/* * Copyright (c) 2005-2007 Stephen Williams * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include "delay.h" #include "schedule.h" #include "vpi_priv.h" #include #include #include void vvp_delay_t::calculate_min_delay_() { min_delay_ = rise_; if (fall_ < min_delay_) min_delay_ = fall_; if (decay_ < min_delay_) min_delay_ = decay_; } vvp_delay_t::vvp_delay_t(vvp_time64_t rise, vvp_time64_t fall) { rise_ = rise; fall_ = fall; decay_= fall < rise? fall : rise; min_delay_ = decay_; } vvp_delay_t::vvp_delay_t(vvp_time64_t rise, vvp_time64_t fall, vvp_time64_t decay) { rise_ = rise; fall_ = fall; decay_= decay; calculate_min_delay_(); } vvp_delay_t::~vvp_delay_t() { } vvp_time64_t vvp_delay_t::get_delay(vvp_bit4_t from, vvp_bit4_t to) { switch (from) { case BIT4_0: switch (to) { case BIT4_0: return 0; case BIT4_1: return rise_; case BIT4_X: return min_delay_; case BIT4_Z: return decay_; } break; case BIT4_1: switch (to) { case BIT4_0: return fall_; case BIT4_1: return 0; case BIT4_X: return min_delay_; case BIT4_Z: return decay_; } break; case BIT4_X: switch (to) { case BIT4_0: return fall_; case BIT4_1: return rise_; case BIT4_X: return 0; case BIT4_Z: return decay_; } break; case BIT4_Z: switch (to) { case BIT4_0: return fall_; case BIT4_1: return rise_; case BIT4_X: return min_delay_; case BIT4_Z: return 0; } break; } assert(0); return 0; } vvp_time64_t vvp_delay_t::get_min_delay() const { return min_delay_; } void vvp_delay_t::set_rise(vvp_time64_t val) { rise_ = val; if (val < min_delay_) min_delay_ = val; else calculate_min_delay_(); } void vvp_delay_t::set_fall(vvp_time64_t val) { fall_ = val; if (val < min_delay_) min_delay_ = val; else calculate_min_delay_(); } void vvp_delay_t::set_decay(vvp_time64_t val) { decay_ = val; if (val < min_delay_) min_delay_ = val; else calculate_min_delay_(); } vvp_fun_delay::vvp_fun_delay(vvp_net_t*n, vvp_bit4_t init, const vvp_delay_t&d) : net_(n), delay_(d), cur_vec4_(1) { cur_vec4_.set_bit(0, init); list_ = 0; } vvp_fun_delay::~vvp_fun_delay() { while (struct event_*cur = dequeue_()) delete cur; } void vvp_fun_delay::clean_pulse_events_(vvp_time64_t use_delay) { if (list_ == 0) return; do { struct event_*cur = list_->next; /* If this event is far enough from the event I'm about to create, then that scheduled event is not a pulse to be eliminated, so we're done. */ if (cur->sim_time+use_delay <= use_delay+schedule_simtime()) break; if (list_ == cur) list_ = 0; else list_->next = cur->next; delete cur; } while (list_); } /* * FIXME: this implementation currently only uses the maximum delay * from all the bit changes in the vectors. If there are multiple * changes with different delays, then the results would be * wrong. What should happen is that if there are multiple changes, * multiple vectors approaching the result should be scheduled. */ void vvp_fun_delay::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit) { if (port.port() > 0) { // Get the integer value of the bit vector, or 0 if // there are X or Z bits. unsigned long val = 0; vector4_to_value(bit, val); switch (port.port()) { case 1: delay_.set_rise(val); return; case 2: delay_.set_fall(val); return; case 3: delay_.set_decay(val); return; } return; } /* How many bits to compare? */ unsigned use_wid = cur_vec4_.size(); if (bit.size() < use_wid) use_wid = bit.size(); /* Scan the vectors looking for delays. Select the maximim delay encountered. */ vvp_time64_t use_delay; use_delay = delay_.get_delay(cur_vec4_.value(0), bit.value(0)); for (unsigned idx = 1 ; idx < use_wid ; idx += 1) { vvp_time64_t tmp; tmp = delay_.get_delay(cur_vec4_.value(idx), bit.value(idx)); if (tmp > use_delay) use_delay = tmp; } /* what *should* happen here is we check to see if there is a transaction in the queue. This would be a pulse that needs to be eliminated. */ clean_pulse_events_(use_delay); vvp_time64_t use_simtime = schedule_simtime() + use_delay; /* And propagate it. */ if (use_delay == 0) { cur_vec4_ = bit; vvp_send_vec4(net_->out, cur_vec4_); } else { struct event_*cur = new struct event_(use_simtime); cur->run_run_ptr = &vvp_fun_delay::run_run_vec4_; cur->ptr_vec4 = bit; enqueue_(cur); schedule_generic(this, use_delay, false); } } void vvp_fun_delay::recv_vec8(vvp_net_ptr_t port, vvp_vector8_t bit) { assert(port.port() == 0); if (cur_vec8_.eeq(bit)) return; /* XXXX FIXME: For now, just use the minimum delay. */ vvp_time64_t use_delay; use_delay = delay_.get_min_delay(); vvp_time64_t use_simtime = schedule_simtime() + use_delay; if (use_delay == 0) { cur_vec8_ = bit; vvp_send_vec8(net_->out, cur_vec8_); } else { struct event_*cur = new struct event_(use_simtime); cur->ptr_vec8 = bit; cur->run_run_ptr = &vvp_fun_delay::run_run_vec8_; enqueue_(cur); schedule_generic(this, use_delay, false); } } void vvp_fun_delay::recv_real(vvp_net_ptr_t port, double bit) { if (port.port() > 0) { /* If the port is not 0, then this is a delay value that should be rounded and converted to an integer delay. */ unsigned long long val = 0; if (bit > 0) val = (unsigned long long) (bit+0.5); switch (port.port()) { case 1: delay_.set_rise(val); return; case 2: delay_.set_fall(val); return; case 3: delay_.set_decay(val); return; } return; } if (cur_real_ == bit) return; vvp_time64_t use_delay; use_delay = delay_.get_min_delay(); vvp_time64_t use_simtime = schedule_simtime() + use_delay; if (use_delay == 0) { cur_real_ = bit; vvp_send_real(net_->out, cur_real_); } else { struct event_*cur = new struct event_(use_simtime); cur->run_run_ptr = &vvp_fun_delay::run_run_real_; cur->ptr_real = bit; enqueue_(cur); schedule_generic(this, use_delay, false); } } void vvp_fun_delay::run_run() { vvp_time64_t sim_time = schedule_simtime(); if (list_ == 0 || list_->next->sim_time > sim_time) return; struct event_*cur = dequeue_(); if (cur == 0) return; (this->*(cur->run_run_ptr))(cur); delete cur; } void vvp_fun_delay::run_run_vec4_(struct event_*cur) { cur_vec4_ = cur->ptr_vec4; vvp_send_vec4(net_->out, cur_vec4_); } void vvp_fun_delay::run_run_vec8_(struct vvp_fun_delay::event_*cur) { cur_vec8_ = cur->ptr_vec8; vvp_send_vec8(net_->out, cur_vec8_); } void vvp_fun_delay::run_run_real_(struct vvp_fun_delay::event_*cur) { cur_real_ = cur->ptr_real; vvp_send_real(net_->out, cur_real_); } vvp_fun_modpath::vvp_fun_modpath(vvp_net_t*net) : net_(net), src_list_(0) { } vvp_fun_modpath::~vvp_fun_modpath() { // Delete the source probes. while (src_list_) { vvp_fun_modpath_src*tmp = src_list_; src_list_ = tmp->next_; delete tmp; } } void vvp_fun_modpath::add_modpath_src(vvp_fun_modpath_src*that) { assert(that->next_ == 0); that->next_ = src_list_; src_list_ = that; } static vvp_time64_t delay_from_edge(vvp_bit4_t a, vvp_bit4_t b, vvp_time64_t array[12]) { typedef delay_edge_t bit4_table4[4]; const static bit4_table4 edge_table[4] = { { DELAY_EDGE_01, DELAY_EDGE_01, DELAY_EDGE_0x, DELAY_EDGE_0z }, { DELAY_EDGE_10, DELAY_EDGE_10, DELAY_EDGE_1x, DELAY_EDGE_1z }, { DELAY_EDGE_x0, DELAY_EDGE_x1, DELAY_EDGE_x0, DELAY_EDGE_xz }, { DELAY_EDGE_z0, DELAY_EDGE_z1, DELAY_EDGE_zx, DELAY_EDGE_z0 } }; return array[ edge_table[a][b] ]; } void vvp_fun_modpath::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit) { /* Only the first port is used. */ if (port.port() > 0) return; if (cur_vec4_.eeq(bit)) return; /* Select a time delay source that applies. */ vvp_fun_modpath_src*src = 0; for (vvp_fun_modpath_src*cur = src_list_ ; cur ; cur=cur->next_) { /* Skip paths that are disabled by conditions. */ if (cur->condition_flag_ == false) continue; if (src == 0) { src = cur; } else if (cur->wake_time_ > src->wake_time_) { src = cur; } else { continue; /* Skip this entry. */ } } assert(src); vvp_time64_t out_at[12]; vvp_time64_t now = schedule_simtime(); for (unsigned idx = 0 ; idx < 12 ; idx += 1) { out_at[idx] = src->wake_time_ + src->delay_[idx]; if (out_at[idx] <= now) out_at[idx] = 0; else out_at[idx] -= now; } /* Given the scheduled output time, create an output event. */ vvp_time64_t use_delay = delay_from_edge(cur_vec4_.value(0), bit.value(0), out_at); /* FIXME: This bases the edge delay on only the least bit. This is WRONG! I need to find all the possible delays, and schedule an event for each partial change. Hard! */ for (unsigned idx = 1 ; idx < bit.size() ; idx += 1) { vvp_time64_t tmp = delay_from_edge(cur_vec4_.value(idx), bit.value(0), out_at); assert(tmp == use_delay); } cur_vec4_ = bit; schedule_generic(this, use_delay, false); } void vvp_fun_modpath::run_run() { vvp_send_vec4(net_->out, cur_vec4_); } vvp_fun_modpath_src::vvp_fun_modpath_src(vvp_time64_t del[12]) { for (unsigned idx = 0 ; idx < 12 ; idx += 1) delay_[idx] = del[idx]; next_ = 0; wake_time_ = 0; condition_flag_ = true; } vvp_fun_modpath_src::~vvp_fun_modpath_src() { } void vvp_fun_modpath_src::get_delay12(vvp_time64_t val[12]) const { for (unsigned idx = 0 ; idx < 12 ; idx += 1) val[idx] = delay_[idx]; } void vvp_fun_modpath_src::put_delay12(const vvp_time64_t val[12]) { for (unsigned idx = 0 ; idx < 12 ; idx += 1) delay_[idx] = val[idx]; } void vvp_fun_modpath_src::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit) { if (port.port() == 0) { // The modpath input... if (test_vec4(bit)) wake_time_ = schedule_simtime(); } else if (port.port() == 1) { // The modpath condition input... if (bit.value(0) == BIT4_1) condition_flag_ = true; else condition_flag_ = false; } } bool vvp_fun_modpath_src::test_vec4(const vvp_vector4_t&) { return true; } vvp_fun_modpath_edge::vvp_fun_modpath_edge(vvp_time64_t del[12], bool pos, bool neg) : vvp_fun_modpath_src(del) { old_value_ = BIT4_X; posedge_ = pos; negedge_ = neg; } bool vvp_fun_modpath_edge::test_vec4(const vvp_vector4_t&bit) { vvp_bit4_t tmp = old_value_; old_value_ = bit.value(0); int edge_flag = edge(tmp, old_value_); if (edge_flag > 0) return posedge_; if (edge_flag < 0) return negedge_; return false; } /* * All the below routines that begin with * modpath_src_* belong the internal function * of an vpiModPathIn object. This is used to * make some specific delays path operations * */ static int modpath_src_get(int code, vpiHandle ref) { struct __vpiModPathSrc*obj = vpip_modpath_src_from_handle(ref); assert(obj); return 0 ; } static void modpath_src_get_value(vpiHandle ref, p_vpi_value vp) { assert((ref->vpi_type->type_code == vpiModPathIn)); struct __vpiModPathSrc* modpathsrc = vpip_modpath_src_from_handle( ref) ; assert ( modpathsrc ) ; return ; } static vpiHandle modpath_src_put_value(vpiHandle ref, s_vpi_value *vp ) { assert((ref->vpi_type->type_code == vpiModPathIn)); struct __vpiModPathSrc* modpathsrc = vpip_modpath_src_from_handle( ref) ; assert ( modpathsrc ) ; return 0 ; } static vpiHandle modpath_src_get_handle(int code, vpiHandle ref) { struct __vpiModPathSrc*rfp = vpip_modpath_src_from_handle(ref); assert(rfp); switch (code) { case vpiScope: return vpi_handle(rfp->dest->scope); case vpiModule: { struct __vpiScope*scope = rfp->dest->scope; while (scope && scope->base.vpi_type->type_code != vpiModule) scope = scope->scope; assert(scope); return vpi_handle(scope); } case vpiModPathIn: return vpi_handle(&rfp->path_term_in); case vpiModPathOut: return vpi_handle(&rfp->dest->path_term_out); } return 0; } static vpiHandle modpath_src_index ( vpiHandle ref, int code ) { assert( (ref->vpi_type->type_code == vpiModPathIn ) ); return 0 ; } static int modpath_src_free_object( vpiHandle ref ) { assert( (ref->vpi_type->type_code == vpiModPathIn ) ); free ( ref ) ; return 1 ; } /* * This routine will put specific dimension of delay[] values * into a vpiHandle. In this case, he will put * specific delays values in a vpiModPathIn object * */ static void modpath_src_put_delays ( vpiHandle ref, p_vpi_delay delays ) { vvp_time64_t tmp[12]; int idx; struct __vpiModPathSrc * src = vpip_modpath_src_from_handle( ref) ; assert(src) ; vvp_fun_modpath_src *fun = dynamic_cast(src->net->fun); assert( fun ); typedef unsigned char map_array_t[12]; static const map_array_t map_2 = {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}; static const map_array_t map12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; const map_array_t*use_map = 0; switch (delays->no_of_delays) { case 2: use_map = &map_2; break; case 12: use_map = &map12; break; default: assert(0); break; } if (delays->time_type == vpiSimTime) { for (idx = 0 ; idx < 12 ; idx += 1) { tmp[idx] = vpip_timestruct_to_time(delays->da+use_map[0][idx]); } } else { for (idx = 0 ; idx < 12 ; idx += 1) { tmp[idx] = vpip_scaled_real_to_time64(delays->da[use_map[0][idx]].real, src->dest->scope); } } /* Now clean up any to-from-x delays to me the min/max based on the rules for selecting X delays. This only needs to happen if the X delays are not already explicitly given. */ if (delays->no_of_delays <= 6) { vvp_time64_t t_max = tmp[0]; vvp_time64_t t_min = tmp[1]; for (idx = 1 ; idx < delays->no_of_delays ; idx += 1) { if (tmp[idx] > t_max) t_max = tmp[idx]; if (tmp[idx] < t_min) t_min = tmp[idx]; } tmp[DELAY_EDGE_0x] = t_min; tmp[DELAY_EDGE_x1] = t_max; tmp[DELAY_EDGE_1x] = t_min; tmp[DELAY_EDGE_x0] = t_max; tmp[DELAY_EDGE_xz] = t_max; tmp[DELAY_EDGE_zx] = t_min; } fun->put_delay12(tmp); } /* * This routine will retrieve the delay[12] values * of a vpiHandle. In this case, he will get an * specific delays values from a vpiModPathIn * object * */ static void modpath_src_get_delays ( vpiHandle ref, p_vpi_delay delays ) { struct __vpiModPathSrc*src = vpip_modpath_src_from_handle( ref) ; assert(src); vvp_fun_modpath_src *fun = dynamic_cast(src->net->fun); assert(fun); int idx; vvp_time64_t tmp[12]; fun->get_delay12(tmp); switch (delays->no_of_delays) { case 12: if (delays->time_type == vpiSimTime) { for (idx = 0; idx < 12; idx += 1) { vpip_time_to_timestruct(delays->da+idx, tmp[idx]); } } else { /* int units = src->dest->scope->time_units; */ for (idx = 0; idx < 12; idx += 1) { delays->da[idx].real = vpip_time_to_scaled_real(tmp[idx], src->dest->scope); } } break; default: assert(0); break; } } static int pathterm_get(int code, vpiHandle ref) { struct __vpiModPathTerm*obj = vpip_modpath_term_from_handle(ref); assert(obj); switch (code) { case vpiEdge: return obj->edge; default: return 0; } } static vpiHandle pathterm_get_handle(int code, vpiHandle ref) { struct __vpiModPathTerm*obj = vpip_modpath_term_from_handle(ref); assert(obj); switch (code) { case vpiExpr: return obj->expr; default: return 0; } } /* * The __vpiModPathSrc class is what the VPI client sees as a * vpiModPath object. The __vpiModPath structure contains items that * are common to a bunch of modpaths, including the destination term. */ static const struct __vpirt vpip_modpath_src_rt = { vpiModPath, modpath_src_get, 0, /* vpi_get_str */ modpath_src_get_value, modpath_src_put_value, modpath_src_get_handle, 0, /* modpath_src_iterate,*/ modpath_src_index, modpath_src_free_object, modpath_src_get_delays, modpath_src_put_delays }; static const struct __vpirt vpip_modpath_term_rt = { vpiPathTerm, pathterm_get, 0, // vpi_get_str 0, // vpi_get_value, 0, // vpi_put_value, pathterm_get_handle, 0, // vpi_iterate, 0, // vpi_index, 0, // vpi_free_object, 0, // vpi_get_delays, 0 // vpi_put_delays }; static void initialize_path_term(struct __vpiModPathTerm&obj) { obj.base.vpi_type = &vpip_modpath_term_rt; obj.expr = 0; obj.edge = vpiNoEdge; } /* * This function will construct a vpiModPath Object. * give a respective "net", and will point to his * respective functor */ struct __vpiModPath* vpip_make_modpath(vvp_net_t *net) { struct __vpiModPath*obj = (struct __vpiModPath *)calloc(1, sizeof ( struct __vpiModPath ) ); obj->scope = vpip_peek_current_scope ( ); initialize_path_term(obj->path_term_out); obj->input_net = net ; return obj; } /* * This function will construct a vpiModPathIn * ( struct __vpiModPathSrc ) Object. will give * a delays[12] values, and point to the specified functor * */ struct __vpiModPathSrc* vpip_make_modpath_src (struct __vpiModPath*path, vvp_time64_t use_delay[12] , vvp_net_t *net ) { struct __vpiModPathSrc *obj = (struct __vpiModPathSrc *) calloc (1, sizeof ( struct __vpiModPathSrc ) ) ; obj->base.vpi_type = &vpip_modpath_src_rt; obj->dest = path; obj->net = net; initialize_path_term(obj->path_term_in); return obj; } /* this routine will safely convert a modpath vpiHandle to a struct __vpiModPath { } */ struct __vpiModPathTerm* vpip_modpath_term_from_handle(vpiHandle ref) { if (ref->vpi_type->type_code != vpiPathTerm) return 0; return (struct __vpiModPathTerm*) ref; } /* this routine will safely convert a modpathsrc vpiHandle to a struct __vpiModPathSrc { }, This is equivalent to a vpiModPathIn handle */ struct __vpiModPathSrc* vpip_modpath_src_from_handle(vpiHandle ref) { if (ref->vpi_type->type_code != vpiModPath) return 0; return (struct __vpiModPathSrc *) ref; }