/* * Copyright (c) 2000 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version.will need a Picture Elements Binary Software * License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifdef HAVE_CVS_IDENT #ident "$Id: t-dll-proc.cc,v 1.54 2002/08/19 00:06:12 steve Exp $" #endif # include "config.h" # include # include "target.h" # include "ivl_target.h" # include "compiler.h" # include "t-dll.h" #ifdef HAVE_MALLOC_H # include #endif # include bool dll_target::process(const NetProcTop*net) { ivl_process_t obj = (struct ivl_process_s*) calloc(1, sizeof(struct ivl_process_s)); switch (net->type()) { case NetProcTop::KINITIAL: obj->type_ = IVL_PR_INITIAL; break; case NetProcTop::KALWAYS: obj->type_ = IVL_PR_ALWAYS; break; default: assert(0); } /* Save the scope of the process. */ obj->scope_ = lookup_scope_(net->scope()); obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); /* This little bit causes the process to be completely generated so that it can be passed to the DLL. The stmt_cur_ member us used to hold a pointer to the current statement in progress, and the emit_proc() method fills in that object. We know a few things about the current statement: we are not in the middle of one, and when we are done, we have our statement back. The asserts check these conditions. */ assert(stmt_cur_ == 0); stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_); assert(stmt_cur_); net->statement()->emit_proc(this); assert(stmt_cur_); obj->stmt_ = stmt_cur_; stmt_cur_ = 0; /* Save the process in the design. */ obj->next_ = des_.threads_; des_.threads_ = obj; return true; } void dll_target::task_def(const NetScope*net) { ivl_scope_t scope = lookup_scope_(net); const NetTaskDef*def = net->task_def(); assert(stmt_cur_ == 0); stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_); assert(stmt_cur_); def->proc()->emit_proc(this); assert(stmt_cur_); scope->def = stmt_cur_; stmt_cur_ = 0; } void dll_target::func_def(const NetScope*net) { ivl_scope_t scope = lookup_scope_(net); const NetFuncDef*def = net->func_def(); assert(stmt_cur_ == 0); stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_); assert(stmt_cur_); def->proc()->emit_proc(this); assert(stmt_cur_); scope->def = stmt_cur_; stmt_cur_ = 0; scope->ports = def->port_count(); if (scope->ports > 0) { scope->port = new ivl_signal_t[scope->ports]; for (unsigned idx = 0 ; idx < scope->ports ; idx += 1) scope->port[idx] = find_signal(des_, def->port(idx)); } } /* */ void dll_target::proc_assign(const NetAssign*net) { unsigned cnt; assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_ASSIGN; stmt_cur_->u_.assign_.lvals_ = cnt = net->l_val_count(); stmt_cur_->u_.assign_.lval_ = new struct ivl_lval_s[cnt]; stmt_cur_->u_.assign_.delay = 0; /* The assignment may have multiple concatenated l-values. Scan them and accumulate an ivl_lval_t list. */ for (unsigned idx = 0 ; idx < cnt ; idx += 1) { struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_ + idx; const NetAssign_*asn = net->l_val(idx); cur->width_ = asn->lwidth(); cur->loff_ = asn->get_loff(); if (asn->sig()) { cur->type_ = IVL_LVAL_REG; cur->n.sig = find_signal(des_, asn->sig()); cur->idx = 0; if (asn->bmux()) { assert(expr_ == 0); asn->bmux()->expr_scan(this); if (cur->n.sig->lsb_index != 0) sub_off_from_expr_(asn->sig()->lsb()); if (cur->n.sig->lsb_dist != 1) mul_expr_by_const_(cur->n.sig->lsb_dist); cur->type_ = IVL_LVAL_MUX; cur->idx = expr_; expr_ = 0; } } else { assert(asn->mem()); cur->type_ = IVL_LVAL_MEM; cur->n.mem = find_memory(des_, asn->mem()); assert(cur->n.mem); cur->width_ = ivl_memory_width(cur->n.mem); assert(expr_ == 0); asn->bmux()->expr_scan(this); cur->idx = expr_; expr_ = 0; } } assert(expr_ == 0); net->rval()->expr_scan(this); stmt_cur_->u_.assign_.rval_ = expr_; expr_ = 0; const NetExpr*del = net->get_delay(); if (del) { del->expr_scan(this); stmt_cur_->u_.assign_.delay = expr_; expr_ = 0; } } void dll_target::proc_assign_nb(const NetAssignNB*net) { unsigned cnt = net->l_val_count(); const NetExpr* delay_exp = net->get_delay(); assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_ASSIGN_NB; stmt_cur_->u_.assign_.lvals_ = cnt; stmt_cur_->u_.assign_.lval_ = new struct ivl_lval_s[cnt]; stmt_cur_->u_.assign_.delay = 0; for (unsigned idx = 0 ; idx < cnt ; idx += 1) { struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_ + idx; const NetAssign_*asn = net->l_val(idx); cur->width_ = asn->lwidth(); cur->loff_ = asn->get_loff(); if (asn->sig()) { cur->type_ = IVL_LVAL_REG; cur->n.sig = find_signal(des_, asn->sig()); cur->idx = 0; if (asn->bmux()) { assert(expr_ == 0); asn->bmux()->expr_scan(this); if (cur->n.sig->lsb_index != 0) sub_off_from_expr_(asn->sig()->lsb()); if (cur->n.sig->lsb_dist != 1) mul_expr_by_const_(cur->n.sig->lsb_dist); cur->type_ = IVL_LVAL_MUX; cur->idx = expr_; expr_ = 0; } } else { assert(asn->mem()); cur->type_ = IVL_LVAL_MEM; cur->n.mem = find_memory(des_, asn->mem()); assert(cur->n.mem); cur->width_ = ivl_memory_width(cur->n.mem); assert(expr_ == 0); asn->bmux()->expr_scan(this); cur->idx = expr_; expr_ = 0; } } assert(expr_ == 0); net->rval()->expr_scan(this); stmt_cur_->u_.assign_.rval_ = expr_; expr_ = 0; if (const NetEConst*delay_num = dynamic_cast(delay_exp)) { verinum val = delay_num->value(); ivl_expr_t de = new struct ivl_expr_s; de->type_ = IVL_EX_ULONG; de->width_ = 8 * sizeof(unsigned long); de->signed_ = 0; de->u_.ulong_.value = val.as_ulong(); stmt_cur_->u_.assign_.delay = de; } else if (delay_exp != 0) { delay_exp->expr_scan(this); stmt_cur_->u_.assign_.delay = expr_; expr_ = 0; } } bool dll_target::proc_block(const NetBlock*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); /* First, count the statements in the block. */ unsigned count = 0; for (const NetProc*cur = net->proc_first() ; cur ; cur = net->proc_next(cur)) count += 1; /* If the block has no statements, then turn it into a no-op */ if (count == 0) { stmt_cur_->type_ = IVL_ST_NOOP; return true; } /* If there is exactly one statement, there is no need for the block wrapper, generate the contained statement instead. */ if ((count == 1) && (net->subscope() == 0)) { return net->proc_first()->emit_proc(this); } /* Handle the general case. The block has some statements in it, so fill in the block fields of the existing statement, and generate the contents for the statement array. */ stmt_cur_->type_ = (net->type() == NetBlock::SEQU) ? IVL_ST_BLOCK : IVL_ST_FORK; stmt_cur_->u_.block_.nstmt_ = count; stmt_cur_->u_.block_.stmt_ = (struct ivl_statement_s*) calloc(count, sizeof(struct ivl_statement_s)); if (net->subscope()) stmt_cur_->u_.block_.scope = lookup_scope_(net->subscope()); else stmt_cur_->u_.block_.scope = 0; struct ivl_statement_s*save_cur_ = stmt_cur_; unsigned idx = 0; bool flag = true; for (const NetProc*cur = net->proc_first() ; cur ; cur = net->proc_next(cur), idx += 1) { assert(idx < count); stmt_cur_ = save_cur_->u_.block_.stmt_ + idx; bool rc = cur->emit_proc(this); flag = flag && rc; } assert(idx == count); stmt_cur_ = save_cur_; return flag; } /* * A case statement is in turn an array of statements with gate * expressions. This builds arrays of the right size and builds the * ivl_expr_t and ivl_statement_s arrays for the substatements. */ void dll_target::proc_case(const NetCase*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); switch (net->type()) { case NetCase::EQ: stmt_cur_->type_ = IVL_ST_CASE; break; case NetCase::EQX: stmt_cur_->type_ = IVL_ST_CASEX; break; case NetCase::EQZ: stmt_cur_->type_ = IVL_ST_CASEZ; break; } assert(stmt_cur_->type_ != IVL_ST_NONE); assert(expr_ == 0); assert(net->expr()); net->expr()->expr_scan(this); stmt_cur_->u_.case_.cond = expr_; expr_ = 0; unsigned ncase = net->nitems(); stmt_cur_->u_.case_.ncase = ncase; stmt_cur_->u_.case_.case_ex = new ivl_expr_t[ncase]; stmt_cur_->u_.case_.case_st = new struct ivl_statement_s[ncase]; ivl_statement_t save_cur = stmt_cur_; for (unsigned idx = 0 ; idx < ncase ; idx += 1) { const NetExpr*ex = net->expr(idx); if (ex) { ex->expr_scan(this); save_cur->u_.case_.case_ex[idx] = expr_; expr_ = 0; } else { save_cur->u_.case_.case_ex[idx] = 0; } stmt_cur_ = save_cur->u_.case_.case_st + idx; stmt_cur_->type_ = IVL_ST_NONE; if (net->stat(idx) == 0) { stmt_cur_->type_ = IVL_ST_NOOP; } else { net->stat(idx)->emit_proc(this); } } stmt_cur_ = save_cur; } bool dll_target::proc_cassign(const NetCAssign*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_CASSIGN; stmt_cur_->u_.cassign_.lvals = 1; stmt_cur_->u_.cassign_.lval = (struct ivl_lval_s*) calloc(1, sizeof(struct ivl_lval_s)); const NetNet*lsig = net->lval(); stmt_cur_->u_.cassign_.lval[0].width_ = lsig->pin_count(); stmt_cur_->u_.cassign_.lval[0].loff_ = 0; stmt_cur_->u_.cassign_.lval[0].type_ = IVL_LVAL_REG; stmt_cur_->u_.cassign_.lval[0].idx = 0; stmt_cur_->u_.cassign_.lval[0].n.sig = find_signal(des_, lsig); stmt_cur_->u_.cassign_.npins = net->pin_count(); stmt_cur_->u_.cassign_.pins = (ivl_nexus_t*) calloc(stmt_cur_->u_.cassign_.npins, sizeof(ivl_nexus_t)); ivl_nexus_t*ntmp = stmt_cur_->u_.cassign_.pins; for (unsigned idx = 0 ; idx < net->pin_count() ; idx += 1) { ntmp[idx] = (ivl_nexus_t)net->pin(idx).nexus()->t_cookie(); assert(ntmp[idx]); } return true; } bool dll_target::proc_condit(const NetCondit*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_CONDIT; stmt_cur_->u_.condit_.stmt_ = (struct ivl_statement_s*) calloc(2, sizeof(struct ivl_statement_s)); assert(expr_ == 0); net->expr()->expr_scan(this); stmt_cur_->u_.condit_.cond_ = expr_; expr_ = 0; ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = save_cur_->u_.condit_.stmt_+0; bool flag = net->emit_recurse_if(this); stmt_cur_ = save_cur_->u_.condit_.stmt_+1; flag = flag && net->emit_recurse_else(this); stmt_cur_ = save_cur_; return flag; } bool dll_target::proc_deassign(const NetDeassign*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_DEASSIGN; stmt_cur_->u_.cassign_.lvals = 1; stmt_cur_->u_.cassign_.lval = (struct ivl_lval_s*) calloc(1, sizeof(struct ivl_lval_s)); const NetNet*lsig = net->lval(); stmt_cur_->u_.cassign_.lval[0].width_ = lsig->pin_count(); stmt_cur_->u_.cassign_.lval[0].loff_ = 0; stmt_cur_->u_.cassign_.lval[0].type_ = IVL_LVAL_REG; stmt_cur_->u_.cassign_.lval[0].idx = 0; stmt_cur_->u_.cassign_.lval[0].n.sig = find_signal(des_, lsig); stmt_cur_->u_.cassign_.npins = 0; stmt_cur_->u_.cassign_.pins = 0; return true; } bool dll_target::proc_delay(const NetPDelay*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); ivl_statement_t tmp = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); if (const NetExpr*expr = net->expr()) { stmt_cur_->type_ = IVL_ST_DELAYX; assert(expr_ == 0); expr->expr_scan(this); stmt_cur_->u_.delayx_.expr = expr_; expr_ = 0; stmt_cur_->u_.delayx_.stmt_ = tmp; } else { stmt_cur_->type_ = IVL_ST_DELAY; stmt_cur_->u_.delay_.stmt_ = tmp; stmt_cur_->u_.delay_.delay_ = net->delay(); } ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = tmp; bool flag = net->emit_proc_recurse(this); /* If the recurse doesn't turn this new item into something, then either it failed or there is no statement there. Either way, draw a no-op into the statement. */ if (stmt_cur_->type_ == IVL_ST_NONE) { stmt_cur_->type_ = IVL_ST_NOOP; } stmt_cur_ = save_cur_; return flag; } bool dll_target::proc_disable(const NetDisable*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_DISABLE; stmt_cur_->u_.disable_.scope = lookup_scope_(net->target()); return true; } bool dll_target::proc_force(const NetForce*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_FORCE; stmt_cur_->u_.cassign_.lvals = 1; stmt_cur_->u_.cassign_.lval = (struct ivl_lval_s*) calloc(1, sizeof(struct ivl_lval_s)); const NetNet*lsig = net->lval(); assert(lsig); ivl_signal_t sig = find_signal(des_, lsig); assert(sig); ivl_lval_type_t ltype; switch (sig->type_) { case IVL_SIT_REG: ltype = IVL_LVAL_REG; break; case IVL_SIT_TRI: case IVL_SIT_TRI0: case IVL_SIT_TRI1: ltype = IVL_LVAL_NET; break; default: cerr << net->get_line() << ": internal error: Sorry, " << "force to nets not supported by this target." << endl; return false; } stmt_cur_->u_.cassign_.lval[0].width_ = lsig->pin_count(); stmt_cur_->u_.cassign_.lval[0].loff_ = 0; stmt_cur_->u_.cassign_.lval[0].type_ = ltype; stmt_cur_->u_.cassign_.lval[0].idx = 0; stmt_cur_->u_.cassign_.lval[0].n.sig = sig; stmt_cur_->u_.cassign_.npins = net->pin_count(); stmt_cur_->u_.cassign_.pins = (ivl_nexus_t*) calloc(stmt_cur_->u_.cassign_.npins, sizeof(ivl_nexus_t)); ivl_nexus_t*ntmp = stmt_cur_->u_.cassign_.pins; for (unsigned idx = 0 ; idx < net->pin_count() ; idx += 1) { ntmp[idx] = (ivl_nexus_t)net->pin(idx).nexus()->t_cookie(); assert(ntmp[idx]); } return true; } void dll_target::proc_forever(const NetForever*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_FOREVER; ivl_statement_t tmp = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = tmp; net->emit_recurse(this); save_cur_->u_.forever_.stmt_ = stmt_cur_; stmt_cur_ = save_cur_; } bool dll_target::proc_release(const NetRelease*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_RELEASE; /* If there is no signal attached to the release, then it is the victom of an elided net. In that case, simply state that there are no lvals, and that's all. */ const NetNet*lsig = net->lval(); if (lsig == 0) { stmt_cur_->u_.cassign_.lvals = 0; return true; } assert(lsig); stmt_cur_->u_.cassign_.lvals = 1; stmt_cur_->u_.cassign_.lval = (struct ivl_lval_s*) calloc(1, sizeof(struct ivl_lval_s)); ivl_signal_t sig = find_signal(des_, lsig); assert(sig); ivl_lval_type_t ltype; switch (sig->type_) { case IVL_SIT_REG: ltype = IVL_LVAL_REG; break; case IVL_SIT_TRI: case IVL_SIT_TRI0: case IVL_SIT_TRI1: ltype = IVL_LVAL_NET; break; default: cerr << net->get_line() << ": internal error: Sorry, " << "force/release to nets not supported by this target." << endl; return false; } stmt_cur_->u_.cassign_.lval[0].width_ = lsig->pin_count(); stmt_cur_->u_.cassign_.lval[0].loff_ = 0; stmt_cur_->u_.cassign_.lval[0].type_ = ltype; stmt_cur_->u_.cassign_.lval[0].idx = 0; stmt_cur_->u_.cassign_.lval[0].n.sig = sig; return true; } void dll_target::proc_repeat(const NetRepeat*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_REPEAT; assert(expr_ == 0); net->expr()->expr_scan(this); stmt_cur_->u_.while_.cond_ = expr_; expr_ = 0; ivl_statement_t tmp = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = tmp; net->emit_recurse(this); save_cur_->u_.while_.stmt_ = stmt_cur_; stmt_cur_ = save_cur_; } void dll_target::proc_stask(const NetSTask*net) { unsigned nparms = net->nparms(); assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_STASK; stmt_cur_->u_.stask_.name_ = strdup(net->name()); stmt_cur_->u_.stask_.nparm_= nparms; stmt_cur_->u_.stask_.parms_= (ivl_expr_t*) calloc(nparms, sizeof(ivl_expr_t)); for (unsigned idx = 0 ; idx < nparms ; idx += 1) { if (net->parm(idx)) net->parm(idx)->expr_scan(this); stmt_cur_->u_.stask_.parms_[idx] = expr_; expr_ = 0; } } bool dll_target::proc_trigger(const NetEvTrig*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_TRIGGER; /* Locate the event by name. Save the ivl_event_t in the statement so that the generator can find it easily. */ const NetEvent*ev = net->event(); ivl_scope_t ev_scope = lookup_scope_(ev->scope()); for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) { const char*ename = ivl_event_basename(ev_scope->event_[idx]); if (strcmp(ev->name(), ename) == 0) { stmt_cur_->u_.wait_.event_ = ev_scope->event_[idx]; break; } } return true; } void dll_target::proc_utask(const NetUTask*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_UTASK; stmt_cur_->u_.utask_.def = lookup_scope_(net->task()); } bool dll_target::proc_wait(const NetEvWait*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_WAIT; stmt_cur_->u_.wait_.stmt_ = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); if (net->nevents() != 1) { cerr << "internal error: multiple events not supported." << endl; return false; } /* Locate the event by name. Save the ivl_event_t in the statement so that the generator can find it easily. */ const NetEvent*ev = net->event(0); ivl_scope_t ev_scope = lookup_scope_(ev->scope()); for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) { const char*ename = ivl_event_basename(ev_scope->event_[idx]); if (strcmp(ev->name(), ename) == 0) { stmt_cur_->u_.wait_.event_ = ev_scope->event_[idx]; break; } } /* If this is an event with a probe, then connect up the pins. This wasn't done during the ::event method because the signals weren't scanned yet. */ if (ev->nprobe() >= 1) { const NetEvProbe*pr = ev->probe(0); ivl_event_t evnt = stmt_cur_->u_.wait_.event_; unsigned iany = 0; unsigned ineg = evnt->nany; unsigned ipos = ineg + evnt->nneg; for (unsigned idx = 0 ; idx < ev->nprobe() ; idx += 1) { const NetEvProbe*pr = ev->probe(idx); unsigned base = 0; switch (pr->edge()) { case NetEvProbe::ANYEDGE: base = iany; iany += pr->pin_count(); break; case NetEvProbe::NEGEDGE: base = ineg; ineg += pr->pin_count(); break; case NetEvProbe::POSEDGE: base = ipos; ipos += pr->pin_count(); break; } for (unsigned bit = 0; bit < pr->pin_count(); bit += 1) { ivl_nexus_t nex = (ivl_nexus_t) pr->pin(bit).nexus()->t_cookie(); assert(nex); evnt->pins[base+bit] = nex; } } } /* The ivl_statement_t for the wait statement is not complete until we calculate the sub-statement. */ ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = stmt_cur_->u_.wait_.stmt_; bool flag = net->emit_recurse(this); if (flag && (stmt_cur_->type_ == IVL_ST_NONE)) stmt_cur_->type_ = IVL_ST_NOOP; stmt_cur_ = save_cur_; return flag; } void dll_target::proc_while(const NetWhile*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_WHILE; stmt_cur_->u_.while_.stmt_ = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); assert(expr_ == 0); net->expr()->expr_scan(this); stmt_cur_->u_.while_.cond_ = expr_; expr_ = 0; /* Now generate the statement of the while loop. We know it is a single statement, and we know that the emit_proc_recurse() will call emit_proc() for it. */ ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = save_cur_->u_.while_.stmt_; net->emit_proc_recurse(this); stmt_cur_ = save_cur_; } /* * $Log: t-dll-proc.cc,v $ * Revision 1.54 2002/08/19 00:06:12 steve * Allow release to handle removal of target net. * * Revision 1.53 2002/08/13 05:35:00 steve * Do not elide named blocks. * * Revision 1.52 2002/08/12 01:35:00 steve * conditional ident string using autoconfig. * * Revision 1.51 2002/08/07 00:54:39 steve * Add force to nets. * * Revision 1.50 2002/08/04 18:28:15 steve * Do not use hierarchical names of memories to * generate vvp labels. -tdll target does not * used hierarchical name string to look up the * memory objects in the design. * * Revision 1.49 2002/06/16 20:39:12 steve * Normalize run-time index expressions for bit selects * * Revision 1.48 2002/06/16 19:19:16 steve * Generate runtime code to normalize indices. * * Revision 1.47 2002/06/05 03:44:25 steve * Add support for memory words in l-value of * non-blocking assignments, and remove the special * NetAssignMem_ and NetAssignMemNB classes. * * Revision 1.46 2002/06/04 05:38:44 steve * Add support for memory words in l-value of * blocking assignments, and remove the special * NetAssignMem class. * * Revision 1.45 2002/05/29 22:05:55 steve * Offset lvalue index expressions. * * Revision 1.44 2002/05/27 00:08:45 steve * Support carrying the scope of named begin-end * blocks down to the code generator, and have * the vvp code generator use that to support disable. * * Revision 1.43 2002/05/26 01:39:03 steve * Carry Verilog 2001 attributes with processes, * all the way through to the ivl_target API. * * Divide signal reference counts between rval * and lval references. * * Revision 1.42 2002/04/21 22:31:02 steve * Redo handling of assignment internal delays. * Leave it possible for them to be calculated * at run time. * * Revision 1.41 2002/01/19 19:02:08 steve * Pass back target errors processing conditionals. * * Revision 1.40 2001/11/14 03:28:49 steve * DLL target support for force and release. * * Revision 1.39 2001/11/01 04:25:31 steve * ivl_target support for cassign. * * Revision 1.38 2001/10/31 05:24:52 steve * ivl_target support for assign/deassign. * * Revision 1.37 2001/10/30 02:52:07 steve * Stubs for assign/deassign for t-dll. * * Revision 1.36 2001/10/19 21:53:24 steve * Support multiple root modules (Philip Blundell) * * Revision 1.35 2001/09/15 18:27:04 steve * Make configure detect malloc.h * * Revision 1.34 2001/08/25 23:50:03 steve * Change the NetAssign_ class to refer to the signal * instead of link into the netlist. This is faster * and uses less space. Make the NetAssignNB carry * the delays instead of the NetAssign_ lval objects. * * Change the vvp code generator to support multiple * l-values, i.e. concatenations of part selects. * * Revision 1.33 2001/07/27 02:41:56 steve * Fix binding of dangling function ports. do not elide them. * * Revision 1.32 2001/07/25 03:10:49 steve * Create a config.h.in file to hold all the config * junk, and support gcc 3.0. (Stephan Boettcher) * * Revision 1.31 2001/07/19 04:55:06 steve * Support calculated delays in vvp.tgt. * * Revision 1.30 2001/06/21 23:23:14 steve * Initialize stmt_cur_ substatements during dll case building. * * Revision 1.29 2001/05/08 23:59:33 steve * Add ivl and vvp.tgt support for memories in * expressions and l-values. (Stephan Boettcher) * * Revision 1.28 2001/04/15 03:19:44 steve * Oops, excessive test assert neets to be removed. * * Revision 1.27 2001/04/15 03:14:31 steve * Handle noop as case statements. * * Revision 1.26 2001/04/15 02:58:11 steve * vvp support for <= with internal delay. * * Revision 1.25 2001/04/07 19:26:32 steve * Add the disable statemnent. * * Revision 1.24 2001/04/06 02:28:02 steve * Generate vvp code for functions with ports. * * Revision 1.23 2001/04/05 03:20:57 steve * Generate vvp code for the repeat statement. * * Revision 1.22 2001/04/04 04:50:35 steve * Support forever loops in the tgt-vvp target. * * Revision 1.21 2001/04/03 04:50:37 steve * Support non-blocking assignments. * * Revision 1.20 2001/04/02 02:28:12 steve * Generate code for task calls. * * Revision 1.19 2001/04/01 06:52:28 steve * support the NetWhile statement. * * Revision 1.18 2001/04/01 01:48:21 steve * Redesign event information to support arbitrary edge combining. * * Revision 1.17 2001/03/31 17:36:39 steve * Generate vvp code for case statements. * * Revision 1.16 2001/03/30 23:24:02 steve * Make empty event sub-expression a noop. * * Revision 1.15 2001/03/30 05:49:52 steve * Generate code for fork/join statements. * * Revision 1.14 2001/03/29 03:47:38 steve * Behavioral trigger statements. * * Revision 1.13 2001/03/28 06:07:39 steve * Add the ivl_event_t to ivl_target, and use that to generate * .event statements in vvp way ahead of the thread that uses it. * * Revision 1.12 2001/03/27 06:27:40 steve * Generate code for simple @ statements. * * Revision 1.11 2001/03/20 01:44:14 steve * Put processes in the proper scope. * * Revision 1.10 2000/10/18 20:04:39 steve * Add ivl_lval_t and support for assignment l-values. * * Revision 1.9 2000/10/08 04:01:54 steve * Back pointers in the nexus objects into the devices * that point to it. * * Collect threads into a list in the design. * * Revision 1.8 2000/10/06 23:46:50 steve * ivl_target updates, including more complete * handling of ivl_nexus_t objects. Much reduced * dependencies on pointers to netlist objects. * * Revision 1.7 2000/10/05 05:03:01 steve * xor and constant devices. * * Revision 1.6 2000/09/30 02:18:15 steve * ivl_expr_t support for binary operators, * Create a proper ivl_scope_t object. * * Revision 1.5 2000/09/26 00:30:07 steve * Add EX_NUMBER and ST_TRIGGER to dll-api. * * Revision 1.4 2000/09/23 05:15:07 steve * Add enough tgt-verilog code to support hello world. * * Revision 1.3 2000/09/22 03:58:30 steve * Access to the name of a system task call. * * Revision 1.2 2000/09/19 04:15:27 steve * Introduce the means to get statement types. * * Revision 1.1 2000/09/18 01:24:32 steve * Get the structure for ivl_statement_t worked out. * */