/* * Copyright (c) 2000-2003 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifdef HAVE_CVS_IDENT #ident "$Id: t-dll.cc,v 1.108 2003/03/10 23:40:53 steve Exp $" #endif # include "config.h" # include # include "compiler.h" # include "t-dll.h" # include "netmisc.h" #ifdef HAVE_MALLOC_H # include #endif # include #if defined(__WIN32__) inline ivl_dll_t ivl_dlopen(const char *name) { ivl_dll_t res = (ivl_dll_t) LoadLibrary(name); return res; } inline void * ivl_dlsym(ivl_dll_t dll, const char *nm) { FARPROC sym; return (void*)GetProcAddress((HMODULE)dll, nm); } inline void ivl_dlclose(ivl_dll_t dll) { FreeLibrary((HMODULE)dll); } const char *dlerror(void) { static char msg[256]; unsigned long err = GetLastError(); FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language (LPTSTR) &msg, sizeof(msg) - 1, NULL ); return msg; } #elif defined(HAVE_DLFCN_H) inline ivl_dll_t ivl_dlopen(const char*name) { return dlopen(name,RTLD_LAZY); } inline void* ivl_dlsym(ivl_dll_t dll, const char*nm) { return dlsym(dll, nm); } inline void ivl_dlclose(ivl_dll_t dll) { dlclose(dll); } #elif defined(HAVE_DL_H) inline ivl_dll_t ivl_dlopen(const char*name) { return shl_load(name, BIND_IMMEDIATE, 0); } inline void* ivl_dlsym(ivl_dll_t dll, const char*nm) { void*sym; int rc = shl_findsym(&dll, nm, TYPE_PROCEDURE, &sym); return (rc == 0) ? sym : 0; } inline void ivl_dlclose(ivl_dll_t dll) { shl_unload(dll); } inline const char*dlerror(void) { return strerror( errno ); } #endif inline static const char *basename(ivl_scope_t scope, const char *inst) { inst += strlen(ivl_scope_name(scope)); assert(*inst == '.'); return inst+1; } static struct dll_target dll_target_obj; static void drive_from_link(const Link&lnk, ivl_drive_t&drv0, ivl_drive_t&drv1) { switch (lnk.drive0()) { case Link::HIGHZ: drv0 = IVL_DR_HiZ; break; case Link::WEAK: drv0 = IVL_DR_WEAK; break; case Link::PULL: drv0 = IVL_DR_PULL; break; case Link::STRONG: drv0 = IVL_DR_STRONG; break; case Link::SUPPLY: drv0 = IVL_DR_SUPPLY; break; } switch (lnk.drive1()) { case Link::HIGHZ: drv1 = IVL_DR_HiZ; break; case Link::WEAK: drv1 = IVL_DR_WEAK; break; case Link::PULL: drv1 = IVL_DR_PULL; break; case Link::STRONG: drv1 = IVL_DR_STRONG; break; case Link::SUPPLY: drv1 = IVL_DR_SUPPLY; break; } } ivl_attribute_s* dll_target::fill_in_attributes(const Attrib*net) { ivl_attribute_s*attr; unsigned nattr = net->attr_cnt(); if (nattr == 0) return 0; attr = new struct ivl_attribute_s[nattr]; for (unsigned idx = 0 ; idx < nattr ; idx += 1) { verinum tmp = net->attr_value(idx); attr[idx].key = strings_.add(net->attr_key(idx)); if (tmp.is_string()) { attr[idx].type = IVL_ATT_STR; attr[idx].val.str = strings_.add(tmp.as_string().c_str()); } else if (tmp == verinum()) { attr[idx].type = IVL_ATT_VOID; } else { attr[idx].type = IVL_ATT_NUM; attr[idx].val.num = tmp.as_long(); } } return attr; } /* * This function locates an ivl_scope_t object that matches the * NetScope object. The search works by looking for the parent scope, * then scanning the parent scope for the NetScope object. */ static ivl_scope_t find_scope_from_root(ivl_scope_t root, const NetScope*cur) { ivl_scope_t parent, tmp; if (const NetScope*par = cur->parent()) { parent = find_scope_from_root(root, par); if (parent == 0) return 0; for (tmp = parent->child_ ; tmp ; tmp = tmp->sibling_) if (strcmp(tmp->name_, cur->basename()) == 0) return tmp; } else { if (strcmp(root->name_, cur->basename()) == 0) return root; } return 0; } ivl_scope_t dll_target::find_scope(ivl_design_s &des, const NetScope*cur) { assert(cur); ivl_scope_t scope = 0; for (unsigned i = 0; i < des.nroots_ && scope == 0; i += 1) { assert(des.roots_[i]); scope = find_scope_from_root(des.roots_[i], cur); } return scope; } ivl_scope_t dll_target::lookup_scope_(const NetScope*cur) { return find_scope(des_, cur); } /* * This is a convenience function to locate an ivl_signal_t object * given the NetESignal that has the signal name. */ ivl_signal_t dll_target::find_signal(ivl_design_s &des, const NetNet*net) { ivl_scope_t scope = find_scope(des, net->scope()); assert(scope); const char*nname = net->name(); for (unsigned idx = 0 ; idx < scope->nsigs_ ; idx += 1) { if (strcmp(scope->sigs_[idx]->name_, nname) == 0) return scope->sigs_[idx]; } assert(0); return 0; } ivl_variable_t dll_target::find_variable(ivl_design_s&des, const NetVariable*net) { ivl_scope_t scope = find_scope(des, net->scope()); assert(scope); const char*nname = net->basename(); for (unsigned idx = 0 ; idx < scope->nvar_ ; idx += 1) { if (strcmp(scope->var_[idx]->name, nname) == 0) return scope->var_[idx]; } assert(0); return 0; } /* * This function locates an ivl_memory_t object that matches the * NetMemory object. The search works by looking for the parent scope, * then scanning the parent scope for the NetMemory object. */ ivl_memory_t dll_target::find_memory(ivl_design_s &des, const NetMemory*net) { ivl_scope_t scope = find_scope(des, net->scope()); assert(scope); const char*nname = net->name(); for (unsigned idx = 0 ; idx < scope->nmem_ ; idx += 1) { if (strcmp(scope->mem_[idx]->basename_, nname) == 0) return scope->mem_[idx]; } assert(0); return 0; } static ivl_nexus_t nexus_sig_make(ivl_signal_t net, unsigned pin) { ivl_nexus_t tmp = new struct ivl_nexus_s; tmp->private_data = 0; tmp->nptr_ = 1; tmp->ptrs_ = (struct ivl_nexus_ptr_s*) malloc(sizeof(struct ivl_nexus_ptr_s)); tmp->ptrs_[0].pin_ = pin; tmp->ptrs_[0].type_ = __NEXUS_PTR_SIG; tmp->ptrs_[0].l.sig = net; ivl_drive_t drive = IVL_DR_HiZ; switch (ivl_signal_type(net)) { case IVL_SIT_REG: drive = IVL_DR_STRONG; break; case IVL_SIT_SUPPLY0: case IVL_SIT_SUPPLY1: drive = IVL_DR_SUPPLY; break; } tmp->ptrs_[0].drive0 = drive; tmp->ptrs_[0].drive1 = drive; return tmp; } static void nexus_sig_add(ivl_nexus_t nex, ivl_signal_t net, unsigned pin) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; ivl_drive_t drive = IVL_DR_HiZ; switch (ivl_signal_type(net)) { case IVL_SIT_REG: drive = IVL_DR_STRONG; break; case IVL_SIT_SUPPLY0: case IVL_SIT_SUPPLY1: drive = IVL_DR_SUPPLY; break; } nex->ptrs_[top-1].type_= __NEXUS_PTR_SIG; nex->ptrs_[top-1].drive0 = drive; nex->ptrs_[top-1].drive1 = drive; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.sig= net; } static ivl_nexus_ptr_t nexus_log_add(ivl_nexus_t nex, ivl_net_logic_t net, unsigned pin) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_LOG; nex->ptrs_[top-1].drive0 = (pin == 0)? IVL_DR_STRONG : IVL_DR_HiZ; nex->ptrs_[top-1].drive1 = (pin == 0)? IVL_DR_STRONG : IVL_DR_HiZ; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.log= net; return nex->ptrs_ + top - 1; } static void nexus_con_add(ivl_nexus_t nex, ivl_net_const_t net, unsigned pin, ivl_drive_t drive0, ivl_drive_t drive1) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_CON; nex->ptrs_[top-1].drive0 = drive0; nex->ptrs_[top-1].drive1 = drive1; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.con= net; } static void nexus_lpm_add(ivl_nexus_t nex, ivl_lpm_t net, unsigned pin, ivl_drive_t drive0, ivl_drive_t drive1) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_LPM; nex->ptrs_[top-1].drive0 = drive0; nex->ptrs_[top-1].drive1 = drive0; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.lpm= net; } void scope_add_logic(ivl_scope_t scope, ivl_net_logic_t net) { if (scope->nlog_ == 0) { scope->nlog_ = 1; scope->log_ = (ivl_net_logic_t*)malloc(sizeof(ivl_net_logic_t)); scope->log_[0] = net; } else { scope->nlog_ += 1; scope->log_ = (ivl_net_logic_t*) realloc(scope->log_, scope->nlog_*sizeof(ivl_net_logic_t)); scope->log_[scope->nlog_-1] = net; } } void scope_add_event(ivl_scope_t scope, ivl_event_t net) { if (scope->nevent_ == 0) { scope->nevent_ = 1; scope->event_ = (ivl_event_t*)malloc(sizeof(ivl_event_t)); scope->event_[0] = net; } else { scope->nevent_ += 1; scope->event_ = (ivl_event_t*) realloc(scope->event_, scope->nevent_*sizeof(ivl_event_t)); scope->event_[scope->nevent_-1] = net; } } static void scope_add_lpm(ivl_scope_t scope, ivl_lpm_t net) { if (scope->nlpm_ == 0) { assert(scope->lpm_ == 0); scope->nlpm_ = 1; scope->lpm_ = (ivl_lpm_t*)malloc(sizeof(ivl_lpm_t)); scope->lpm_[0] = net; } else { assert(scope->lpm_); scope->nlpm_ += 1; scope->lpm_ = (ivl_lpm_t*) realloc(scope->lpm_, scope->nlpm_*sizeof(ivl_lpm_t)); scope->lpm_[scope->nlpm_-1] = net; } } static void scope_add_mem(ivl_scope_t scope, ivl_memory_t net) { scope->nmem_ += 1; scope->mem_ = (ivl_memory_t*) realloc(scope->mem_, scope->nmem_*sizeof(ivl_memory_t)); scope->mem_[scope->nmem_-1] = net; } static void scope_add_var(ivl_scope_t scope, ivl_variable_t net) { scope->nvar_ += 1; scope->var_ = (ivl_variable_t*) realloc(scope->var_, scope->nvar_*sizeof(ivl_variable_t)); scope->var_[scope->nvar_-1] = net; } ivl_parameter_t dll_target::scope_find_param(ivl_scope_t scope, const char*name) { unsigned idx = 0; while (idx < scope->nparam_) { if (strcmp(name, scope->param_[idx].basename) == 0) return scope->param_ + idx; idx += 1; } return 0; } /* * This method scans the parameters of the scope, and makes * ivl_parameter_t objects. This involves saving the name and scanning * the expression value. */ void dll_target::make_scope_parameters(ivl_scope_t scope, const NetScope*net) { scope->nparam_ = net->parameters.size(); if (scope->nparam_ == 0) { scope->param_ = 0; return; } scope->param_ = new struct ivl_parameter_s [scope->nparam_]; unsigned idx = 0; typedef map::const_iterator pit_t; for (pit_t cur_pit = net->parameters.begin() ; cur_pit != net->parameters.end() ; cur_pit ++) { assert(idx < scope->nparam_); ivl_parameter_t cur_par = scope->param_ + idx; cur_par->basename = lex_strings.add( (*cur_pit).first.c_str() ); cur_par->scope = scope; NetExpr*etmp = (*cur_pit).second.expr; if (const NetEConst*e = dynamic_cast(etmp)) { expr_const(e); assert(expr_); switch (expr_->type_) { case IVL_EX_STRING: expr_->u_.string_.parameter = cur_par; break; case IVL_EX_NUMBER: expr_->u_.number_.parameter = cur_par; break; default: assert(0); } } else if (const NetECReal*e = dynamic_cast(etmp)) { expr_creal(e); assert(expr_); assert(expr_->type_ == IVL_EX_REALNUM); expr_->u_.real_.parameter = cur_par; } cur_par->value = expr_; expr_ = 0; idx += 1; } } void dll_target::add_root(ivl_design_s &des_, const NetScope *s) { ivl_scope_t root_ = new struct ivl_scope_s; const char *name = s->basename(); root_->name_ = name; root_->child_ = 0; root_->sibling_ = 0; root_->parent = 0; root_->nsigs_ = 0; root_->sigs_ = 0; root_->nlog_ = 0; root_->log_ = 0; root_->nevent_ = 0; root_->event_ = 0; root_->nlpm_ = 0; root_->lpm_ = 0; root_->nmem_ = 0; root_->mem_ = 0; root_->nvar_ = 0; root_->var_ = 0; make_scope_parameters(root_, s); root_->type_ = IVL_SCT_MODULE; root_->tname_ = root_->name_; root_->time_units = s->time_unit(); des_.nroots_++; if (des_.roots_) des_.roots_ = (ivl_scope_t *)realloc(des_.roots_, des_.nroots_ * sizeof(ivl_scope_t)); else des_.roots_ = (ivl_scope_t *)malloc(des_.nroots_ * sizeof(ivl_scope_t)); des_.roots_[des_.nroots_ - 1] = root_; } bool dll_target::start_design(const Design*des) { list root_scopes; dll_path_ = des->get_flag("DLL"); dll_ = ivl_dlopen(dll_path_.c_str()); if (dll_ == 0) { cerr << "error: " << dll_path_ << " failed to load." << endl; cerr << dll_path_ << ": " << dlerror() << endl; return false; } stmt_cur_ = 0; // Initialize the design object. des_.self = des; des_.time_precision = des->get_precision(); des_.nroots_ = 0; des_.roots_ = NULL; root_scopes = des->find_root_scopes(); for (list::const_iterator scope = root_scopes.begin(); scope != root_scopes.end(); scope++) add_root(des_, *scope); des_.consts = (ivl_net_const_t*) malloc(sizeof(ivl_net_const_t)); des_.nconsts = 0; target_ = (target_design_f)ivl_dlsym(dll_, LU "target_design" TU); if (target_ == 0) { cerr << dll_path_ << ": error: target_design entry " "point is missing." << endl; return false; } return true; } /* * Here ivl is telling us that the design is scanned completely, and * here is where we call the API to process the constructed design. */ int dll_target::end_design(const Design*) { if (verbose_flag) { cout << " ... invoking target_design" << endl; } int rc = (target_)(&des_); ivl_dlclose(dll_); return rc; } void dll_target::logic_attributes(struct ivl_net_logic_s *obj, const NetNode*net) { obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); } /* * Add a bufz object to the scope that contains it. * * Note that in the ivl_target API a BUFZ device is a special kind of * ivl_net_logic_t device, so create an ivl_net_logic_t cookie to * handle it. */ bool dll_target::bufz(const NetBUFZ*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; assert(net->pin_count() == 2); obj->type_ = IVL_LO_BUFZ; obj->npins_ = 2; obj->pins_ = new ivl_nexus_t[2]; /* Get the ivl_nexus_t objects connected to the two pins. (We know a priori that the ivl_nexus_t objects have been allocated, because the signals have been scanned before me. This saves me the trouble of allocating them.) */ assert(net->pin(0).nexus()->t_cookie()); obj->pins_[0] = (ivl_nexus_t) net->pin(0).nexus()->t_cookie(); ivl_nexus_ptr_t out_ptr = nexus_log_add(obj->pins_[0], obj, 0); assert(net->pin(1).nexus()->t_cookie()); obj->pins_[1] = (ivl_nexus_t) net->pin(1).nexus()->t_cookie(); nexus_log_add(obj->pins_[1], obj, 1); switch (net->pin(0).drive0()) { case Link::HIGHZ: out_ptr->drive0 = IVL_DR_HiZ; break; case Link::WEAK: out_ptr->drive0 = IVL_DR_WEAK; break; case Link::PULL: out_ptr->drive0 = IVL_DR_PULL; break; case Link::STRONG: out_ptr->drive0 = IVL_DR_STRONG; break; case Link::SUPPLY: out_ptr->drive0 = IVL_DR_SUPPLY; break; } switch (net->pin(0).drive1()) { case Link::HIGHZ: out_ptr->drive1 = IVL_DR_HiZ; break; case Link::WEAK: out_ptr->drive1 = IVL_DR_WEAK; break; case Link::PULL: out_ptr->drive1 = IVL_DR_PULL; break; case Link::STRONG: out_ptr->drive1 = IVL_DR_STRONG; break; case Link::SUPPLY: out_ptr->drive1 = IVL_DR_SUPPLY; break; } /* Attach the logic device to the scope that contains it. */ assert(net->scope()); ivl_scope_t scope = find_scope(des_, net->scope()); assert(scope); obj->scope_ = scope; obj->name_ = net->name(); logic_attributes(obj, net); obj->delay[0] = net->rise_time(); obj->delay[1] = net->fall_time(); obj->delay[2] = net->decay_time(); scope_add_logic(scope, obj); return true; } void dll_target::event(const NetEvent*net) { struct ivl_event_s *obj = new struct ivl_event_s; ivl_scope_t scope = find_scope(des_, net->scope()); obj->name = net->name(); obj->scope = scope; scope_add_event(scope, obj); obj->nany = 0; obj->nneg = 0; obj->npos = 0; if (net->nprobe() >= 1) { for (unsigned idx = 0 ; idx < net->nprobe() ; idx += 1) { const NetEvProbe*pr = net->probe(idx); switch (pr->edge()) { case NetEvProbe::ANYEDGE: obj->nany += pr->pin_count(); break; case NetEvProbe::NEGEDGE: obj->nneg += pr->pin_count(); break; case NetEvProbe::POSEDGE: obj->npos += pr->pin_count(); break; } } unsigned npins = obj->nany + obj->nneg + obj->npos; obj->pins = (ivl_nexus_t*)calloc(npins, sizeof(ivl_nexus_t)); } else { obj->pins = 0; } } void dll_target::variable(const NetVariable*net) { struct ivl_variable_s *obj = new struct ivl_variable_s; ivl_scope_t scope = find_scope(des_, net->scope()); obj->type = IVL_VT_REAL; obj->name = net->basename(); obj->scope = scope; scope_add_var(scope, obj); } void dll_target::logic(const NetLogic*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; switch (net->type()) { case NetLogic::AND: obj->type_ = IVL_LO_AND; break; case NetLogic::BUF: obj->type_ = IVL_LO_BUF; break; case NetLogic::BUFIF0: obj->type_ = IVL_LO_BUFIF0; break; case NetLogic::BUFIF1: obj->type_ = IVL_LO_BUFIF1; break; case NetLogic::NAND: obj->type_ = IVL_LO_NAND; break; case NetLogic::NMOS: obj->type_ = IVL_LO_NMOS; break; case NetLogic::NOR: obj->type_ = IVL_LO_NOR; break; case NetLogic::NOT: obj->type_ = IVL_LO_NOT; break; case NetLogic::NOTIF0: obj->type_ = IVL_LO_NOTIF0; break; case NetLogic::NOTIF1: obj->type_ = IVL_LO_NOTIF1; break; case NetLogic::OR: obj->type_ = IVL_LO_OR; break; case NetLogic::PULLDOWN: obj->type_ = IVL_LO_PULLDOWN; break; case NetLogic::PULLUP: obj->type_ = IVL_LO_PULLUP; break; case NetLogic::RNMOS: obj->type_ = IVL_LO_RNMOS; break; case NetLogic::RPMOS: obj->type_ = IVL_LO_RPMOS; break; case NetLogic::PMOS: obj->type_ = IVL_LO_PMOS; break; case NetLogic::XNOR: obj->type_ = IVL_LO_XNOR; break; case NetLogic::XOR: obj->type_ = IVL_LO_XOR; break; default: assert(0); obj->type_ = IVL_LO_NONE; break; } /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = net->pin_count(); obj->pins_ = new ivl_nexus_t[obj->npins_]; ivl_nexus_ptr_t out_ptr = 0; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->pins_[idx] = (ivl_nexus_t) nex->t_cookie(); ivl_nexus_ptr_t tmp = nexus_log_add(obj->pins_[idx], obj, idx); if (idx == 0) out_ptr = tmp; } switch (net->pin(0).drive0()) { case Link::HIGHZ: out_ptr->drive0 = IVL_DR_HiZ; break; case Link::WEAK: out_ptr->drive0 = IVL_DR_WEAK; break; case Link::PULL: out_ptr->drive0 = IVL_DR_PULL; break; case Link::STRONG: out_ptr->drive0 = IVL_DR_STRONG; break; case Link::SUPPLY: out_ptr->drive0 = IVL_DR_SUPPLY; break; } switch (net->pin(0).drive1()) { case Link::HIGHZ: out_ptr->drive1 = IVL_DR_HiZ; break; case Link::WEAK: out_ptr->drive1 = IVL_DR_WEAK; break; case Link::PULL: out_ptr->drive1 = IVL_DR_PULL; break; case Link::STRONG: out_ptr->drive1 = IVL_DR_STRONG; break; case Link::SUPPLY: out_ptr->drive1 = IVL_DR_SUPPLY; break; } assert(net->scope()); ivl_scope_t scope = find_scope(des_, net->scope()); assert(scope); obj->scope_= scope; obj->name_ = net->name(); logic_attributes(obj, net); obj->delay[0] = net->rise_time(); obj->delay[1] = net->fall_time(); obj->delay[2] = net->decay_time(); scope_add_logic(scope, obj); } void dll_target::net_case_cmp(const NetCaseCmp*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; obj->type_ = IVL_LO_EEQ; /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = 3; obj->pins_ = new ivl_nexus_t[obj->npins_]; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->pins_[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_log_add(obj->pins_[idx], obj, idx); } //assert(net->scope()); //ivl_scope_t scope = find_scope(des_, net->scope()); //assert(scope); ivl_scope_t scope = des_.roots_[0]; obj->scope_= scope; obj->name_ = net->name(); obj->delay[0] = net->rise_time(); obj->delay[1] = net->fall_time(); obj->delay[2] = net->decay_time(); scope_add_logic(scope, obj); } bool dll_target::net_cassign(const NetCAssign*) { return false; } bool dll_target::net_force(const NetForce*net) { return true; } /* * An IVL_LPM_UFUNC represents a node in a combinational expression * that calls a user defined function. I create an LPM object that has * the right connections, and refers to the ivl_scope_t of the * definition. */ bool dll_target::net_function(const NetUserFunc*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; obj->type = IVL_LPM_UFUNC; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); /* Get the definition of the function and save it. */ const NetScope*def = net->def(); assert(def); obj->u_.ufunc.def = lookup_scope_(def); /* Save information about the ports in the ivl_lpm_s structure. Note that port 0 is the return value. */ obj->u_.ufunc.ports = net->port_count(); obj->u_.ufunc.port_wid = new unsigned short[net->port_count()]; for (unsigned idx = 0 ; idx < obj->u_.ufunc.ports ; idx += 1) obj->u_.ufunc.port_wid[idx] = net->port_width(idx); /* Now collect all the pins and connect them to the nexa of the net. The output pins have strong drive, and the remaining input pins are HiZ. */ unsigned pin_count = net->pin_count(); obj->u_.ufunc.pins = new ivl_nexus_t[pin_count]; for (unsigned idx = 0 ; idx < pin_count ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); ivl_nexus_t nn = (ivl_nexus_t)nex->t_cookie(); assert(nn); obj->u_.ufunc.pins[idx] = nn; ivl_drive_t drive = idx < obj->u_.ufunc.port_wid[0] ? IVL_DR_STRONG : IVL_DR_HiZ; nexus_lpm_add(obj->u_.ufunc.pins[idx], obj, idx, drive, drive); } /* All done. Add this LPM to the scope. */ scope_add_lpm(obj->scope, obj); return true; } void dll_target::udp(const NetUDP*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; obj->type_ = IVL_LO_UDP; static map udps; ivl_udp_t u; if (udps.find(net->udp_name()) != udps.end()) { u = udps[net->udp_name()]; } else { u = new struct ivl_udp_s; u->nrows = net->rows(); u->table = (ivl_udp_s::ccharp_t*)malloc((u->nrows+1)*sizeof(char*)); assert(u->table); u->table[u->nrows] = 0x0; u->nin = net->nin(); u->sequ = net->is_sequential(); if (u->sequ) u->init = net->get_initial(); u->name = strings_.add(net->udp_name().c_str()); string inp; char out; int i = 0; if (net->first(inp, out)) do { string tt = inp+out; u->table[i++] = strings_.add(tt.c_str()); } while (net->next(inp, out)); assert(i==u->nrows); udps[net->udp_name()] = u; } obj->udp = u; // Some duplication of code here, see: dll_target::logic() /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = net->pin_count(); obj->pins_ = new ivl_nexus_t[obj->npins_]; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->pins_[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_log_add(obj->pins_[idx], obj, idx); } assert(net->scope()); ivl_scope_t scope = find_scope(des_, net->scope()); assert(scope); obj->scope_= scope; obj->name_ = net->name(); obj->delay[0] = net->rise_time(); obj->delay[1] = net->fall_time(); obj->delay[2] = net->decay_time(); scope_add_logic(scope, obj); } void dll_target::memory(const NetMemory*net) { ivl_memory_t obj = new struct ivl_memory_s; obj->scope_ = find_scope(des_, net->scope()); obj->basename_ = strings_.add(net->name()); obj->width_ = net->width(); obj->signed_ = 0; obj->size_ = net->count(); obj->root_ = -net->index_to_address(0); scope_add_mem(obj->scope_, obj); } void dll_target::lpm_add_sub(const NetAddSub*net) { ivl_lpm_t obj = new struct ivl_lpm_s; if (net->attribute("LPM_Direction") == verinum("SUB")) obj->type = IVL_LPM_SUB; else obj->type = IVL_LPM_ADD; obj->name = net->name(); // NetAddSub names are permallocated. assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); /* Choose the width of the adder. If the carry bit is connected, then widen the adder by one and plan on leaving the fake inputs unconnected. */ obj->u_.arith.width = net->width(); if (net->pin_Cout().is_linked()) { obj->u_.arith.width += 1; } obj->u_.arith.q = new ivl_nexus_t[3 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + obj->u_.arith.width; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; for (unsigned idx = 0 ; idx < net->width() ; idx += 1) { const Nexus*nex; nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } /* If the carry output is connected, then connect the extra Q pin to the carry nexus and zero the a and b inputs. */ if (net->pin_Cout().is_linked()) { unsigned carry = obj->u_.arith.width - 1; const Nexus*nex = net->pin_Cout().nexus(); assert(nex->t_cookie()); obj->u_.arith.q[carry] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[carry], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); obj->u_.arith.a[carry] = 0; obj->u_.arith.b[carry] = 0; } scope_add_lpm(obj->scope, obj); } /* * The lpm_clshift device represents both left and right shifts, * depending on what is connected to the Direction pin. We convert * this device into SHIFTL or SHIFTR devices. */ void dll_target::lpm_clshift(const NetCLShift*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SHIFTL; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); /* Look at the direction input of the device, and select the shift direction accordingly. */ if (net->pin_Direction().is_linked()) { assert( net->pin_Direction().nexus()->drivers_constant() ); verinum::V dir = net->pin_Direction().nexus()->driven_value(); switch (dir) { case verinum::V0: break; case verinum::V1: obj->type = IVL_LPM_SHIFTR; break; default: assert(0); } } obj->u_.shift.width = net->width(); obj->u_.shift.select = net->width_dist(); unsigned nex_count = obj->u_.shift.width * 2 + obj->u_.shift.select; obj->u_.shift.q = new ivl_nexus_t[nex_count]; obj->u_.shift.d = obj->u_.shift.q + obj->u_.shift.width; obj->u_.shift.s = obj->u_.shift.d + obj->u_.shift.width; for (unsigned idx = 0 ; idx < nex_count ; idx += 1) obj->u_.shift.q[idx] = 0; for (unsigned idx = 0 ; idx < net->width() ; idx += 1) { const Nexus*nex; nex = net->pin_Result(idx).nexus(); assert(nex && nex->t_cookie()); obj->u_.shift.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.shift.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } for (unsigned idx = 0 ; idx < net->width() ; idx += 1) { const Nexus*nex; nex = net->pin_Data(idx).nexus(); assert(nex && nex->t_cookie()); obj->u_.shift.d[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.shift.q[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } for (unsigned idx = 0 ; idx < net->width_dist() ; idx += 1) { const Nexus*nex; nex = net->pin_Distance(idx).nexus(); assert(nex && nex->t_cookie()); obj->u_.shift.s[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.shift.s[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } scope_add_lpm(obj->scope, obj); } /* * Make out of the NetCompare object an ivl_lpm_s object. The * comparators in ivl_target do not support < or <=, but they can be * trivially converted to > and >= by swapping the operands. */ void dll_target::lpm_compare(const NetCompare*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->name = net->name(); // NetCompare names are permallocated assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); bool swap_operands = false; obj->u_.arith.width = net->width(); obj->u_.arith.q = new ivl_nexus_t[1 + 2 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + 1; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; if (net->pin_AGEB().is_linked()) { const Nexus*nex = net->pin_AGEB().nexus(); obj->type = IVL_LPM_CMP_GE; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_AGB().is_linked()) { const Nexus*nex = net->pin_AGB().nexus(); obj->type = IVL_LPM_CMP_GT; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_ALEB().is_linked()) { const Nexus*nex = net->pin_ALEB().nexus(); obj->type = IVL_LPM_CMP_GE; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); swap_operands = true; } else if (net->pin_ALB().is_linked()) { const Nexus*nex = net->pin_ALB().nexus(); obj->type = IVL_LPM_CMP_GT; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); swap_operands = true; } else if (net->pin_AEB().is_linked()) { const Nexus*nex = net->pin_AEB().nexus(); obj->type = IVL_LPM_CMP_EQ; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_ANEB().is_linked()) { const Nexus*nex = net->pin_ANEB().nexus(); obj->type = IVL_LPM_CMP_NE; if (! nex->t_cookie()) { cerr << "internal error: COMPARE_NE device " << net->name()<<" ANEB pin nexus has no cookie."<t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else { assert(0); } for (unsigned idx = 0 ; idx < net->width() ; idx += 1) { const Nexus*nex; nex = swap_operands ? net->pin_DataB(idx).nexus() : net->pin_DataA(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = swap_operands ? net->pin_DataA(idx).nexus() : net->pin_DataB(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } scope_add_lpm(obj->scope, obj); } void dll_target::lpm_divide(const NetDivide*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_DIVIDE; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); obj->u_.arith.width = wid; obj->u_.arith.q = new ivl_nexus_t[3 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + obj->u_.arith.width; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; for (unsigned idx = 0 ; idx < wid ; idx += 1) { const Nexus*nex; nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); if (idx < net->width_a()) { nex = net->pin_DataA(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.a[idx] = 0; } if (idx < net->width_b()) { nex = net->pin_DataB(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.b[idx] = 0; } } scope_add_lpm(obj->scope, obj); } void dll_target::lpm_modulo(const NetModulo*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MOD; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); if (wid < net->width_a()) wid = net->width_a(); if (wid < net->width_b()) wid = net->width_b(); obj->u_.arith.width = wid; obj->u_.arith.q = new ivl_nexus_t[3 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + obj->u_.arith.width; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; for (unsigned idx = 0 ; idx < wid ; idx += 1) { const Nexus*nex; if (idx < net->width_r()) { nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else { obj->u_.arith.q[idx] = 0; } if (idx < net->width_a()) { nex = net->pin_DataA(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.a[idx] = 0; } if (idx < net->width_b()) { nex = net->pin_DataB(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.b[idx] = 0; } } scope_add_lpm(obj->scope, obj); } void dll_target::lpm_ff(const NetFF*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_FF; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->u_.ff.width = net->width(); scope_add_lpm(obj->scope, obj); const Nexus*nex; /* Set the clk signal to point to the nexus, and the nexus to point back to this device. */ nex = net->pin_Clock().nexus(); assert(nex->t_cookie()); obj->u_.ff.clk = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.clk); nexus_lpm_add(obj->u_.ff.clk, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); /* If there is a clock enable, then connect it up to the FF device. */ if (net->pin_Enable().is_linked()) { nex = net->pin_Enable().nexus(); assert(nex->t_cookie()); obj->u_.ff.we = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.we); nexus_lpm_add(obj->u_.ff.we, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.we = 0; } if (net->pin_Aclr().is_linked()) { nex = net->pin_Aclr().nexus(); assert(nex->t_cookie()); obj->u_.ff.aclr = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.aclr); nexus_lpm_add(obj->u_.ff.aclr, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.aclr = 0; } if (net->pin_Aset().is_linked()) { nex = net->pin_Aset().nexus(); assert(nex->t_cookie()); obj->u_.ff.aset = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.aset); nexus_lpm_add(obj->u_.ff.aset, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); verinum tmp = net->aset_value(); obj->u_.ff.aset_value = expr_from_value_(tmp); } else { obj->u_.ff.aset = 0; obj->u_.ff.aset_value = 0; } if (obj->u_.ff.width == 1) { nex = net->pin_Q(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pin, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.q.pins = new ivl_nexus_t [obj->u_.ff.width * 2]; obj->u_.ff.d.pins = obj->u_.ff.q.pins + obj->u_.ff.width; for (unsigned idx = 0 ; idx < obj->u_.ff.width ; idx += 1) { nex = net->pin_Q(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pins[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } } void dll_target::lpm_ram_dq(const NetRamDq*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_RAM; obj->name = net->name(); obj->u_.ff.mem = find_memory(des_, net->mem()); assert(obj->u_.ff.mem); obj->scope = find_scope(des_, net->mem()->scope()); assert(obj->scope); obj->u_.ff.width = net->width(); obj->u_.ff.swid = net->awidth(); scope_add_lpm(obj->scope, obj); const Nexus*nex; // A write port is present only if something is connected to // the clock input. bool has_write_port = net->pin_InClock().is_linked(); // Connect the write clock and write enable if (has_write_port) { nex = net->pin_InClock().nexus(); assert(nex->t_cookie()); obj->u_.ff.clk = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.clk); nexus_lpm_add(obj->u_.ff.clk, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_WE().nexus(); if (nex && nex->t_cookie()) { obj->u_.ff.we = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.we); nexus_lpm_add(obj->u_.ff.we, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else obj->u_.ff.we = 0x0; } else { obj->u_.ff.clk = 0x0; obj->u_.ff.we = 0x0; } // Connect the address bus if (obj->u_.ff.swid == 1) { nex = net->pin_Address(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.s.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.s.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.s.pins = new ivl_nexus_t [obj->u_.ff.swid]; for (unsigned idx = 0 ; idx < obj->u_.ff.swid ; idx += 1) { nex = net->pin_Address(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.s.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.s.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } // Connect the data busses if (obj->u_.ff.width == 1) { nex = net->pin_Q(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pin, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); if (has_write_port) { nex = net->pin_Data(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } else if (has_write_port) { obj->u_.ff.q.pins = new ivl_nexus_t [obj->u_.ff.width * 2]; obj->u_.ff.d.pins = obj->u_.ff.q.pins + obj->u_.ff.width; for (unsigned idx = 0 ; idx < obj->u_.ff.width ; idx += 1) { nex = net->pin_Q(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pins[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } else { obj->u_.ff.q.pins = new ivl_nexus_t [obj->u_.ff.width]; for (unsigned idx = 0 ; idx < obj->u_.ff.width ; idx += 1) { nex = net->pin_Q(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pins[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } } } void dll_target::lpm_mult(const NetMult*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MULT; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); obj->u_.arith.width = wid; obj->u_.arith.q = new ivl_nexus_t[3 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + obj->u_.arith.width; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; for (unsigned idx = 0 ; idx < wid ; idx += 1) { const Nexus*nex; nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); if (idx < net->width_a()) { nex = net->pin_DataA(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.a[idx] = 0; } if (idx < net->width_b()) { nex = net->pin_DataB(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.b[idx] = 0; } } scope_add_lpm(obj->scope, obj); } /* * Hook up the mux devices so that the select expression selects the * correct sub-expression with the ivl_lpm_data2 function. */ void dll_target::lpm_mux(const NetMux*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MUX; obj->name = net->name(); // The NetMux perallocates its name. obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->u_.mux.width = net->width(); obj->u_.mux.size = net->size(); obj->u_.mux.swid = net->sel_width(); scope_add_lpm(obj->scope, obj); const Nexus*nex; /* Connect the output bits. */ if (obj->u_.mux.width == 1) { nex = net->pin_Result(0).nexus(); assert(nex->t_cookie()); obj->u_.mux.q.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.mux.q.pin, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else { obj->u_.mux.q.pins = new ivl_nexus_t [obj->u_.mux.width]; for (unsigned idx = 0 ; idx < obj->u_.mux.width ; idx += 1) { nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.mux.q.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.mux.q.pins[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } } /* Connect the select bits. */ if (obj->u_.mux.swid == 1) { nex = net->pin_Sel(0).nexus(); assert(nex->t_cookie()); obj->u_.mux.s.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.mux.s.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.mux.s.pins = new ivl_nexus_t [obj->u_.mux.swid]; for (unsigned idx = 0 ; idx < obj->u_.mux.swid ; idx += 1) { nex = net->pin_Sel(idx).nexus(); assert(nex->t_cookie()); obj->u_.mux.s.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.mux.s.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } unsigned width = obj->u_.mux.width; unsigned selects = obj->u_.mux.size; obj->u_.mux.d = new ivl_nexus_t [width * selects]; for (unsigned sdx = 0 ; sdx < selects ; sdx += 1) for (unsigned ddx = 0 ; ddx < width ; ddx += 1) { nex = net->pin_Data(ddx, sdx).nexus(); ivl_nexus_t tmp = (ivl_nexus_t) nex->t_cookie(); obj->u_.mux.d[sdx*width + ddx] = tmp; nexus_lpm_add(tmp, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } /* * The assignment l-values are captured by the assignment statements * themselves in the process handling. */ void dll_target::net_assign(const NetAssign_*) { } bool dll_target::net_const(const NetConst*net) { unsigned idx; char*bits; struct ivl_net_const_s *obj = new struct ivl_net_const_s; obj->width_ = net->pin_count(); if (obj->width_ <= sizeof(char*)) { bits = obj->b.bit_; } else { obj->b.bits_ = (char*)malloc(obj->width_); bits = obj->b.bits_; } for (idx = 0 ; idx < obj->width_ ; idx += 1) switch (net->value(idx)) { case verinum::V0: bits[idx] = '0'; break; case verinum::V1: bits[idx] = '1'; break; case verinum::Vx: bits[idx] = 'x'; break; case verinum::Vz: bits[idx] = 'z'; break; } /* Connect to all the nexus objects. Note that the one-bit case can be handled more efficiently without allocating array space. */ if (obj->width_ == 1) { ivl_drive_t drv0, drv1; drive_from_link(net->pin(0), drv0, drv1); const Nexus*nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->n.pin_ = (ivl_nexus_t) nex->t_cookie(); nexus_con_add(obj->n.pin_, obj, 0, drv0, drv1); } else { obj->n.pins_ = new ivl_nexus_t[obj->width_]; for (unsigned idx = 0 ; idx < obj->width_ ; idx += 1) { if (! net->pin(idx).is_linked()) continue; ivl_drive_t drv0, drv1; drive_from_link(net->pin(idx), drv0, drv1); const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->n.pins_[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_con_add(obj->n.pins_[idx], obj, idx, drv0, drv1); } } des_.nconsts += 1; des_.consts = (ivl_net_const_t*) realloc(des_.consts, des_.nconsts * sizeof(ivl_net_const_t)); des_.consts[des_.nconsts-1] = obj; return true; } void dll_target::net_probe(const NetEvProbe*net) { } void dll_target::scope(const NetScope*net) { ivl_scope_t scope; if (net->parent() == 0) { unsigned i; scope = NULL; for (i = 0; i < des_.nroots_ && scope == NULL; i++) { if (strcmp(des_.roots_[i]->name_, net->name().c_str()) == 0) scope = des_.roots_[i]; } assert(scope); } else { scope = new struct ivl_scope_s; scope->name_ = net->basename(); scope->child_ = 0; scope->sibling_ = 0; scope->parent = find_scope(des_, net->parent()); assert(scope->parent); scope->nsigs_ = 0; scope->sigs_ = 0; scope->nlog_ = 0; scope->log_ = 0; scope->nevent_ = 0; scope->event_ = 0; scope->nlpm_ = 0; scope->lpm_ = 0; scope->nmem_ = 0; scope->mem_ = 0; scope->nvar_ = 0; scope->var_ = 0; make_scope_parameters(scope, net); scope->time_units = net->time_unit(); switch (net->type()) { case NetScope::MODULE: scope->type_ = IVL_SCT_MODULE; scope->tname_ = net->module_name(); break; case NetScope::TASK: { const NetTaskDef*def = net->task_def(); if (def == 0) { cerr << "?:?" << ": internal error: " << "task " << scope->name_ << " has no definition." << endl; } assert(def); scope->type_ = IVL_SCT_TASK; scope->tname_ = strings_.add(def->name().c_str()); break; } case NetScope::FUNC: scope->type_ = IVL_SCT_FUNCTION; scope->tname_ = strings_.add(net->func_def()->name().c_str()); break; case NetScope::BEGIN_END: scope->type_ = IVL_SCT_BEGIN; scope->tname_ = scope->name_; break; case NetScope::FORK_JOIN: scope->type_ = IVL_SCT_FORK; scope->tname_ = scope->name_; break; } assert(scope->parent != 0); scope->sibling_= scope->parent->child_; scope->parent->child_ = scope; } } void dll_target::signal(const NetNet*net) { ivl_signal_t obj = new struct ivl_signal_s; obj->name_ = net->name(); /* Attach the signal to the ivl_scope_t object that contains it. This involves growing the sigs_ array in the scope object, or creating the sigs_ array if this is the first signal. */ obj->scope_ = find_scope(des_, net->scope()); assert(obj->scope_); if (obj->scope_->nsigs_ == 0) { assert(obj->scope_->sigs_ == 0); obj->scope_->nsigs_ = 1; obj->scope_->sigs_ = (ivl_signal_t*)malloc(sizeof(ivl_signal_t)); } else { assert(obj->scope_->sigs_); obj->scope_->nsigs_ += 1; obj->scope_->sigs_ = (ivl_signal_t*) realloc(obj->scope_->sigs_, obj->scope_->nsigs_*sizeof(ivl_signal_t)); } obj->scope_->sigs_[obj->scope_->nsigs_-1] = obj; /* Save the primitive properties of the signal in the ivl_signal_t object. */ obj->width_ = net->pin_count(); obj->signed_= net->get_signed()? 1 : 0; obj->lsb_index = net->lsb(); obj->lsb_dist = net->msb() >= net->lsb() ? 1 : -1; obj->isint_ = false; obj->local_ = (net->local_flag() && (net->peek_eref() == 0))? 1 : 0; switch (net->port_type()) { case NetNet::PINPUT: obj->port_ = IVL_SIP_INPUT; break; case NetNet::POUTPUT: obj->port_ = IVL_SIP_OUTPUT; break; case NetNet::PINOUT: obj->port_ = IVL_SIP_INOUT; break; default: obj->port_ = IVL_SIP_NONE; break; } switch (net->type()) { case NetNet::REG: obj->type_ = IVL_SIT_REG; obj->isint_ = net->get_isint(); break; case NetNet::SUPPLY0: obj->type_ = IVL_SIT_SUPPLY0; break; case NetNet::SUPPLY1: obj->type_ = IVL_SIT_SUPPLY1; break; case NetNet::TRI: obj->type_ = IVL_SIT_TRI; break; case NetNet::TRI0: obj->type_ = IVL_SIT_TRI0; break; case NetNet::TRI1: obj->type_ = IVL_SIT_TRI1; break; case NetNet::TRIAND: obj->type_ = IVL_SIT_TRIAND; break; case NetNet::TRIOR: obj->type_ = IVL_SIT_TRIOR; break; case NetNet::WAND: obj->type_ = IVL_SIT_WAND; break; case NetNet::WIRE: case NetNet::IMPLICIT: obj->type_ = IVL_SIT_TRI; break; case NetNet::WOR: obj->type_ = IVL_SIT_WOR; break; default: obj->type_ = IVL_SIT_NONE; break; } obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); /* Get the nexus objects for all the pins of the signal. If the signal has only one pin, then write the single ivl_nexus_t object into n.pin_. Otherwise, make an array of ivl_nexus_t cookies. When I create an ivl_nexus_t object, store it in the t_cookie of the Nexus object so that I find it again when I next encounter the nexus. */ if (obj->width_ == 1) { const Nexus*nex = net->pin(0).nexus(); if (nex->t_cookie()) { obj->n.pin_ = (ivl_nexus_t)nex->t_cookie(); nexus_sig_add(obj->n.pin_, obj, 0); } else { ivl_nexus_t tmp = nexus_sig_make(obj, 0); tmp->name_ = strings_.add(nex->name()); nex->t_cookie(tmp); obj->n.pin_ = tmp; } } else { unsigned idx; obj->n.pins_ = (ivl_nexus_t*) calloc(obj->width_, sizeof(ivl_nexus_t)); for (idx = 0 ; idx < obj->width_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); if (nex->t_cookie()) { obj->n.pins_[idx] = (ivl_nexus_t)nex->t_cookie(); nexus_sig_add(obj->n.pins_[idx], obj, idx); } else { ivl_nexus_t tmp = nexus_sig_make(obj, idx); tmp->name_ = strings_.add(nex->name()); nex->t_cookie(tmp); obj->n.pins_[idx] = tmp; } } } } extern const struct target tgt_dll = { "dll", &dll_target_obj }; /* * $Log: t-dll.cc,v $ * Revision 1.108 2003/03/10 23:40:53 steve * Keep parameter constants for the ivl_target API. * * Revision 1.107 2003/03/06 01:24:37 steve * Obsolete the ivl_event_name function. * * Revision 1.106 2003/03/06 00:28:42 steve * All NetObj objects have lex_string base names. * * Revision 1.105 2003/03/03 02:22:41 steve * Scope names stored only as basename. * * Revision 1.104 2003/01/30 16:23:08 steve * Spelling fixes. * * Revision 1.103 2003/01/26 21:15:59 steve * Rework expression parsing and elaboration to * accommodate real/realtime values and expressions. * * Revision 1.102 2003/01/16 21:43:52 steve * Assert some task definition sanity. * * Revision 1.101 2002/12/21 00:55:58 steve * The $time system task returns the integer time * scaled to the local units. Change the internal * implementation of vpiSystemTime the $time functions * to properly account for this. Also add $simtime * to get the simulation time. * * Revision 1.100 2002/11/05 02:12:35 steve * Fix the call to FormatMessage under Windows. * * Revision 1.99 2002/11/03 22:44:19 steve * Cast for gcc convenience. * * Revision 1.98 2002/11/03 20:47:23 steve * Slightly more verbose load fail message. * * Revision 1.97 2002/10/23 01:47:18 steve * Fix synth2 handling of aset/aclr signals where * flip-flops are split by begin-end blocks. * * Revision 1.96 2002/09/26 03:18:04 steve * Generate vvp code for asynch set/reset of NetFF. * * Revision 1.95 2002/08/12 01:35:00 steve * conditional ident string using autoconfig. * * Revision 1.94 2002/08/05 04:18:45 steve * Store only the base name of memories. * * Revision 1.93 2002/08/04 19:13:16 steve * dll uses StringHeap for named items. * * Revision 1.92 2002/08/04 18:28:15 steve * Do not use hierarchical names of memories to * generate vvp labels. -tdll target does not * used hierarchical name string to look up the * memory objects in the design. * * Revision 1.91 2002/07/24 16:21:52 steve * Verbose messages. * * Revision 1.90 2002/07/22 21:07:40 steve * Set ivl_target delays for case compare logic. * * Revision 1.89 2002/07/05 21:26:17 steve * Avoid emitting to vvp local net symbols. * * Revision 1.88 2002/06/25 01:33:22 steve * Cache calculated driven value. * * Revision 1.87 2002/06/24 01:49:39 steve * Make link_drive_constant cache its results in * the Nexus, to improve cprop performance. * * Revision 1.86 2002/06/21 04:59:35 steve * Carry integerness throughout the compilation. * * Revision 1.85 2002/06/16 19:19:16 steve * Generate runtime code to normalize indices. * * Revision 1.84 2002/05/26 01:39:03 steve * Carry Verilog 2001 attributes with processes, * all the way through to the ivl_target API. * * Divide signal reference counts between rval * and lval references. */