/* * Copyright (c) 2001-2008 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "arith.h" # include "schedule.h" # include # include # include # include #ifdef HAVE_MALLOC_H # include #endif vvp_arith_::vvp_arith_(unsigned wid) : wid_(wid), x_val_(wid) { for (unsigned idx = 0 ; idx < wid ; idx += 1) x_val_.set_bit(idx, BIT4_X); op_a_ = x_val_; op_b_ = x_val_; } void vvp_arith_::dispatch_operand_(vvp_net_ptr_t ptr, vvp_vector4_t bit) { unsigned port = ptr.port(); switch (port) { case 0: op_a_ = bit; break; case 1: op_b_ = bit; break; default: fprintf(stderr, "Unsupported port type %d.\n", port); assert(0); } } // Division vvp_arith_div::vvp_arith_div(unsigned wid, bool signed_flag) : vvp_arith_(wid), signed_flag_(signed_flag) { } vvp_arith_div::~vvp_arith_div() { } void vvp_arith_div::wide4_(vvp_net_ptr_t ptr) { vvp_vector2_t a2 (op_a_); if (a2.is_NaN()) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } vvp_vector2_t b2 (op_b_); if (b2.is_NaN()) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } vvp_vector2_t res2 = a2 / b2; vvp_send_vec4(ptr.ptr()->out, vector2_to_vector4(res2, wid_)); } void vvp_arith_div::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); if (wid_ > 8 * sizeof(unsigned long)) { wide4_(ptr); return ; } unsigned long a; if (! vector4_to_value(op_a_, a)) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } unsigned long b; if (! vector4_to_value(op_b_, b)) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } bool negate = false; /* If we are doing signed divide, then take the sign out of the operands for now, and remember to put the sign back later. */ if (signed_flag_) { if (op_a_.value(op_a_.size()-1)) { a = (-a) & ~ (-1UL << op_a_.size()); negate = !negate; } if (op_b_.value(op_b_.size()-1)) { b = (-b) & ~ (-1UL << op_b_.size()); negate = ! negate; } } unsigned long val = a / b; if (negate) val = -val; assert(wid_ <= 8*sizeof(val)); vvp_vector4_t vval (wid_); for (unsigned idx = 0 ; idx < wid_ ; idx += 1) { if (val & 1) vval.set_bit(idx, BIT4_1); else vval.set_bit(idx, BIT4_0); val >>= 1; } vvp_send_vec4(ptr.ptr()->out, vval); } vvp_arith_mod::vvp_arith_mod(unsigned wid, bool sf) : vvp_arith_(wid), signed_flag_(sf) { } vvp_arith_mod::~vvp_arith_mod() { } void vvp_arith_mod::wide_(vvp_net_ptr_t ptr) { vvp_vector2_t a2 (op_a_); if (a2.is_NaN()) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } vvp_vector2_t b2 (op_b_); if (b2.is_NaN()) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } vvp_vector2_t res = a2 % b2; vvp_send_vec4(ptr.ptr()->out, vector2_to_vector4(res, res.size())); } void vvp_arith_mod::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); if (wid_ > 8 * sizeof(unsigned long)) { wide_(ptr); return ; } unsigned long a; if (! vector4_to_value(op_a_, a)) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } unsigned long b; if (! vector4_to_value(op_b_, b)) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } bool negate = false; /* If we are doing signed divide, then take the sign out of the operands for now, and remember to put the sign back later. */ if (signed_flag_) { if (op_a_.value(op_a_.size()-1)) { a = (-a) & ~ (-1UL << op_a_.size()); negate = !negate; } if (op_b_.value(op_b_.size()-1)) { b = (-b) & ~ (-1UL << op_b_.size()); negate = ! negate; } } if (b == 0) { vvp_vector4_t xval (wid_); for (unsigned idx = 0 ; idx < wid_ ; idx += 1) xval.set_bit(idx, BIT4_X); vvp_send_vec4(ptr.ptr()->out, xval); return; } unsigned long val = a % b; if (negate) val = -val; assert(wid_ <= 8*sizeof(val)); vvp_vector4_t vval (wid_); for (unsigned idx = 0 ; idx < wid_ ; idx += 1) { if (val & 1) vval.set_bit(idx, BIT4_1); else vval.set_bit(idx, BIT4_0); val >>= 1; } vvp_send_vec4(ptr.ptr()->out, vval); } // Multiplication vvp_arith_mult::vvp_arith_mult(unsigned wid) : vvp_arith_(wid) { } vvp_arith_mult::~vvp_arith_mult() { } void vvp_arith_mult::wide_(vvp_net_ptr_t ptr) { vvp_vector2_t a2 (op_a_); vvp_vector2_t b2 (op_b_); if (a2.is_NaN() || b2.is_NaN()) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } vvp_vector2_t result = a2 * b2; vvp_vector4_t res4 = vector2_to_vector4(result, wid_); vvp_send_vec4(ptr.ptr()->out, res4); } void vvp_arith_mult::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); if (wid_ > 8 * sizeof(unsigned long)) { wide_(ptr); return ; } unsigned long a; if (! vector4_to_value(op_a_, a)) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } unsigned long b; if (! vector4_to_value(op_b_, b)) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } unsigned long val = a * b; assert(wid_ <= 8*sizeof(val)); vvp_vector4_t vval (wid_); for (unsigned idx = 0 ; idx < wid_ ; idx += 1) { if (val & 1) vval.set_bit(idx, BIT4_1); else vval.set_bit(idx, BIT4_0); val >>= 1; } vvp_send_vec4(ptr.ptr()->out, vval); } #if 0 void vvp_arith_mult::set(vvp_ipoint_t i, bool push, unsigned val, unsigned) { put(i, val); vvp_ipoint_t base = ipoint_make(i,0); if(wid_ > 8*sizeof(unsigned long)) { wide(base, push); return; } unsigned long a = 0, b = 0; for (unsigned idx = 0 ; idx < wid_ ; idx += 1) { vvp_ipoint_t ptr = ipoint_index(base,idx); functor_t obj = functor_index(ptr); unsigned val = obj->ival; if (val & 0xaa) { output_x_(base, push); return; } if (val & 0x01) a += 1UL << idx; if (val & 0x04) b += 1UL << idx; } output_val_(base, push, a*b); } #endif #if 0 void vvp_arith_mult::wide(vvp_ipoint_t base, bool push) { unsigned char *a, *b, *sum; a = new unsigned char[wid_]; b = new unsigned char[wid_]; sum = new unsigned char[wid_]; unsigned mxa = 0; unsigned mxb = 0; for (unsigned idx = 0 ; idx < wid_ ; idx += 1) { vvp_ipoint_t ptr = ipoint_index(base, idx); functor_t obj = functor_index(ptr); unsigned ival = obj->ival; if (ival & 0xaa) { output_x_(base, push); delete[]sum; delete[]b; delete[]a; return; } if((a[idx] = ((ival & 0x01) != 0))) mxa=idx+1; if((b[idx] = ((ival & 0x04) != 0))) mxb=idx; sum[idx] = 0; } /* do the a*b multiply using the long method we learned in grade school. We know at this point that there are no X or Z values in the a or b vectors. */ for(unsigned i=0 ; i<=mxb ; i += 1) { if(b[i]) { unsigned char carry=0; unsigned char temp; for(unsigned j=0 ; j<=mxa ; j += 1) { if((i+j) >= wid_) break; temp=sum[i+j] + a[j] + carry; sum[i+j]=(temp&1); carry=(temp>>1); } } } for (unsigned idx = 0 ; idx < wid_ ; idx += 1) { vvp_ipoint_t ptr = ipoint_index(base,idx); functor_t obj = functor_index(ptr); unsigned val = sum[idx]; obj->put_oval(val, push); } delete[]sum; delete[]b; delete[]a; } #endif // Addition vvp_arith_sum::vvp_arith_sum(unsigned wid) : vvp_arith_(wid) { } vvp_arith_sum::~vvp_arith_sum() { } void vvp_arith_sum::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); vvp_net_t*net = ptr.ptr(); vvp_vector4_t value (wid_); /* Pad input vectors with this value to widen to the desired output width. */ const vvp_bit4_t pad = BIT4_0; vvp_bit4_t carry = BIT4_0; for (unsigned idx = 0 ; idx < wid_ ; idx += 1) { vvp_bit4_t a = (idx >= op_a_.size())? pad : op_a_.value(idx); vvp_bit4_t b = (idx >= op_b_.size())? pad : op_b_.value(idx); vvp_bit4_t cur = add_with_carry(a, b, carry); if (cur == BIT4_X) { vvp_send_vec4(net->out, x_val_); return; } value.set_bit(idx, cur); } vvp_send_vec4(net->out, value); } vvp_arith_sub::vvp_arith_sub(unsigned wid) : vvp_arith_(wid) { } vvp_arith_sub::~vvp_arith_sub() { } /* * Subtraction works by adding the 2s complement of the B input from * the A input. The 2s complement is the 1s complement plus one, so we * further reduce the operation to adding in the inverted value and * adding a correction. */ void vvp_arith_sub::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); vvp_net_t*net = ptr.ptr(); vvp_vector4_t value (wid_); /* Pad input vectors with this value to widen to the desired output width. */ const vvp_bit4_t pad = BIT4_1; vvp_bit4_t carry = BIT4_1; for (unsigned idx = 0 ; idx < wid_ ; idx += 1) { vvp_bit4_t a = (idx >= op_a_.size())? pad : op_a_.value(idx); vvp_bit4_t b = (idx >= op_b_.size())? pad : ~op_b_.value(idx); vvp_bit4_t cur = add_with_carry(a, b, carry); if (cur == BIT4_X) { vvp_send_vec4(net->out, x_val_); return; } value.set_bit(idx, cur); } vvp_send_vec4(net->out, value); } vvp_cmp_eeq::vvp_cmp_eeq(unsigned wid) : vvp_arith_(wid) { } void vvp_cmp_eeq::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); vvp_vector4_t eeq (1); eeq.set_bit(0, BIT4_1); assert(op_a_.size() == op_b_.size()); for (unsigned idx = 0 ; idx < op_a_.size() ; idx += 1) if (op_a_.value(idx) != op_b_.value(idx)) { eeq.set_bit(0, BIT4_0); break; } vvp_net_t*net = ptr.ptr(); vvp_send_vec4(net->out, eeq); } vvp_cmp_nee::vvp_cmp_nee(unsigned wid) : vvp_arith_(wid) { } void vvp_cmp_nee::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); vvp_vector4_t eeq (1); eeq.set_bit(0, BIT4_0); assert(op_a_.size() == op_b_.size()); for (unsigned idx = 0 ; idx < op_a_.size() ; idx += 1) if (op_a_.value(idx) != op_b_.value(idx)) { eeq.set_bit(0, BIT4_1); break; } vvp_net_t*net = ptr.ptr(); vvp_send_vec4(net->out, eeq); } vvp_cmp_eq::vvp_cmp_eq(unsigned wid) : vvp_arith_(wid) { } /* * Compare Vector a and Vector b. If in any bit position the a and b * bits are known and different, then the result is 0. Otherwise, if * there are X/Z bits anywhere in A or B, the result is X. Finally, * the result is 1. */ void vvp_cmp_eq::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); if (op_a_.size() != op_b_.size()) { cerr << "COMPARISON size mismatch. " << "a=" << op_a_ << ", b=" << op_b_ << endl; assert(0); } vvp_vector4_t res (1); res.set_bit(0, BIT4_1); for (unsigned idx = 0 ; idx < op_a_.size() ; idx += 1) { vvp_bit4_t a = op_a_.value(idx); vvp_bit4_t b = op_b_.value(idx); if (a == BIT4_X) res.set_bit(0, BIT4_X); else if (a == BIT4_Z) res.set_bit(0, BIT4_X); else if (b == BIT4_X) res.set_bit(0, BIT4_X); else if (b == BIT4_Z) res.set_bit(0, BIT4_X); else if (a != b) { res.set_bit(0, BIT4_0); break; } } vvp_net_t*net = ptr.ptr(); vvp_send_vec4(net->out, res); } vvp_cmp_ne::vvp_cmp_ne(unsigned wid) : vvp_arith_(wid) { } /* * Compare Vector a and Vector b. If in any bit position the a and b * bits are known and different, then the result is 1. Otherwise, if * there are X/Z bits anywhere in A or B, the result is X. Finally, * the result is 0. */ void vvp_cmp_ne::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); assert(op_a_.size() == op_b_.size()); vvp_vector4_t res (1); res.set_bit(0, BIT4_0); for (unsigned idx = 0 ; idx < op_a_.size() ; idx += 1) { vvp_bit4_t a = op_a_.value(idx); vvp_bit4_t b = op_b_.value(idx); if (a == BIT4_X) res.set_bit(0, BIT4_X); else if (a == BIT4_Z) res.set_bit(0, BIT4_X); else if (b == BIT4_X) res.set_bit(0, BIT4_X); else if (b == BIT4_Z) res.set_bit(0, BIT4_X); else if (a != b) { res.set_bit(0, BIT4_1); break; } } vvp_net_t*net = ptr.ptr(); vvp_send_vec4(net->out, res); } vvp_cmp_gtge_base_::vvp_cmp_gtge_base_(unsigned wid, bool flag) : vvp_arith_(wid), signed_flag_(flag) { } void vvp_cmp_gtge_base_::recv_vec4_base_(vvp_net_ptr_t ptr, vvp_vector4_t bit, vvp_bit4_t out_if_equal) { dispatch_operand_(ptr, bit); vvp_bit4_t out = signed_flag_ ? compare_gtge_signed(op_a_, op_b_, out_if_equal) : compare_gtge(op_a_, op_b_, out_if_equal); vvp_vector4_t val (1); val.set_bit(0, out); vvp_send_vec4(ptr.ptr()->out, val); return; } vvp_cmp_ge::vvp_cmp_ge(unsigned wid, bool flag) : vvp_cmp_gtge_base_(wid, flag) { } void vvp_cmp_ge::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { recv_vec4_base_(ptr, bit, BIT4_1); } vvp_cmp_gt::vvp_cmp_gt(unsigned wid, bool flag) : vvp_cmp_gtge_base_(wid, flag) { } void vvp_cmp_gt::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { recv_vec4_base_(ptr, bit, BIT4_0); } vvp_shiftl::vvp_shiftl(unsigned wid) : vvp_arith_(wid) { } vvp_shiftl::~vvp_shiftl() { } void vvp_shiftl::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); vvp_vector4_t out (op_a_.size()); unsigned long shift; if (! vector4_to_value(op_b_, shift)) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } if (shift > out.size()) shift = out.size(); for (unsigned idx = 0 ; idx < shift ; idx += 1) out.set_bit(idx, BIT4_0); for (unsigned idx = shift ; idx < out.size() ; idx += 1) out.set_bit(idx, op_a_.value(idx-shift)); vvp_send_vec4(ptr.ptr()->out, out); } vvp_shiftr::vvp_shiftr(unsigned wid, bool signed_flag) : vvp_arith_(wid), signed_flag_(signed_flag) { } vvp_shiftr::~vvp_shiftr() { } void vvp_shiftr::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit) { dispatch_operand_(ptr, bit); vvp_vector4_t out (op_a_.size()); unsigned long shift; if (! vector4_to_value(op_b_, shift)) { vvp_send_vec4(ptr.ptr()->out, x_val_); return; } if (shift > out.size()) shift = out.size(); for (unsigned idx = shift ; idx < out.size() ; idx += 1) out.set_bit(idx-shift, op_a_.value(idx)); vvp_bit4_t pad = BIT4_0; if (signed_flag_ && op_a_.size() > 0) pad = op_a_.value(op_a_.size()-1); for (unsigned idx = 0 ; idx < shift ; idx += 1) out.set_bit(idx+out.size()-shift, pad); vvp_send_vec4(ptr.ptr()->out, out); } vvp_arith_real_::vvp_arith_real_() { } void vvp_arith_real_::dispatch_operand_(vvp_net_ptr_t ptr, double bit) { switch (ptr.port()) { case 0: op_a_ = bit; break; case 1: op_b_ = bit; break; default: fprintf(stderr, "Unsupported port type %d.\n", ptr.port()); assert(0); } } /* Real multiplication. */ vvp_arith_mult_real::vvp_arith_mult_real() { } vvp_arith_mult_real::~vvp_arith_mult_real() { } void vvp_arith_mult_real::recv_real(vvp_net_ptr_t ptr, double bit) { dispatch_operand_(ptr, bit); double val = op_a_ * op_b_; vvp_send_real(ptr.ptr()->out, val); } /* Real division. */ vvp_arith_div_real::vvp_arith_div_real() { } vvp_arith_div_real::~vvp_arith_div_real() { } void vvp_arith_div_real::recv_real(vvp_net_ptr_t ptr, double bit) { dispatch_operand_(ptr, bit); double val = op_a_ / op_b_; vvp_send_real(ptr.ptr()->out, val); } /* Real summation. */ vvp_arith_sum_real::vvp_arith_sum_real() { } vvp_arith_sum_real::~vvp_arith_sum_real() { } void vvp_arith_sum_real::recv_real(vvp_net_ptr_t ptr, double bit) { dispatch_operand_(ptr, bit); double val = op_a_ + op_b_; vvp_send_real(ptr.ptr()->out, val); } /* Real subtraction. */ vvp_arith_sub_real::vvp_arith_sub_real() { } vvp_arith_sub_real::~vvp_arith_sub_real() { } void vvp_arith_sub_real::recv_real(vvp_net_ptr_t ptr, double bit) { dispatch_operand_(ptr, bit); double val = op_a_ - op_b_; vvp_send_real(ptr.ptr()->out, val); }