/* * Copyright (c) 2011-2013 Stephen Williams (steve@icarus.com) * Copyright CERN 2012-2015 / Stephen Williams (steve@icarus.com), * @author Maciej Suminski (maciej.suminski@cern.ch) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "expression.h" # include "subprogram.h" # include "parse_types.h" # include "scope.h" # include # include # include # include # include using namespace std; Expression::Expression() : type_(0) { } Expression::~Expression() { } void Expression::set_type(const VType*typ) { assert(type_==0 || type_==typ); type_ = typ; } bool Expression::symbolic_compare(const Expression*) const { cerr << get_fileline() << ": internal error: " << "symbolic_compare() method not implemented " << "for " << typeid(*this).name() << endl; return false; } ExpAttribute::ExpAttribute(ExpName*bas, perm_string nam) : base_(bas), name_(nam) { } ExpAttribute::~ExpAttribute() { delete base_; } Expression*ExpAttribute::clone() const { return new ExpAttribute(static_cast(base_->clone()), name_); } ExpBinary::ExpBinary(Expression*op1, Expression*op2) : operand1_(op1), operand2_(op2) { } ExpBinary::~ExpBinary() { delete operand1_; delete operand2_; } bool ExpBinary::eval_operand1(ScopeBase*scope, int64_t&val) const { return operand1_->evaluate(scope, val); } bool ExpBinary::eval_operand2(ScopeBase*scope, int64_t&val) const { return operand2_->evaluate(scope, val); } ExpUnary::ExpUnary(Expression*op1) : operand1_(op1) { } ExpUnary::~ExpUnary() { delete operand1_; } ExpAggregate::ExpAggregate(std::list*el) : elements_(el? el->size() : 0) { assert(el); size_t idx = 0; while (! el->empty()) { assert(idx < elements_.size()); elements_[idx++] = el->front(); el->pop_front(); } } ExpAggregate::~ExpAggregate() { for (size_t idx = 0 ; idx < elements_.size() ; idx += 1) delete elements_[idx]; } Expression* ExpAggregate::clone() const { std::list*new_elements = NULL; if(!elements_.empty()) { new_elements = new std::list(); for(std::vector::const_iterator it = elements_.begin(); it != elements_.end(); ++it) { new_elements->push_back(new element_t(**it)); } } assert(aggregate_.empty()); // cloning should not happen after elab return new ExpAggregate(new_elements); } ExpAggregate::choice_t::choice_t(Expression*exp) : expr_(exp) { } ExpAggregate::choice_t::choice_t() { } ExpAggregate::choice_t::choice_t(prange_t*rang) : range_(rang) { } ExpAggregate::choice_t::choice_t(const choice_t&other) { if(Expression*e = other.expr_.get()) expr_.reset(e->clone()); if(other.range_.get()) range_.reset(new prange_t(*other.range_.get())); } ExpAggregate::choice_t::~choice_t() { } bool ExpAggregate::choice_t::others() const { return expr_.get() == 0 && range_.get() == 0; } Expression*ExpAggregate::choice_t::simple_expression(bool detach_flag) { Expression*res = detach_flag? expr_.release() : expr_.get(); return res; } prange_t*ExpAggregate::choice_t::range_expressions(void) { return range_.get(); } ExpAggregate::element_t::element_t(list*fields, Expression*val) : fields_(fields? fields->size() : 0), val_(val) { if (fields) { size_t idx = 0; while (! fields->empty()) { assert(idx < fields_.size()); fields_[idx++] = fields->front(); fields->pop_front(); } } } ExpAggregate::element_t::element_t(const ExpAggregate::element_t&other) { fields_.reserve(other.fields_.size()); for(std::vector::const_iterator it = other.fields_.begin(); it != other.fields_.end(); ++it) { fields_.push_back(*it); } val_ = other.val_->clone(); } ExpAggregate::element_t::~element_t() { for (size_t idx = 0 ; idx < fields_.size() ; idx += 1) delete fields_[idx]; delete val_; } ExpArithmetic::ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2) : ExpBinary(op1, op2), fun_(op) { // The xCONCAT type is not actually used. assert(op != xCONCAT); } ExpArithmetic::~ExpArithmetic() { } /* * Store bitstrings in little-endian order. */ ExpBitstring::ExpBitstring(const char*val) : value_(strlen(val)) { for (size_t idx = value_.size() ; idx > 0 ; idx -= 1) value_[idx-1] = *val++; } ExpBitstring::~ExpBitstring() { } ExpCharacter::ExpCharacter(char val) : value_(val) { } ExpCharacter::~ExpCharacter() { } ExpConcat::ExpConcat(Expression*op1, Expression*op2) : operand1_(op1), operand2_(op2) { } ExpConcat::~ExpConcat() { delete operand1_; delete operand2_; } ExpConditional::ExpConditional(Expression*co, list*tru, list*fal) : cond_(co) { if (tru) true_clause_.splice(true_clause_.end(), *tru); if (fal) else_clause_.splice(else_clause_.end(), *fal); } ExpConditional::~ExpConditional() { delete cond_; while (! true_clause_.empty()) { Expression*tmp = true_clause_.front(); true_clause_.pop_front(); delete tmp; } while (! else_clause_.empty()) { else_t*tmp = else_clause_.front(); else_clause_.pop_front(); delete tmp; } } Expression*ExpConditional::clone() const { std::list*new_true_clause = NULL; if(!true_clause_.empty()) { new_true_clause = new std::list(); for(std::list::const_iterator it = true_clause_.begin(); it != true_clause_.end(); ++it) { new_true_clause->push_back((*it)->clone()); } } std::list*new_else_clause = NULL; if(!else_clause_.empty()) { new_else_clause = new std::list(); for(std::list::const_iterator it = else_clause_.begin(); it != else_clause_.end(); ++it) { new_else_clause->push_back(new else_t(**it)); } } return new ExpConditional(cond_->clone(), new_true_clause, new_else_clause); } ExpConditional::else_t::else_t(Expression*cond, std::list*tru) : cond_(cond) { if (tru) true_clause_.splice(true_clause_.end(), *tru); } ExpConditional::else_t::else_t(const else_t&other) : LineInfo(other) { cond_ = other.cond_->clone(); for(std::list::const_iterator it = other.true_clause_.begin(); it != other.true_clause_.end(); ++it) { true_clause_.push_back((*it)->clone()); } } ExpConditional::else_t::~else_t() { delete cond_; while (! true_clause_.empty()) { Expression*tmp = true_clause_.front(); true_clause_.pop_front(); delete tmp; } } ExpEdge::ExpEdge(ExpEdge::fun_t typ, Expression*op) : ExpUnary(op), fun_(typ) { } ExpEdge::~ExpEdge() { } ExpFunc::ExpFunc(perm_string nn) : name_(nn), def_(0) { } ExpFunc::ExpFunc(perm_string nn, list*args) : name_(nn), argv_(args->size()), def_(0) { for (size_t idx = 0; idx < argv_.size() ; idx += 1) { ivl_assert(*this, !args->empty()); argv_[idx] = args->front(); args->pop_front(); } ivl_assert(*this, args->empty()); } ExpFunc::~ExpFunc() { for (size_t idx = 0 ; idx < argv_.size() ; idx += 1) delete argv_[idx]; } Expression*ExpFunc::clone() const { std::list*new_args = NULL; if(!argv_.empty()) { new_args = new std::list(); for(std::vector::const_iterator it = argv_.begin(); it != argv_.end(); ++it) new_args->push_back((*it)->clone()); } ExpFunc*f = new ExpFunc(name_, new_args); f->def_ = def_; return f; } const VType* ExpFunc::func_ret_type() const { return def_ ? def_->peek_return_type() : NULL; } ExpInteger::ExpInteger(int64_t val) : value_(val) { } ExpInteger::~ExpInteger() { } bool ExpInteger::evaluate(ScopeBase*, int64_t&val) const { val = value_; return true; } ExpReal::ExpReal(double val) : value_(val) { } ExpReal::~ExpReal() { } ExpLogical::ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2) : ExpBinary(op1, op2), fun_(ty) { } ExpLogical::~ExpLogical() { } ExpName::ExpName(perm_string nn) : name_(nn), index_(0), lsb_(0) { } ExpName::ExpName(perm_string nn, list*indices) : name_(nn), index_(0), lsb_(0) { /* For now, assume a single index. */ ivl_assert(*this, indices->size() == 1); index_ = indices->front(); indices->pop_front(); } ExpName::ExpName(perm_string nn, Expression*msb, Expression*lsb) : name_(nn), index_(msb), lsb_(lsb) { } ExpName::ExpName(ExpName*prefix, perm_string nn) : prefix_(prefix), name_(nn), index_(0), lsb_(0) { } ExpName::ExpName(ExpName*prefix, perm_string nn, Expression*msb, Expression*lsb) : prefix_(prefix), name_(nn), index_(msb), lsb_(lsb) { } ExpName::~ExpName() { delete index_; } bool ExpName::symbolic_compare(const Expression*that) const { const ExpName*that_name = dynamic_cast (that); if (that_name == 0) return false; if (name_ != that_name->name_) return false; if (that_name->index_ && !index_) return false; if (index_ && !that_name->index_) return false; if (index_) { assert(that_name->index_); return index_->symbolic_compare(that_name->index_); } return true; } void ExpName::set_range(Expression*msb, Expression*lsb) { assert(index_==0); index_ = msb; assert(lsb_==0); lsb_ = lsb; } int ExpName::index_t::emit(ostream&out, Entity*ent, ScopeBase*scope) { int errors = 0; out << "("; if(idx_ && size_) { errors += idx_->emit(out, ent, scope); out << "*"; errors += size_->emit(out, ent, scope); } if(offset_) { if(idx_ && size_) out << "+"; errors += offset_->emit(out, ent, scope); } out << ")"; return errors; } ExpRelation::ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2) : ExpBinary(op1, op2), fun_(ty) { } ExpRelation::~ExpRelation() { } ExpShift::ExpShift(ExpShift::shift_t op, Expression*op1, Expression*op2) : ExpBinary(op1, op2), shift_(op) { } ExpString::ExpString(const char* value) : value_(strlen(value)) { for(size_t idx = 0; idx < value_.size(); idx += 1) value_[idx] = value[idx]; } ExpString::~ExpString() { } ExpUAbs::ExpUAbs(Expression*op1) : ExpUnary(op1) { } ExpUAbs::~ExpUAbs() { } ExpUNot::ExpUNot(Expression*op1) : ExpUnary(op1) { } ExpUNot::~ExpUNot() { } ExpCast::ExpCast(Expression*base, const VType*type) : base_(base), type_(type) { } ExpCast::~ExpCast() { } ExpNew::ExpNew(Expression*size) : size_(size) { } ExpNew::~ExpNew() { delete size_; }