pya.RecursiveShapeIterator(ly, ly.top_cell(), [])) l2n.threads = 17 l2n.max_vertex_count = 42 l2n.area_ratio = 7.5 self.assertEqual(l2n.threads, 17) self.assertEqual(l2n.max_vertex_count, 42) self.assertEqual(l2n.area_ratio, 7.5) r = l2n.make_layer(ly.layer(6, 0)) self.assertNotEqual(l2n.internal_layout() is ly, True) self.assertEqual(l2n.internal_layout().top_cell().name, ly.top_cell().name) self.assertEqual(l2n.internal_top_cell().name, ly.top_cell().name) self.assertNotEqual(l2n.layer_of(r), ly.layer(6, 0)) # would be a strange coincidence ... cm = l2n.const_cell_mapping_into(ly, ly.top_cell()) for ci in range(0, l2n.internal_layout().cells()): self.assertEqual(l2n.internal_layout().cell(ci).name, ly.cell(cm.cell_mapping(ci)).name) ly2 = pya.Layout() ly2.create_cell(ly.top_cell().name) cm = l2n.cell_mapping_into(ly2, ly2.top_cell()) self.assertEqual(ly2.cells(), ly.cells()) for ci in range(0, l2n.internal_layout().cells()): self.assertEqual(l2n.internal_layout().cell(ci).name, ly2.cell(cm.cell_mapping(ci)).name) rmetal1 = l2n.make_polygon_layer(ly.layer(6, 0), "metal1") bulk_id = l2n.connect_global(rmetal1, "BULK") self.assertEqual(l2n.global_net_name(bulk_id), "BULK") def test_2_ShapesFromNet(self): ut_testsrc = os.getenv("TESTSRC") ly = pya.Layout() ly.read(os.path.join(ut_testsrc, "testdata", "algo", "device_extract_l1_with_inv_nodes.gds")) l2n = pya.LayoutToNetlist(pya.RecursiveShapeIterator(ly, ly.top_cell(), [])) # only plain backend connectivity rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0), "metal1" ) rmetal1_lbl = l2n.make_text_layer( ly.layer(6, 1), "metal1_lbl" ) rvia1 = l2n.make_polygon_layer( ly.layer(7, 0), "via1" ) rmetal2 = l2n.make_polygon_layer( ly.layer(8, 0), "metal2" ) rmetal2_lbl = l2n.make_text_layer( ly.layer(8, 1), "metal2_lbl" ) # Intra-layer l2n.connect(rmetal1) l2n.connect(rvia1) l2n.connect(rmetal2) # Inter-layer l2n.connect(rmetal1, rvia1) l2n.connect(rvia1, rmetal2) l2n.connect(rmetal1, rmetal1_lbl) # attaches labels l2n.connect(rmetal2, rmetal2_lbl) # attaches labels # Perform netlist extraction l2n.extract_netlist() self.assertEqual(str(l2n.netlist()), """circuit TRANS ($1=$1,$2=$2); end; circuit INV2 (OUT=OUT,$2=$3,$3=$4); subcircuit TRANS $1 ($1=$4,$2=OUT); subcircuit TRANS $2 ($1=$3,$2=OUT); subcircuit TRANS $3 ($1=$2,$2=$4); subcircuit TRANS $4 ($1=$2,$2=$3); end; circuit RINGO (); subcircuit INV2 $1 (OUT='FB,OSC',$2=VSS,$3=VDD); subcircuit INV2 $2 (OUT=$I20,$2=VSS,$3=VDD); subcircuit INV2 $3 (OUT=$I19,$2=VSS,$3=VDD); subcircuit INV2 $4 (OUT=$I21,$2=VSS,$3=VDD); subcircuit INV2 $5 (OUT=$I22,$2=VSS,$3=VDD); subcircuit INV2 $6 (OUT=$I23,$2=VSS,$3=VDD); subcircuit INV2 $7 (OUT=$I24,$2=VSS,$3=VDD); subcircuit INV2 $8 (OUT=$I25,$2=VSS,$3=VDD); subcircuit INV2 $9 (OUT=$I26,$2=VSS,$3=VDD); subcircuit INV2 $10 (OUT=$I27,$2=VSS,$3=VDD); end; """) self.assertEqual(str(l2n.probe_net(rmetal2, pya.DPoint(0.0, 1.8))), "RINGO:FB,OSC") sc_path = [] self.assertEqual(str(l2n.probe_net(rmetal2, pya.DPoint(0.0, 1.8), sc_path)), "RINGO:FB,OSC") self.assertEqual(len(sc_path), 0) self.assertEqual(repr(l2n.probe_net(rmetal2, pya.DPoint(-2.0, 1.8))), "None") n = l2n.probe_net(rmetal1, pya.Point(2600, 1000), None) self.assertEqual(str(n), "INV2:$2") sc_path = [] n = l2n.probe_net(rmetal1, pya.Point(2600, 1000), sc_path) self.assertEqual(str(n), "INV2:$2") self.assertEqual(len(sc_path), 1) a = [] t = pya.DCplxTrans() for sc in sc_path: a.append(sc.expanded_name()) t = t * sc.trans self.assertEqual(",".join(a), "$2") self.assertEqual(str(t), "r0 *1 2.64,0") self.assertEqual(str(l2n.shapes_of_net(n, rmetal1, True)), "(-980,-420;-980,2420;-620,2420;-620,-420);(-800,820;-800,1180;580,1180;580,820);(-980,2420;-980,3180;-620,3180;-620,2420);(-980,-380;-980,380;-620,380;-620,-380)") shapes = pya.Shapes() l2n.shapes_of_net(n, rmetal1, True, shapes) r = pya.Region() for s in shapes.each(): r.insert(s.polygon) self.assertEqual(str(r), "(-980,-420;-980,2420;-620,2420;-620,-420);(-800,820;-800,1180;580,1180;580,820);(-980,2420;-980,3180;-620,3180;-620,2420);(-980,-380;-980,380;-620,380;-620,-380)") def test_10_LayoutToNetlistExtractionWithoutDevices(self): ut_testsrc = os.getenv("TESTSRC") ly = pya.Layout() ly.read(os.path.join(ut_testsrc, "testdata", "algo", "device_extract_l1.gds")) l2n = pya.LayoutToNetlist(pya.RecursiveShapeIterator(ly, ly.top_cell(), [])) # only plain connectivity ractive = l2n.make_layer( ly.layer(2, 0), "active" ) rpoly = l2n.make_polygon_layer( ly.layer(3, 0), "poly" ) rpoly_lbl = l2n.make_text_layer( ly.layer(3, 1), "poly_lbl" ) rdiff_cont = l2n.make_polygon_layer( ly.layer(4, 0), "diff_cont" ) rpoly_cont = l2n.make_polygon_layer( ly.layer(5, 0), "poly_cont" ) rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0), "metal1" ) rmetal1_lbl = l2n.make_text_layer( ly.layer(6, 1), "metal1_lbl" ) rvia1 = l2n.make_polygon_layer( ly.layer(7, 0), "via1" ) rmetal2 = l2n.make_polygon_layer( ly.layer(8, 0), "metal2" ) rmetal2_lbl = l2n.make_text_layer( ly.layer(8, 1), "metal2_lbl" ) rsd = ractive - rpoly l2n.register(rsd, "sd") # Intra-layer l2n.connect(rsd) l2n.connect(rpoly) l2n.connect(rdiff_cont) l2n.connect(rpoly_cont) l2n.connect(rmetal1) l2n.connect(rvia1) l2n.connect(rmetal2) # Inter-layer l2n.connect(rsd, rdiff_cont) l2n.connect(rpoly, rpoly_cont) l2n.connect(rpoly_cont, rmetal1) l2n.connect(rdiff_cont, rmetal1) l2n.connect(rmetal1, rvia1) l2n.connect(rvia1, rmetal2) l2n.connect(rpoly, rpoly_lbl) # attaches labels l2n.connect(rmetal1, rmetal1_lbl) # attaches labels l2n.connect(rmetal2, rmetal2_lbl) # attaches labels # Perform netlist extraction l2n.extract_netlist() self.assertEqual(str(l2n.netlist()), """circuit TRANS ($1=$1,$2=$2,$3=$3); end; circuit INV2 (IN=IN,$2=$2,OUT=OUT,$4=$4,$5=$5); subcircuit TRANS $1 ($1=$2,$2=$4,$3=IN); subcircuit TRANS $2 ($1=$2,$2=$5,$3=IN); subcircuit TRANS $3 ($1=$5,$2=OUT,$3=$2); subcircuit TRANS $4 ($1=$4,$2=OUT,$3=$2); end; circuit RINGO (); subcircuit INV2 $1 (IN=$I8,$2=FB,OUT=OSC,$4=VSS,$5=VDD); subcircuit INV2 $2 (IN=FB,$2=$I38,OUT=$I19,$4=VSS,$5=VDD); subcircuit INV2 $3 (IN=$I19,$2=$I39,OUT=$I1,$4=VSS,$5=VDD); subcircuit INV2 $4 (IN=$I1,$2=$I40,OUT=$I2,$4=VSS,$5=VDD); subcircuit INV2 $5 (IN=$I2,$2=$I41,OUT=$I3,$4=VSS,$5=VDD); subcircuit INV2 $6 (IN=$I3,$2=$I42,OUT=$I4,$4=VSS,$5=VDD); subcircuit INV2 $7 (IN=$I4,$2=$I43,OUT=$I5,$4=VSS,$5=VDD); subcircuit INV2 $8 (IN=$I5,$2=$I44,OUT=$I6,$4=VSS,$5=VDD); subcircuit INV2 $9 (IN=$I6,$2=$I45,OUT=$I7,$4=VSS,$5=VDD); subcircuit INV2 $10 (IN=$I7,$2=$I46,OUT=$I8,$4=VSS,$5=VDD); end; """) def test_11_LayoutToNetlistExtractionWithDevices(self): ut_testsrc = os.getenv("TESTSRC") ly = pya.Layout() ly.read(os.path.join(ut_testsrc, "testdata", "algo", "device_extract_l1.gds")) l2n = pya.LayoutToNetlist(pya.RecursiveShapeIterator(ly, ly.top_cell(), [])) rnwell = l2n.make_layer( ly.layer(1, 0), "nwell" ) ractive = l2n.make_layer( ly.layer(2, 0), "active" ) rpoly = l2n.make_polygon_layer( ly.layer(3, 0), "poly" ) rpoly_lbl = l2n.make_text_layer( ly.layer(3, 1), "poly_lbl" ) rdiff_cont = l2n.make_polygon_layer( ly.layer(4, 0), "diff_cont" ) rpoly_cont = l2n.make_polygon_layer( ly.layer(5, 0), "poly_cont" ) rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0), "metal1" ) rmetal1_lbl = l2n.make_text_layer( ly.layer(6, 1), "metal1_lbl" ) rvia1 = l2n.make_polygon_layer( ly.layer(7, 0), "via1" ) rmetal2 = l2n.make_polygon_layer( ly.layer(8, 0), "metal2" ) rmetal2_lbl = l2n.make_text_layer( ly.layer(8, 1), "metal2_lbl" ) rpactive = ractive & rnwell rpgate = rpactive & rpoly rpsd = rpactive - rpgate rnactive = ractive - rnwell rngate = rnactive & rpoly rnsd = rnactive - rngate # PMOS transistor device extraction pmos_ex = pya.DeviceExtractorMOS3Transistor("PMOS") l2n.extract_devices(pmos_ex, { "SD": rpsd, "G": rpgate, "P": rpoly }) # NMOS transistor device extraction nmos_ex = pya.DeviceExtractorMOS3Transistor("NMOS") l2n.extract_devices(nmos_ex, { "SD": rnsd, "G": rngate, "P": rpoly }) # Define connectivity for netlist extraction l2n.register(rpsd, "psd") l2n.register(rnsd, "nsd") # Intra-layer l2n.connect(rpsd) l2n.connect(rnsd) l2n.connect(rpoly) l2n.connect(rdiff_cont) l2n.connect(rpoly_cont) l2n.connect(rmetal1) l2n.connect(rvia1) l2n.connect(rmetal2) # Inter-layer l2n.connect(rpsd, rdiff_cont) l2n.connect(rnsd, rdiff_cont) l2n.connect(rpoly, rpoly_cont) l2n.connect(rpoly_cont, rmetal1) l2n.connect(rdiff_cont, rmetal1) l2n.connect(rmetal1, rvia1) l2n.connect(rvia1, rmetal2) l2n.connect(rpoly, rpoly_lbl) # attaches labels l2n.connect(rmetal1, rmetal1_lbl) # attaches labels l2n.connect(rmetal2, rmetal2_lbl) # attaches labels # Perform netlist extraction l2n.extract_netlist() self.assertEqual(str(l2n.netlist()), """circuit RINGO (); subcircuit INV2 $1 (IN=$I8,$2=FB,OUT=OSC,$4=VSS,$5=VDD); subcircuit INV2 $2 (IN=FB,$2=$I38,OUT=$I19,$4=VSS,$5=VDD); subcircuit INV2 $3 (IN=$I19,$2=$I39,OUT=$I1,$4=VSS,$5=VDD); subcircuit INV2 $4 (IN=$I1,$2=$I40,OUT=$I2,$4=VSS,$5=VDD); subcircuit INV2 $5 (IN=$I2,$2=$I41,OUT=$I3,$4=VSS,$5=VDD); subcircuit INV2 $6 (IN=$I3,$2=$I42,OUT=$I4,$4=VSS,$5=VDD); subcircuit INV2 $7 (IN=$I4,$2=$I43,OUT=$I5,$4=VSS,$5=VDD); subcircuit INV2 $8 (IN=$I5,$2=$I44,OUT=$I6,$4=VSS,$5=VDD); subcircuit INV2 $9 (IN=$I6,$2=$I45,OUT=$I7,$4=VSS,$5=VDD); subcircuit INV2 $10 (IN=$I7,$2=$I46,OUT=$I8,$4=VSS,$5=VDD); end; circuit INV2 (IN=IN,$2=$2,OUT=OUT,$4=$4,$5=$5); device PMOS $1 (S=$2,G=IN,D=$5) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5); device PMOS $2 (S=$5,G=$2,D=OUT) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95); device NMOS $3 (S=$2,G=IN,D=$4) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5); device NMOS $4 (S=$4,G=$2,D=OUT) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95); subcircuit TRANS $1 ($1=$2,$2=$4,$3=IN); subcircuit TRANS $2 ($1=$2,$2=$5,$3=IN); subcircuit TRANS $3 ($1=$5,$2=OUT,$3=$2); subcircuit TRANS $4 ($1=$4,$2=OUT,$3=$2); end; circuit TRANS ($1=$1,$2=$2,$3=$3); end; """) # cleanup now l2n._destroy() def test_12_LayoutToNetlistExtractionWithDevicesAndGlobalNets(self): ut_testsrc = os.getenv("TESTSRC") ly = pya.Layout() ly.read(os.path.join(ut_testsrc, "testdata", "algo", "device_extract_l3.gds")) l2n = pya.LayoutToNetlist(pya.RecursiveShapeIterator(ly, ly.top_cell(), [])) rbulk = l2n.make_layer( "bulk" ) rnwell = l2n.make_polygon_layer( ly.layer(1, 0) , "nwell" ) ractive = l2n.make_polygon_layer( ly.layer(2, 0) , "active" ) rpoly = l2n.make_polygon_layer( ly.layer(3, 0) , "poly" ) rpoly_lbl = l2n.make_text_layer( ly.layer(3, 1) , "poly_lbl" ) rdiff_cont = l2n.make_polygon_layer( ly.layer(4, 0) , "diff_cont" ) rpoly_cont = l2n.make_polygon_layer( ly.layer(5, 0) , "poly_cont" ) rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0) , "metal1" ) rmetal1_lbl = l2n.make_text_layer( ly.layer(6, 1) , "metal1_lbl" ) rvia1 = l2n.make_polygon_layer( ly.layer(7, 0) , "via1" ) rmetal2 = l2n.make_polygon_layer( ly.layer(8, 0) , "metal2" ) rmetal2_lbl = l2n.make_text_layer( ly.layer(8, 1) , "metal2_lbl" ) rpplus = l2n.make_polygon_layer( ly.layer(10, 0) , "pplus" ) rnplus = l2n.make_polygon_layer( ly.layer(11, 0) , "nplus" ) ractive_in_nwell = ractive & rnwell rpactive = ractive_in_nwell & rpplus rntie = ractive_in_nwell & rnplus rpgate = rpactive & rpoly rpsd = rpactive - rpgate ractive_outside_nwell = ractive - rnwell rnactive = ractive_outside_nwell & rnplus rptie = ractive_outside_nwell & rpplus rngate = rnactive & rpoly rnsd = rnactive - rngate # PMOS transistor device extraction pmos_ex = pya.DeviceExtractorMOS4Transistor("PMOS") l2n.extract_devices(pmos_ex, { "SD": rpsd, "G": rpgate, "P": rpoly, "W": rnwell }) # NMOS transistor device extraction nmos_ex = pya.DeviceExtractorMOS4Transistor("NMOS") l2n.extract_devices(nmos_ex, { "SD": rnsd, "G": rngate, "P": rpoly, "W": rbulk }) # Define connectivity for netlist extraction l2n.register(rpsd, "psd") l2n.register(rnsd, "nsd") l2n.register(rptie, "ptie") l2n.register(rntie, "ntie") # Intra-layer l2n.connect(rpsd) l2n.connect(rnsd) l2n.connect(rnwell) l2n.connect(rpoly) l2n.connect(rdiff_cont) l2n.connect(rpoly_cont) l2n.connect(rmetal1) l2n.connect(rvia1) l2n.connect(rmetal2) l2n.connect(rptie) l2n.connect(rntie) # Inter-layer l2n.connect(rpsd, rdiff_cont) l2n.connect(rnsd, rdiff_cont) l2n.connect(rpoly, rpoly_cont) l2n.connect(rpoly_cont, rmetal1) l2n.connect(rdiff_cont, rmetal1) l2n.connect(rdiff_cont, rntie) l2n.connect(rdiff_cont, rptie) l2n.connect(rnwell, rntie) l2n.connect(rmetal1, rvia1) l2n.connect(rvia1, rmetal2) l2n.connect(rpoly, rpoly_lbl) # attaches labels l2n.connect(rmetal1, rmetal1_lbl) # attaches labels l2n.connect(rmetal2, rmetal2_lbl) # attaches labels # Global connections l2n.connect_global(rptie, "BULK") l2n.connect_global(rbulk, "BULK") # Perform netlist extraction l2n.extract_netlist() self.assertEqual(str(l2n.netlist()), """circuit RINGO (); subcircuit INV2PAIR $1 (BULK=VSS,$2=FB,$3=VDD,$4=VSS,$5=$I11,$6=OSC,$7=VDD); subcircuit INV2PAIR $2 (BULK=VSS,$2=$I22,$3=VDD,$4=VSS,$5=FB,$6=$I17,$7=VDD); subcircuit INV2PAIR $3 (BULK=VSS,$2=$I23,$3=VDD,$4=VSS,$5=$I17,$6=$I9,$7=VDD); subcircuit INV2PAIR $4 (BULK=VSS,$2=$I24,$3=VDD,$4=VSS,$5=$I9,$6=$I10,$7=VDD); subcircuit INV2PAIR $5 (BULK=VSS,$2=$I25,$3=VDD,$4=VSS,$5=$I10,$6=$I11,$7=VDD); end; circuit INV2PAIR (BULK=BULK,$2=$I8,$3=$I6,$4=$I5,$5=$I3,$6=$I2,$7=$I1); subcircuit INV2 $1 ($1=$I1,IN=$I3,$3=$I7,OUT=$I4,VSS=$I5,VDD=$I6,BULK=BULK); subcircuit INV2 $2 ($1=$I1,IN=$I4,$3=$I8,OUT=$I2,VSS=$I5,VDD=$I6,BULK=BULK); end; circuit INV2 ($1=$1,IN=IN,$3=$3,OUT=OUT,VSS=VSS,VDD=VDD,BULK=BULK); device PMOS $1 (S=$3,G=IN,D=VDD,B=$1) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5); device PMOS $2 (S=VDD,G=$3,D=OUT,B=$1) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95); device NMOS $3 (S=$3,G=IN,D=VSS,B=BULK) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5); device NMOS $4 (S=VSS,G=$3,D=OUT,B=BULK) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95); subcircuit TRANS $1 ($1=$3,$2=VSS,$3=IN); subcircuit TRANS $2 ($1=$3,$2=VDD,$3=IN); subcircuit TRANS $3 ($1=VDD,$2=OUT,$3=$3); subcircuit TRANS $4 ($1=VSS,$2=OUT,$3=$3); end; circuit TRANS ($1=$1,$2=$2,$3=$3); end; """) l2n.netlist().combine_devices() l2n.netlist().make_top_level_pins() l2n.netlist().purge() self.assertEqual(str(l2n.netlist()), """circuit RINGO (FB=FB,OSC=OSC,VDD=VDD,VSS=VSS); subcircuit INV2PAIR $1 (BULK=VSS,$2=FB,$3=VDD,$4=VSS,$5=$I11,$6=OSC,$7=VDD); subcircuit INV2PAIR $2 (BULK=VSS,$2=$I22,$3=VDD,$4=VSS,$5=FB,$6=$I17,$7=VDD); subcircuit INV2PAIR $3 (BULK=VSS,$2=$I23,$3=VDD,$4=VSS,$5=$I17,$6=$I9,$7=VDD); subcircuit INV2PAIR $4 (BULK=VSS,$2=$I24,$3=VDD,$4=VSS,$5=$I9,$6=$I10,$7=VDD); subcircuit INV2PAIR $5 (BULK=VSS,$2=$I25,$3=VDD,$4=VSS,$5=$I10,$6=$I11,$7=VDD); end; circuit INV2PAIR (BULK=BULK,$2=$I8,$3=$I6,$4=$I5,$5=$I3,$6=$I2,$7=$I1); subcircuit INV2 $1 ($1=$I1,IN=$I3,$3=$I7,OUT=$I4,VSS=$I5,VDD=$I6,BULK=BULK); subcircuit INV2 $2 ($1=$I1,IN=$I4,$3=$I8,OUT=$I2,VSS=$I5,VDD=$I6,BULK=BULK); end; circuit INV2 ($1=$1,IN=IN,$3=$3,OUT=OUT,VSS=VSS,VDD=VDD,BULK=BULK); device PMOS $1 (S=$3,G=IN,D=VDD,B=$1) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5); device PMOS $2 (S=VDD,G=$3,D=OUT,B=$1) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95); device NMOS $3 (S=$3,G=IN,D=VSS,B=BULK) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5); device NMOS $4 (S=VSS,G=$3,D=OUT,B=BULK) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95); end; """) # cleanup now l2n._destroy() def test_13_ReadAndWrite(self): ut_testsrc = os.getenv("TESTSRC") ut_testtmp = os.getenv("TESTTMP") l2n = pya.LayoutToNetlist() infile = os.path.join(ut_testsrc, "testdata", "algo", "l2n_reader_in.txt") l2n.read(infile) tmp = os.path.join(ut_testtmp, "tmp.txt") l2n.write(tmp) with open(tmp, 'r') as file: tmp_text = file.read() with open(infile, 'r') as file: infile_text = file.read() self.assertEqual(tmp_text, infile_text) self.assertEqual(",".join(l2n.layer_names()), "poly,poly_lbl,diff_cont,poly_cont,metal1,metal1_lbl,via1,metal2,metal2_lbl,psd,nsd") self.assertEqual(l2n.layer_name(l2n.layer_by_name("metal1")), "metal1") self.assertEqual(l2n.layer_name(l2n.layer_by_index(l2n.layer_of(l2n.layer_by_name("metal1")))), "metal1") def test_20_Antenna(self): ut_testsrc = os.getenv("TESTSRC") # --- simple antenna check input = os.path.join(ut_testsrc, "testdata", "algo", "antenna_l1.gds") ly = pya.Layout() ly.read(input) au = os.path.join(ut_testsrc, "testdata", "algo", "antenna_au1.gds") ly_au = pya.Layout() ly_au.read(au) dss = pya.DeepShapeStore() self.assertEqual(dss.is_singular(), False) rdiode = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(1, 0)), dss) rpoly = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(6, 0)), dss) rcont = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(8, 0)), dss) rmetal1 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(9, 0)), dss) rvia1 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(11, 0)), dss) rmetal2 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(12, 0)), dss) self.assertEqual(dss.is_singular(), True) l2n = pya.LayoutToNetlist(dss) l2n.register(rdiode, "diode") l2n.register(rpoly, "poly") l2n.register(rcont, "cont") l2n.register(rmetal1, "metal1") l2n.register(rvia1, "via1") l2n.register(rmetal2, "metal2") l2n.connect(rpoly) l2n.connect(rcont) l2n.connect(rmetal1) l2n.connect(rpoly, rcont) l2n.connect(rcont, rmetal1) l2n.extract_netlist() a1_3 = l2n.antenna_check(rpoly, rmetal1, 3) a1_10 = l2n.antenna_check(rpoly, rmetal1, 10) a1_30 = l2n.antenna_check(rpoly, rmetal1, 30) # Note: flatten.merged performs some normalization self.assertEqual(str(a1_3.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(100, 0)))), "") self.assertEqual(str(a1_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(101, 0)))), "") self.assertEqual(str(a1_30.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(102, 0)))), "") # --- same with flat l2n._destroy() input = os.path.join(ut_testsrc, "testdata", "algo", "antenna_l1.gds") ly = pya.Layout() ly.read(input) au = os.path.join(ut_testsrc, "testdata", "algo", "antenna_au1.gds") ly_au = pya.Layout() ly_au.read(au) rfdiode = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(1, 0))) rfpoly = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(6, 0))) rfcont = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(8, 0))) rfmetal1 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(9, 0))) rfvia1 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(11, 0))) rfmetal2 = pya.Region(ly.top_cell().begin_shapes_rec(ly.layer(12, 0))) self.assertEqual(rfdiode.is_deep(), False) self.assertEqual(rfpoly.is_deep(), False) self.assertEqual(rfmetal1.is_deep(), False) self.assertEqual(rfvia1.is_deep(), False) self.assertEqual(rfmetal2.is_deep(), False) l2n = pya.LayoutToNetlist(ly.top_cell().name, ly.dbu) l2n.register(rfdiode, "diode") l2n.register(rfpoly, "poly") l2n.register(rfcont, "cont") l2n.register(rfmetal1, "metal1") l2n.register(rfvia1, "via1") l2n.register(rfmetal2, "metal2") l2n.connect(rfpoly) l2n.connect(rfcont) l2n.connect(rfmetal1) l2n.connect(rfpoly, rfcont) l2n.connect(rfcont, rfmetal1) l2n.extract_netlist() a1_3 = l2n.antenna_check(rfpoly, rfmetal1, 3) a1_10 = l2n.antenna_check(rfpoly, rfmetal1, 10) a1_30 = l2n.antenna_check(rfpoly, rfmetal1, 30) # Note: flatten.merged performs some normalization self.assertEqual(str(a1_3.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(100, 0)))), "") self.assertEqual(str(a1_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(101, 0)))), "") self.assertEqual(str(a1_30.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(102, 0)))), "") # --- simple antenna check with metal2 l2n._destroy() l2n = pya.LayoutToNetlist(dss) l2n.register(rdiode, "diode") l2n.register(rpoly, "poly") l2n.register(rcont, "cont") l2n.register(rmetal1, "metal1") l2n.register(rvia1, "via1") l2n.register(rmetal2, "metal2") l2n.connect(rpoly) l2n.connect(rcont) l2n.connect(rmetal1) l2n.connect(rmetal2) l2n.connect(rpoly, rcont) l2n.connect(rcont, rmetal1) l2n.connect(rmetal1, rvia1) l2n.connect(rvia1, rmetal2) l2n.extract_netlist() a2_5 = l2n.antenna_check(rpoly, rmetal2, 5) a2_10 = l2n.antenna_check(rpoly, rmetal2, 10) a2_17 = l2n.antenna_check(rpoly, rmetal2, 17) # Note: flatten.merged performs some normalization self.assertEqual(str(a2_5.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(200, 0)))), "") self.assertEqual(str(a2_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(201, 0)))), "") self.assertEqual(str(a2_17.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(202, 0)))), "") # --- antenna check with diodes and antenna effect reduction l2n._destroy() l2n = pya.LayoutToNetlist(dss) l2n.register(rdiode, "diode") l2n.register(rpoly, "poly") l2n.register(rcont, "cont") l2n.register(rmetal1, "metal1") l2n.register(rvia1, "via1") l2n.register(rmetal2, "metal2") l2n.connect(rdiode) l2n.connect(rpoly) l2n.connect(rcont) l2n.connect(rmetal1) l2n.connect(rdiode, rcont) l2n.connect(rpoly, rcont) l2n.connect(rcont, rmetal1) l2n.extract_netlist() a3_3 = l2n.antenna_check(rpoly, rmetal1, 3, [ [ rdiode, 8.0 ] ] ) a3_10 = l2n.antenna_check(rpoly, rmetal1, 10, [ [ rdiode, 8.0 ] ]) a3_30 = l2n.antenna_check(rpoly, rmetal1, 30, [ [ rdiode, 8.0 ] ]) # Note: flatten.merged performs some normalization self.assertEqual(str(a3_3.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(300, 0)))), "") self.assertEqual(str(a3_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(301, 0)))), "") self.assertEqual(str(a3_30.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(302, 0)))), "") # --- antenna check with diodes l2n._destroy() l2n = pya.LayoutToNetlist(dss) l2n.register(rdiode, "diode") l2n.register(rpoly, "poly") l2n.register(rcont, "cont") l2n.register(rmetal1, "metal1") l2n.register(rvia1, "via1") l2n.register(rmetal2, "metal2") l2n.connect(rdiode) l2n.connect(rpoly) l2n.connect(rcont) l2n.connect(rmetal1) l2n.connect(rdiode, rcont) l2n.connect(rpoly, rcont) l2n.connect(rcont, rmetal1) l2n.extract_netlist() a4_3 = l2n.antenna_check(rpoly, rmetal1, 3, [ rdiode ] ) a4_10 = l2n.antenna_check(rpoly, rmetal1, 10, [ rdiode ]) a4_30 = l2n.antenna_check(rpoly, rmetal1, 30, [ rdiode ]) # Note: flatten.merged performs some normalization self.assertEqual(str(a4_3.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(400, 0)))), "") self.assertEqual(str(a4_10.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(401, 0)))), "") self.assertEqual(str(a4_30.flatten() ^ pya.Region(ly_au.top_cell().begin_shapes_rec(ly_au.layer(402, 0)))), "") # run unit tests if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(DBLayoutToNetlistTests) if not unittest.TextTestRunner(verbosity = 1).run(suite).wasSuccessful(): sys.exit(1)