#ifndef __vvm_vvm_func_H #define __vvm_vvm_func_H /* * Copyright (c) 1998 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #if !defined(WINNT) #ident "$Id: vvm_func.h,v 1.18 2000/01/13 06:05:46 steve Exp $" #endif # include "vvm.h" /* * Implement the unary NOT operator in the verilog way. This takes a * vector of a certain width and returns a result of the same width. */ template vvm_bitset_t vvm_unop_not(const vvm_bitset_t&p) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) switch (p[idx]) { case V0: result[idx] = V1; break; case V1: result[idx] = V0; break; default: result[idx] = Vx; } return result; } /* * The unary AND is the reduction AND. It returns a single bit. */ template vvm_bitset_t<1> vvm_unop_and(const vvm_bitset_t&r) { vvm_bitset_t<1> res; res[0] = r[0]; for (unsigned idx = 1 ; idx < WIDTH ; idx += 1) { res[0] = res[0] & r[idx]; } return res; } /* * The unary OR is the reduction OR. It returns a single bit. */ template vvm_bitset_t<1> vvm_unop_or(const vvm_bitset_t&r) { vvm_bitset_t<1> res; res[0] = V1; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) { if (r[idx] == V1) return res; } res[0] = V0; return res; } template vvm_bitset_t<1> vvm_unop_nor(const vvm_bitset_t&r) { vvm_bitset_t<1>res = vvm_unop_or(r); return vvm_unop_not(res); } template vvm_bitset_t<1> vvm_unop_lnot(const vvm_bitset_t&r) { vvm_bitset_t<1> res = vvm_unop_or(r); return vvm_unop_not(res); } /* * The unary XOR is the reduction XOR. It returns a single bit. */ template vvm_bitset_t<1> vvm_unop_xor(const vvm_bitset_t&r) { vvm_bitset_t<1> res; res[0] = V0; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) { if (r[idx] == V1) res[0] = not(res[0]); } return res; } template vvm_bitset_t<1> vvm_unop_xnor(const vvm_bitset_t&r) { return not(vvm_unop_xor(r)); } // // simple-minded unary minus operator (two's complement) // template vvm_bitset_t vvm_unop_uminus(const vvm_bitset_t&l) { vvm_bitset_t res; res = vvm_unop_not(l); vpip_bit_t carry = V1; for (int i = 0; i < WIDTH; i++) res[i] = add_with_carry(res[i], V0, carry); return res; } /* * Implement the binary AND operator. This is a bitwise and with all * the parameters and the result having the same width. */ template vvm_bitset_t vvm_binop_and(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = l[idx] & r[idx]; return result; } /* * Implement the binary OR operator. This is a bitwise and with all * the parameters and the result having the same width. */ template vvm_bitset_t vvm_binop_or(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = l[idx] | r[idx]; return result; } template vvm_bitset_t vvm_binop_nor(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = not(l[idx] | r[idx]); return result; } /* * Implement the binary + operator in the verilog way. This takes * vectors of identical width and returns another vector of same width * that contains the arithmetic sum. Z values are converted to X. */ template vvm_bitset_t vvm_binop_plus(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; vpip_bit_t carry = V0; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = add_with_carry(l[idx], r[idx], carry); return result; } /* * The binary - operator is turned into + by doing 2's complement * arithmetic. l-r == l+~r+1. The "+1" is accomplished by adding in a * carry of 1 to the 0 bit position. */ template vvm_bitset_t vvm_binop_minus(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t res; res = vvm_unop_not(r); vpip_bit_t carry = V1; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) res[idx] = add_with_carry(l[idx], res[idx], carry); return res; } /* * The multiply binary operator takes an A and B parameter and returns * the result in the vpip_bit_t array. The template form arranges for * the right parameters to be passed to the extern form. */ extern void vvm_binop_mult(vpip_bit_t*res, unsigned nres, const vpip_bit_t*a, unsigned na, const vpip_bit_t*b, unsigned nb); template void vvm_binop_mult(vvm_bitset_t&r, const vvm_bitset_t&a, const vvm_bitset_t&b) { vvm_binop_mult(r.bits, WR, a.bits, WA, b.bits, WB); } /* * The binary ^ (xor) operator is a bitwise XOR of equal width inputs * to generate the corresponsing output. */ template vvm_bitset_t vvm_binop_xor(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = l[idx] ^ r[idx]; return result; } template vvm_bitset_t vvm_binop_xnor(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = not(l[idx] ^ r[idx]); return result; } /* * the binary 'l' operator is a logic left-shift by the number of positions * indicated by argument r. r is an unsigned integer, which is represented * internally as a 32-bit bitvector. */ template vvm_bitset_t vvm_binop_shiftl(const vvm_bitset_t&l, const vvm_bits_t&r) { vvm_bitset_t result; vvm_u32 s = r.as_unsigned(); for (unsigned idx = 0; idx < WIDTH; idx++) result[idx] = (idx < s) ? V0 : l[idx-s]; return result; } /* * The binary 'r' operator is a logic right-shift by the number of positions * indicated by argument r. r is an unsigned integer, which is represented * internally by a 32-bit bitvector. */ template vvm_bitset_t vvm_binop_shiftr(const vvm_bitset_t&l, const vvm_bits_t&r) { vvm_bitset_t result; vvm_u32 s = r.as_unsigned(); for (unsigned idx = 0; idx < WIDTH; idx++) result[idx] = (idx < (WIDTH-s)) ? l[idx+s] : V0; return result; } /* * Tests for equality are a bit tricky, as they allow for the left and * right subexpressions to have different size. The shorter bitset is * extended with zeros. Also, if there is Vx or Vz anywhere in either * vectors, the result is Vx. */ template vvm_bitset_t<1> vvm_binop_eq(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result; result[0] = V1; if (LW <= RW) { for (unsigned idx = 0 ; idx < LW ; idx += 1) { if ((l[idx] == Vx) || (l[idx] == Vz)) { result[0] = Vx; return result; } if ((r[idx] == Vx) || (r[idx] == Vz)) { result[0] = Vx; return result; } if (l[idx] != r[idx]) { result[0] = V0; return result; } } for (unsigned idx = LW ; idx < RW ; idx += 1) switch (r[idx]) { case V0: break; case V1: result[0] = V0; return result; case Vx: case Vz: result[0] = Vx; return result; } return result; } else { for (unsigned idx = 0 ; idx < RW ; idx += 1) { if ((l[idx] == Vx) || (l[idx] == Vz)) { result[0] = Vx; return result; } if ((r[idx] == Vx) || (r[idx] == Vz)) { result[0] = Vx; return result; } if (l[idx] != r[idx]) { result[0] = V0; return result; } } for (unsigned idx = RW ; idx < LW ; idx += 1) switch (l[idx]) { case V0: break; case V1: result[0] = V0; return result; case Vx: case Vz: result[0] = Vx; return result; } return result; } } /* * This function return true if all the bits are the same. Even x and * z bites are compared for equality. */ template vvm_bitset_t<1> vvm_binop_eeq(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result; result[0] = V1; if (LW <= RW) { for (unsigned idx = 0 ; idx < LW ; idx += 1) { if (l[idx] != r[idx]) { result[0] = V0; return result; } } for (unsigned idx = LW ; idx < RW ; idx += 1) if (r[idx] != V0) { result[0] = V0; return result; } } else { for (unsigned idx = 0 ; idx < RW ; idx += 1) { if (l[idx] != r[idx]) { result[0] = V0; return result; } } for (unsigned idx = RW ; idx < LW ; idx += 1) if (l[idx] != V0) { result[0] = V0; return result; } } return result; } /* * This function return true if all the bits are the same. The x and z * bits are don't care, s don't make the result false. */ template vvm_bitset_t<1> vvm_binop_xeq(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result; result[0] = V1; if (LW <= RW) { for (unsigned idx = 0 ; idx < LW ; idx += 1) { if ((l[idx] == Vz) || (r[idx] == Vz)) continue; if ((l[idx] == Vx) || (r[idx] == Vx)) continue; if (l[idx] != r[idx]) { result[0] = V0; return result; } } for (unsigned idx = LW ; idx < RW ; idx += 1) { if ((r[idx] == Vx) || (r[idx] == Vz)) continue; if (r[idx] != V0) { result[0] = V0; return result; } } } else { for (unsigned idx = 0 ; idx < RW ; idx += 1) { if ((l[idx] == Vz) || (r[idx] == Vz)) continue; if ((l[idx] == Vx) || (r[idx] == Vx)) continue; if (l[idx] != r[idx]) { result[0] = V0; return result; } } for (unsigned idx = RW ; idx < LW ; idx += 1) { if ((l[idx] == Vx) || (l[idx] == Vz)) continue; if (l[idx] != V0) { result[0] = V0; return result; } } } return result; } /* * This function return true if all the bits are the same. The z * bits are don't care, so don't make the result false. */ template vvm_bitset_t<1> vvm_binop_zeq(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result; result[0] = V1; if (LW <= RW) { for (unsigned idx = 0 ; idx < LW ; idx += 1) { if ((l[idx] == Vz) || (r[idx] == Vz)) continue; if (l[idx] != r[idx]) { result[0] = V0; return result; } } for (unsigned idx = LW ; idx < RW ; idx += 1) { if (r[idx] == Vz) continue; if (r[idx] != V0) { result[0] = V0; return result; } } } else { for (unsigned idx = 0 ; idx < RW ; idx += 1) { if ((l[idx] == Vz) || (r[idx] == Vz)) continue; if (l[idx] != r[idx]) { result[0] = V0; return result; } } for (unsigned idx = RW ; idx < LW ; idx += 1) { if (l[idx] == Vz) continue; if (l[idx] != V0) { result[0] = V0; return result; } } } return result; } template vvm_bitset_t<1> vvm_binop_ne(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result = vvm_binop_eq(l,r); result[0] = not(result[0]); return result; } template vvm_bitset_t<1> vvm_binop_nee(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result = vvm_binop_eeq(l,r); result[0] = not(result[0]); return result; } template vvm_bitset_t<1> vvm_binop_lt(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result; result[0] = V0; const unsigned common = (LW < RW)? LW : RW; for (unsigned idx = 0 ; idx < common ; idx += 1) result[0] = less_with_cascade(l[idx], r[idx], result[0]); if (LW > RW) { for (unsigned idx = RW ; idx < LW ; idx += 1) result[0] = less_with_cascade(l[idx], V0, result[0]); } else { for (unsigned idx = LW ; idx < RW ; idx += 1) result[0] = less_with_cascade(V0, r[idx], result[0]); } return result; } /* * The <= operator takes operands of natural width and returns a * single bit. The result is V1 if l <= r, otherwise V0; */ template vvm_bitset_t<1> vvm_binop_le(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result; result[0] = V1; const unsigned common = (LW < RW)? LW : RW; for (unsigned idx = 0 ; idx < common ; idx += 1) result[0] = less_with_cascade(l[idx], r[idx], result[0]); if (LW > RW) { for (unsigned idx = RW ; idx < LW ; idx += 1) result[0] = less_with_cascade(l[idx], V0, result[0]); } else { for (unsigned idx = LW ; idx < RW ; idx += 1) result[0] = less_with_cascade(V0, r[idx], result[0]); } return result; } template vvm_bitset_t<1> vvm_binop_gt(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result; result[0] = V0; const unsigned common = (LW < RW)? LW : RW; for (unsigned idx = 0 ; idx < common ; idx += 1) result[0] = greater_with_cascade(l[idx], r[idx], result[0]); if (LW > RW) { for (unsigned idx = RW ; idx < LW ; idx += 1) result[0] = greater_with_cascade(l[idx], V0, result[0]); } else { for (unsigned idx = LW ; idx < RW ; idx += 1) result[0] = greater_with_cascade(V0, r[idx], result[0]); } return result; } template vvm_bitset_t<1> vvm_binop_ge(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> result; result[0] = V1; const unsigned common = (LW < RW)? LW : RW; for (unsigned idx = 0 ; idx < common ; idx += 1) result[0] = greater_with_cascade(l[idx], r[idx], result[0]); if (LW > RW) { for (unsigned idx = RW ; idx < LW ; idx += 1) result[0] = greater_with_cascade(l[idx], V0, result[0]); } else { for (unsigned idx = LW ; idx < RW ; idx += 1) result[0] = greater_with_cascade(V0, r[idx], result[0]); } return result; } template vvm_bitset_t<1> vvm_binop_land(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> res1 = vvm_unop_or(l); vvm_bitset_t<1> res2 = vvm_unop_or(r); res1[0] = res1[0] & res2[0]; return res1; } template vvm_bitset_t<1> vvm_binop_lor(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t<1> res1 = vvm_unop_or(l); vvm_bitset_t<1> res2 = vvm_unop_or(r); res1[0] = res1[0] | res2[0]; return res1; } template vvm_bitset_t vvm_ternary(vpip_bit_t c, const vvm_bitset_t&t, const vvm_bitset_t&f) { switch (c) { case V0: return f; case V1: return t; default: return f; } } /* * $Log: vvm_func.h,v $ * Revision 1.18 2000/01/13 06:05:46 steve * Add the XNOR operator. * * Revision 1.17 2000/01/13 03:35:35 steve * Multiplication all the way to simulation. * * Revision 1.16 1999/12/02 03:36:01 steve * shiftl and shiftr take unsized second parameter. * * Revision 1.15 1999/10/28 00:47:25 steve * Rewrite vvm VPI support to make objects more * persistent, rewrite the simulation scheduler * in C (to interface with VPI) and add VPI support * for callbacks. * * Revision 1.14 1999/10/05 06:19:47 steve * Add support for reduction NOR. * * Revision 1.13 1999/10/01 15:26:29 steve * Add some vvm operators from Eric Aardoom. * * Revision 1.12 1999/09/29 22:57:26 steve * LT supports different width objects. * * Revision 1.11 1999/09/29 18:36:04 steve * Full case support * * Revision 1.10 1999/09/28 01:13:16 steve * Support in vvm > and >= behavioral operators. * * Revision 1.9 1999/09/23 04:39:52 steve * The <= operator takes different width operands. * * Revision 1.8 1999/09/11 04:43:17 steve * Support ternary and <= operators in vvm. * * Revision 1.7 1999/06/24 04:20:47 steve * Add !== and === operators. * * Revision 1.6 1999/06/07 03:40:22 steve * Implement the < binary operator. * * Revision 1.5 1999/06/07 02:23:31 steve * Support non-blocking assignment down to vvm. * * Revision 1.4 1999/05/01 20:43:55 steve * Handle wide events, such as @(a) where a has * many bits in it. * * Add to vvm the binary ^ and unary & operators. * * Dump events a bit more completely. * * Revision 1.3 1999/03/16 04:43:46 steve * Add some logical operators. * * Revision 1.2 1999/03/15 02:42:44 steve * Add the AND and OR bitwise operators. * * Revision 1.1 1998/11/09 23:44:11 steve * Add vvm library. * */ #endif