/* * Copyright (c) 2002 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifdef HAVE_CVS_IDENT #ident "$Id: synth2.cc,v 1.28 2003/08/10 17:04:23 steve Exp $" #endif # include "config.h" # include "functor.h" # include "netlist.h" # include "compiler.h" # include bool NetProc::synth_async(Design*des, NetScope*scope, const NetNet*nex_map, NetNet*nex_out) { return false; } bool NetProc::synth_sync(Design*des, NetScope*scope, NetFF*ff, const NetNet*nex_map, NetNet*nex_out, const svector&events) { if (events.count() > 0) { cerr << get_line() << ": error: Events are unaccounted" << " for in process synthesis." << endl; des->errors += 1; } /* Synthesize the input to the DFF. */ return synth_async(des, scope, nex_map, nex_out); } static unsigned find_nexus_in_set(const NetNet*nset, const Nexus*nex) { unsigned idx = 0; for (idx = 0 ; idx < nset->pin_count() ; idx += 1) if (nset->pin(idx).nexus() == nex) return idx; return idx; } /* * Async synthesis of assignments is done by synthesizing the rvalue * expression, then connecting the l-value directly to the output of * the r-value. * * The nex_map is the O-set for the statement, and lists the positions * of the outputs as the caller wants results linked up. The nex_out, * however, is the set of nexa that are to actually get linked to the * r-value. */ bool NetAssignBase::synth_async(Design*des, NetScope*scope, const NetNet*nex_map, NetNet*nex_out) { NetNet*rsig = rval_->synthesize(des); assert(rsig); NetNet*lsig = lval_->sig(); assert(lsig); assert(lval_->more == 0); assert(lval_->lwidth() == nex_map->pin_count()); assert(nex_map->pin_count() <= rsig->pin_count()); for (unsigned idx = 0 ; idx < lval_->lwidth() ; idx += 1) { unsigned off = lval_->get_loff()+idx; unsigned ptr = find_nexus_in_set(nex_map, lsig->pin(off).nexus()); connect(nex_out->pin(ptr), rsig->pin(idx)); } return true; } /* * Sequential blocks are translated to asynchronous logic by * translating each statement of the block, in order, into gates. The * nex_out for the block is the union of the nex_out for all the * substatements. */ bool NetBlock::synth_async(Design*des, NetScope*scope, const NetNet*nex_map, NetNet*nex_out) { if (last_ == 0) return true; bool flag = true; NetProc*cur = last_; do { cur = cur->next_; /* Create a temporary nex_map for the substatement. */ NexusSet tmp_set; cur->nex_output(tmp_set); NetNet*tmp_map = new NetNet(scope, "tmp1", NetNet::WIRE, tmp_set.count()); for (unsigned idx = 0 ; idx < tmp_map->pin_count() ; idx += 1) connect(tmp_set[idx], tmp_map->pin(idx)); /* Create also a temporary net_out to collect the output. */ NetNet*tmp_out = new NetNet(scope, "tmp2", NetNet::WIRE, tmp_set.count()); bool ok_flag = cur->synth_async(des, scope, tmp_map, tmp_out); flag = flag && ok_flag; if (ok_flag == false) continue; /* Use the nex_map to link up the output from the substatement to the output of the block as a whole. */ for (unsigned idx = 0 ; idx < tmp_out->pin_count() ; idx += 1) { unsigned ptr = find_nexus_in_set(nex_map, tmp_set[idx]); connect(nex_out->pin(ptr), tmp_out->pin(idx)); } delete tmp_map; delete tmp_out; } while (cur != last_); return flag; } bool NetCase::synth_async(Design*des, NetScope*scope, const NetNet*nex_map, NetNet*nex_out) { unsigned cur; NetNet*esig = expr_->synthesize(des); /* Scan the select vector looking for constant bits. The constant bits will be elided from the select input connect, but we still need to keep track of them. */ unsigned sel_pins = 0; unsigned long sel_mask = 0; unsigned long sel_ref = 0; for (unsigned idx = 0 ; idx < esig->pin_count() ; idx += 1) { if (esig->pin(idx).nexus()->drivers_constant()) { verinum::V bit = esig->pin(idx).nexus()->driven_value(); if (bit == verinum::V1) sel_ref |= 1 << idx; } else { sel_pins += 1; sel_mask |= 1 << idx; } } /* Build a map of guard values to mux select values. This helps account for constant select bits that are being elided. */ mapguard2sel; cur = 0; for (unsigned idx = 0 ; idx < (1U<pin_count()) ; idx += 1) { if ((idx & ~sel_mask) == sel_ref) { guard2sel[idx] = cur; cur += 1; } } assert(cur == (1U << sel_pins)); NetMux*mux = new NetMux(scope, scope->local_symbol(), nex_out->pin_count(), 1U << sel_pins, sel_pins); /* Connect the non-constant select bits to the select input of the mux device. */ cur = 0; for (unsigned idx = 0 ; idx < esig->pin_count() ; idx += 1) { /* skip bits that are known to be constant. */ if ((sel_mask & (1U << idx)) == 0) continue; connect(mux->pin_Sel(cur), esig->pin(idx)); cur += 1; } assert(cur == sel_pins); /* Hook up the output of th mux to the mapped output pins. */ for (unsigned idx = 0 ; idx < mux->width() ; idx += 1) connect(nex_out->pin(idx), mux->pin_Result(idx)); NetProc**statement_map = new NetProc*[1 << sel_pins]; for (unsigned item = 0 ; item < (1U<(items_[item].guard); assert(ge); verinum gval = ge->value(); unsigned sel_idx = guard2sel[gval.as_ulong()]; assert(items_[item].statement); statement_map[sel_idx] = items_[item].statement; } /* Now that statements matches with mux inputs, synthesize the sub-statements. If I get to an input that has no statement, then use the default statement there. */ NetNet*default_sig = 0; for (unsigned item = 0 ; item < (1U<width() ; idx += 1) connect(mux->pin_Data(idx, item), default_sig->pin(idx)); continue; } NetNet*sig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, nex_map->pin_count()); sig->local_flag(true); if (statement_map[item] == 0) { statement_map[item] = default_statement; default_statement = 0; default_sig = sig; } assert(statement_map[item]); statement_map[item]->synth_async(des, scope, nex_map, sig); for (unsigned idx = 0 ; idx < mux->width() ; idx += 1) connect(mux->pin_Data(idx, item), sig->pin(idx)); } delete[]statement_map; des->add_node(mux); return true; } bool NetCondit::synth_async(Design*des, NetScope*scope, const NetNet*nex_map, NetNet*nex_out) { NetNet*ssig = expr_->synthesize(des); assert(ssig); if (if_ == 0) return false; if (else_ == 0) { cerr << get_line() << ": error: Asynchronous if statement" << " is missing the else clause." << endl; return false; } assert(if_ != 0); assert(else_ != 0); NetNet*asig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, nex_map->pin_count()); asig->local_flag(true); if_->synth_async(des, scope, nex_map, asig); NetNet*bsig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, nex_map->pin_count()); bsig->local_flag(true); else_->synth_async(des, scope, nex_map, bsig); NetMux*mux = new NetMux(scope, scope->local_symbol(), nex_out->pin_count(), 2, 1); connect(mux->pin_Sel(0), ssig->pin(0)); for (unsigned idx = 0 ; idx < asig->pin_count() ; idx += 1) connect(mux->pin_Data(idx, 1), asig->pin(idx)); for (unsigned idx = 0 ; idx < bsig->pin_count() ; idx += 1) connect(mux->pin_Data(idx, 0), bsig->pin(idx)); for (unsigned idx = 0 ; idx < mux->width() ; idx += 1) connect(nex_out->pin(idx), mux->pin_Result(idx)); des->add_node(mux); return true; } bool NetEvWait::synth_async(Design*des, NetScope*scope, const NetNet*nex_map, NetNet*nex_out) { return statement_->synth_async(des, scope, nex_map, nex_out); } bool NetProcTop::synth_async(Design*des) { NexusSet nex_set; statement_->nex_output(nex_set); NetNet*nex_out = new NetNet(scope(), "tmp", NetNet::WIRE, nex_set.count()); for (unsigned idx = 0 ; idx < nex_out->pin_count() ; idx += 1) connect(nex_set[idx], nex_out->pin(idx)); bool flag = statement_->synth_async(des, scope(), nex_out, nex_out); delete nex_out; return flag; } /* * This method is called when a block is encountered near the surface * of a synchronous always statement. For example, this code will be * invoked for input like this: * * always @(posedge clk...) begin * * * ... * end * * This needs to be split into a DFF bank for each statement, because * the statements may each infer different reset and enable signals. */ bool NetBlock::synth_sync(Design*des, NetScope*scope, NetFF*ff, const NetNet*nex_map, NetNet*nex_out, const svector&events_in) { if (last_ == 0) return true; bool flag = true; /* Keep an accounting of which statement accounts for which bit slice of the FF bank. This is used for error checking. */ NetProc**pin_accounting = new NetProc* [ff->pin_count()]; for (unsigned idx = 0 ; idx < ff->pin_count() ; idx += 1) pin_accounting[idx] = 0; NetProc*cur = last_; do { cur = cur->next_; /* Create a temporary nex_map for the substatement. */ NexusSet tmp_set; cur->nex_output(tmp_set); NetNet*tmp_map = new NetNet(scope, "tmp1", NetNet::WIRE, tmp_set.count()); for (unsigned idx = 0 ; idx < tmp_map->pin_count() ; idx += 1) connect(tmp_set[idx], tmp_map->pin(idx)); /* Create also a temporary net_out to collect the output. The tmp1 and tmp2 map and out sets together are used to collect the outputs from the substatement for the inputs of the FF bank. */ NetNet*tmp_out = new NetNet(scope, "tmp2", NetNet::WIRE, tmp_set.count()); verinum tmp_aset = ff->aset_value(); /* Create a new DFF to handle this part of the begin-end block. Connect this NetFF to the associated pins of the existing wide NetFF device. While I'm at it, also copy the aset_value bits for the new ff device. */ NetFF*ff2 = new NetFF(scope, scope->local_symbol().c_str(), tmp_out->pin_count()); des->add_node(ff2); verinum aset_value2 (verinum::V1, ff2->width()); for (unsigned idx = 0 ; idx < ff2->width() ; idx += 1) { unsigned ptr = find_nexus_in_set(nex_map, tmp_set[idx]); connect(ff->pin_Data(ptr), ff2->pin_Data(idx)); connect(ff->pin_Q(ptr), ff2->pin_Q(idx)); if (ptr < tmp_aset.len()) aset_value2.set(idx, tmp_aset[ptr]); if (pin_accounting[ptr] != 0) { cerr << cur->get_line() << ": error: " << "Synchronous output conflicts with " << pin_accounting[ptr]->get_line() << "." << endl; flag = false; } else { pin_accounting[ptr] = cur; } } if (ff->pin_Aclr().is_linked()) connect(ff->pin_Aclr(), ff2->pin_Aclr()); if (ff->pin_Aset().is_linked()) connect(ff->pin_Aset(), ff2->pin_Aset()); if (ff->pin_Clock().is_linked()) connect(ff->pin_Clock(), ff2->pin_Clock()); if (ff->pin_Enable().is_linked()) connect(ff->pin_Enable(),ff2->pin_Enable()); /* Remember to store the aset value into the new FF. If this leads to an Aset value of 0 (and Aclr is not otherwise used) then move the Aset input to Aclr. */ if (tmp_aset.len() == ff->width()) { if (aset_value2.is_zero() && ff2->pin_Aset().is_linked() && !ff2->pin_Aclr().is_linked()) { connect(ff2->pin_Aclr(), ff2->pin_Aset()); ff2->pin_Aset().unlink(); } else { ff2->aset_value(aset_value2); } } /* Now go on with the synchronous synthesis for this subset of the statement. */ bool ok_flag = cur->synth_sync(des, scope, ff2, tmp_map, tmp_out, events_in); flag = flag && ok_flag; if (ok_flag == false) continue; /* Use the nex_map to link up the output from the substatement to the output of the block as a whole. It is occasionally possible to have outputs beyond the input set, for example when the l-value of an assignment is smaller then the r-value. */ for (unsigned idx = 0 ; idx < tmp_out->pin_count() ; idx += 1) { unsigned ptr = find_nexus_in_set(nex_map, tmp_set[idx]); if (ptr < nex_out->pin_count()) connect(nex_out->pin(ptr), tmp_out->pin(idx)); } delete tmp_map; delete tmp_out; } while (cur != last_); delete[]pin_accounting; /* Done. The large NetFF is no longer needed, as it has been taken up by the smaller NetFF devices. */ delete ff; return flag; } /* * This method handles the case where I find a conditional near the * surface of a synchronous thread. This conditional can be a CE or an * asynchronous set/reset, depending on whether the pin of the * expression is connected to an event, or not. */ bool NetCondit::synth_sync(Design*des, NetScope*scope, NetFF*ff, const NetNet*nex_map, NetNet*nex_out, const svector&events_in) { /* First try to turn the condition expression into an asynchronous set/reset. If the condition expression has inputs that are included in the sensitivity list, then it is likely intended as an asynchronous input. */ NexusSet*expr_input = expr_->nex_input(); assert(expr_input); for (unsigned idx = 0 ; idx < events_in.count() ; idx += 1) { NetEvProbe*ev = events_in[idx]; NexusSet pin_set; pin_set.add(ev->pin(0).nexus()); if (! expr_input->contains(pin_set)) continue; /* Ah, this edge is in the sensitivity list for the expression, so we have an asynchronous input. Synthesize the set/reset input expression. */ NetNet*rst = expr_->synthesize(des); assert(rst->pin_count() == 1); /* XXXX I really should find a way to check that the edge used on the reset input is correct. This would involve interpreting the exression that is fed by the reset expression. */ //assert(ev->edge() == NetEvProbe::POSEDGE); /* Synthesize the true clause to figure out what kind of set/reset we have. */ NetNet*asig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, nex_map->pin_count()); asig->local_flag(true); bool flag = if_->synth_async(des, scope, nex_map, asig); assert(asig->pin_count() == ff->width()); /* Collect the set/reset value into a verinum. If this turns out to be entirely 0 values, then use the Aclr input. Otherwise, use the Aset input and save the set value. */ verinum tmp (verinum::V0, ff->width()); for (unsigned bit = 0 ; bit < ff->width() ; bit += 1) { assert(asig->pin(bit).nexus()->drivers_constant()); tmp.set(bit, asig->pin(bit).nexus()->driven_value()); } assert(tmp.is_defined()); if (tmp.is_zero()) { connect(ff->pin_Aclr(), rst->pin(0)); } else { connect(ff->pin_Aset(), rst->pin(0)); ff->aset_value(tmp); } delete asig; delete expr_input; assert(events_in.count() == 1); return else_->synth_sync(des, scope, ff, nex_map, nex_out, svector(0)) && flag; } delete expr_input; /* Failed to find an asynchronous set/reset, so any events input are probably in error. */ if (events_in.count() > 0) { cerr << get_line() << ": error: Events are unaccounted" << " for in process synthesis." << endl; des->errors += 1; } /* Synthesize the enable expression. */ NetNet*ce = expr_->synthesize(des); assert(ce->pin_count() == 1); /* If this is an if/then/else, then it is likely a combinational if, and I should synthesize it that way. */ if (if_ && else_) { return synth_async(des, scope, nex_map, nex_out); } assert(if_); assert(!else_); /* What's left, is a synchronous CE statement like this: if (expr_) ; The expr_ expression has already been synthesized to the ce net, so we connect it here to the FF. What's left is to synthesize the substatement as a combinational statement. Watch out for the special case that there is already a CE connected to this FF. This can be caused by code like this: if (a) if (b) ; In this case, we are working on the inner IF, so we AND the a and b expressions to make a new CE. */ if (ff->pin_Enable().is_linked()) { NetLogic*ce_and = new NetLogic(scope, scope->local_hsymbol(), 3, NetLogic::AND); des->add_node(ce_and); connect(ff->pin_Enable(), ce_and->pin(1)); connect(ce->pin(0), ce_and->pin(2)); ff->pin_Enable().unlink(); connect(ff->pin_Enable(), ce_and->pin(0)); NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, 1); tmp->local_flag(true); connect(ff->pin_Enable(), tmp->pin(0)); } else { connect(ff->pin_Enable(), ce->pin(0)); } bool flag = if_->synth_sync(des, scope, ff, nex_map, nex_out, events_in); if (flag == false) return flag; return true; } bool NetEvWait::synth_sync(Design*des, NetScope*scope, NetFF*ff, const NetNet*nex_map, NetNet*nex_out, const svector&events_in) { if (events_in.count() > 0) { cerr << get_line() << ": error: Events are unaccounted" << " for in process synthesis." << endl; des->errors += 1; } assert(events_in.count() == 0); /* This can't be other then one unless there are named events, which I cannot synthesize. */ assert(nevents_ == 1); NetEvent*ev = events_[0]; assert(ev->nprobe() >= 1); svectorevents (ev->nprobe() - 1); /* Get the input set from the substatement. This will be used to figure out which of the probes in the clock. */ NexusSet*statement_input = statement_ -> nex_input(); /* Search for a clock input. The clock input is the edge event that is not also an input to the substatement. */ NetEvProbe*pclk = 0; unsigned event_idx = 0; for (unsigned idx = 0 ; idx < ev->nprobe() ; idx += 1) { NetEvProbe*tmp = ev->probe(idx); assert(tmp->pin_count() == 1); NexusSet tmp_nex; tmp_nex .add( tmp->pin(0).nexus() ); if (! statement_input ->contains(tmp_nex)) { if (pclk != 0) { cerr << get_line() << ": error: Too many " << "clocks for synchronous logic." << endl; cerr << get_line() << ": : Perhaps an" << " asynchronous set/reset is misused?" << endl; des->errors += 1; } pclk = tmp; } else { events[event_idx++] = tmp; } } if (pclk == 0) { cerr << get_line() << ": error: None of the edges" << " are valid clock inputs." << endl; cerr << get_line() << ": : Perhaps the clock" << " is read by a statement or expression?" << endl; return false; } connect(ff->pin_Clock(), pclk->pin(0)); if (pclk->edge() == NetEvProbe::NEGEDGE) ff->attribute("Clock:LPM_Polarity", verinum("INVERT")); /* Synthesize the input to the DFF. */ bool flag = statement_->synth_sync(des, scope, ff, nex_map, nex_out, events); return flag; } bool NetProcTop::synth_sync(Design*des) { NexusSet nex_set; statement_->nex_output(nex_set); NetFF*ff = new NetFF(scope(), scope()->local_symbol().c_str(), nex_set.count()); des->add_node(ff); ff->attribute("LPM_FFType", verinum("DFF")); /* The D inputs to the DFF device will receive the output from the statements of the process. */ NetNet*nex_d = new NetNet(scope(), scope()->local_symbol(), NetNet::WIRE, nex_set.count()); nex_d->local_flag(true); for (unsigned idx = 0 ; idx < nex_set.count() ; idx += 1) { connect(nex_d->pin(idx), ff->pin_Data(idx)); } /* The Q outputs of the DFF will connect to the actual outputs of the process. Thus, the DFF will be between the outputs of the process and the outputs of the substatement. */ NetNet*nex_q = new NetNet(scope(), "tmpq", NetNet::WIRE, nex_set.count()); for (unsigned idx = 0 ; idx < nex_set.count() ; idx += 1) { connect(nex_set[idx], nex_q->pin(idx)); connect(nex_q->pin(idx), ff->pin_Q(idx)); } /* Synthesize the input to the DFF. */ bool flag = statement_->synth_sync(des, scope(), ff, nex_q, nex_d, svector()); delete nex_q; return flag; } class synth2_f : public functor_t { public: void process(class Design*, class NetProcTop*); private: }; /* * Look at a process. If it is asynchronous, then synthesize it as an * asynchronous process and delete the process itself for its gates. */ void synth2_f::process(class Design*des, class NetProcTop*top) { if (top->attribute("ivl_synthesis_off").as_ulong() != 0) return; /* If the scope that contains this process as a cell attribute attached to it, then skip synthesis. */ if (top->scope()->attribute("ivl_synthesis_cell").len() > 0) return; if (top->is_synchronous()) do { bool flag = top->synth_sync(des); if (! flag) { cerr << top->get_line() << ": error: " << "Unable to synthesize synchronous process." << endl; des->errors += 1; return; } des->delete_process(top); return; } while (0); if (! top->is_asynchronous()) { bool synth_error_flag = false; if (top->attribute("ivl_combinational").as_ulong() != 0) { cerr << top->get_line() << ": error: " << "Process is marked combinational," << " but isn't really." << endl; des->errors += 1; synth_error_flag = true; } if (top->attribute("ivl_synthesis_on").as_ulong() != 0) { cerr << top->get_line() << ": error: " << "Process is marked for synthesis," << " but I can't do it." << endl; des->errors += 1; synth_error_flag = true; } if (! synth_error_flag) cerr << top->get_line() << ": warning: " << "Process not synthesized." << endl; return; } if (! top->synth_async(des)) { cerr << top->get_line() << ": internal error: " << "is_asynchronous does not match " << "sync_async results." << endl; return; } des->delete_process(top); } void synth2(Design*des) { synth2_f synth_obj; des->functor(&synth_obj); } /* * $Log: synth2.cc,v $ * Revision 1.28 2003/08/10 17:04:23 steve * Detect asynchronous FF inputs that are expressions. * * Revision 1.27 2003/06/23 00:14:44 steve * ivl_synthesis_cell cuts off synthesis within a module. * * Revision 1.26 2003/06/21 01:21:43 steve * Harmless fixup of warnings. * * Revision 1.25 2003/04/03 04:30:00 steve * Prevent overrun comparing verinums to zero. * * Revision 1.24 2003/03/25 04:04:29 steve * Handle defaults in synthesized case statements. * * Revision 1.23 2003/03/06 00:28:42 steve * All NetObj objects have lex_string base names. * * Revision 1.22 2003/02/26 01:29:24 steve * LPM objects store only their base names. * * Revision 1.21 2003/01/27 05:09:17 steve * Spelling fixes. * * Revision 1.20 2002/11/09 23:29:29 steve * Handle nested-if chip enables. * * Revision 1.19 2002/11/09 20:22:57 steve * Detect synthesis conflicts blocks statements share outputs. */