/* * Copyright (c) 2011-2012 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "architec.h" # include "entity.h" # include "expression.h" # include "sequential.h" # include "subprogram.h" # include # include int Architecture::elaborate(Entity*entity) { int errors = 0; // Constant assignments in the architecture get their types // from the constant declaration itself. Elaborate the value // expression with the declared type. for (map::iterator cur = use_constants_.begin() ; cur != use_constants_.end() ; ++cur) { cur->second->val->elaborate_expr(entity, this, cur->second->typ); } for (map::iterator cur = cur_constants_.begin() ; cur != cur_constants_.end() ; ++cur) { cur->second->val->elaborate_expr(entity, this, cur->second->typ); } // Elaborate initializer expressions for signals & variables for (map::iterator cur = old_signals_.begin() ; cur != old_signals_.end() ; ++cur) { cur->second->elaborate_init_expr(entity, this); } for (map::iterator cur = new_signals_.begin() ; cur != new_signals_.end() ; ++cur) { cur->second->elaborate_init_expr(entity, this); } for (map::iterator cur = old_variables_.begin() ; cur != old_variables_.end() ; ++cur) { cur->second->elaborate_init_expr(entity, this); } for (map::iterator cur = new_variables_.begin() ; cur != new_variables_.end() ; ++cur) { cur->second->elaborate_init_expr(entity, this); } // Elaborate subprograms for (map::const_iterator cur = cur_subprograms_.begin() ; cur != cur_subprograms_.end() ; ++cur) { errors += cur->second->elaborate(); } // Create 'initial' and 'final' blocks for implicit // initalization and clean-up actions if(!initializers_.empty()) statements_.push_front(new InitialStatement(&initializers_)); if(!finalizers_.empty()) statements_.push_front(new FinalStatement(&finalizers_)); for (list::iterator cur = statements_.begin() ; cur != statements_.end() ; ++cur) { int cur_errors = (*cur)->elaborate(entity, this); errors += cur_errors; } if (errors > 0) { cerr << errors << " errors in " << name_ << " architecture of " << entity->get_name() << "." << endl; } return errors; } int Architecture::Statement::elaborate(Entity*, Architecture*) { return 0; } int ComponentInstantiation::elaborate(Entity*ent, Architecture*arc) { int errors = 0; ComponentBase*base = arc->find_component(cname_); if (base == 0) { cerr << get_fileline() << ": error: No component declaration" << " for instance " << iname_ << " of " << cname_ << "." << endl; return 1; } arc->set_cur_component(this); for (map::const_iterator cur = generic_map_.begin() ; cur != generic_map_.end() ; ++cur) { // check if generic from component instantiation // exists in the component declaration const InterfacePort*iparm = base->find_generic(cur->first); if (iparm == 0) { cerr << get_fileline() << ": warning: No generic " << cur->first << " in component " << cname_ << "." << endl; continue; } ExpName* tmp; if (cur->second && (tmp = dynamic_cast(cur->second))) errors += tmp->elaborate_rval(ent, arc, iparm); if (cur->second) errors += cur->second->elaborate_expr(ent, arc, iparm->type); } for (map::const_iterator cur = port_map_.begin() ; cur != port_map_.end() ; ++cur) { // check if a port from component instantiation // exists in the component declaration const InterfacePort*iport = base->find_port(cur->first); if (iport == 0) { cerr << get_fileline() << ": error: No port " << cur->first << " in component " << cname_ << "." << endl; errors += 1; continue; } ExpName* tmp; if (cur->second && (tmp = dynamic_cast(cur->second))) errors += tmp->elaborate_rval(ent, arc, iport); /* It is possible for the port to be explicitly unconnected. In that case, the Expression will be nil */ if (cur->second) cur->second->elaborate_expr(ent, arc, iport->type); } arc->set_cur_component(NULL); return errors; } int GenerateStatement::elaborate_statements(Entity*ent, Architecture*arc) { int errors = 0; for (list::iterator cur = statements_.begin() ; cur != statements_.end() ; ++cur) { Architecture::Statement*curp = *cur; errors += curp->elaborate(ent, arc); } return errors; } int ForGenerate::elaborate(Entity*ent, Architecture*arc) { int errors = 0; arc->push_genvar_type(genvar_, lsb_->probe_type(ent, arc)); errors += elaborate_statements(ent, arc); arc->pop_genvar_type(); return errors; } int IfGenerate::elaborate(Entity*ent, Architecture*arc) { int errors = 0; errors += elaborate_statements(ent, arc); return errors; } /* * This method attempts to rewrite the process content as an * always-@(n-edge ) version of the same statement. This makes * for a more natural translation to Verilog, if it comes to that. */ int ProcessStatement::rewrite_as_always_edge_(Entity*, Architecture*) { // If there are multiple sensitivity expressions, I give up. if (sensitivity_list_.size() != 1) return -1; // If there are multiple statements, I give up. if (stmt_list().size() != 1) return -1; Expression*se = sensitivity_list_.front(); SequentialStmt*stmt_raw = stmt_list().front(); // If the statement is not an if-statement, I give up. IfSequential*stmt = dynamic_cast (stmt_raw); if (stmt == 0) return -1; // If the "if" statement has a false clause, then give up. if (stmt->false_size() != 0) return -1; const Expression*ce_raw = stmt->peek_condition(); // Here we expect the condition to be // 'event AND ='1'. // So if ce_raw is not a logical AND, I give up. const ExpLogical*ce = dynamic_cast (ce_raw); if (ce == 0) return -1; if (ce->logic_fun() != ExpLogical::AND) return -1; const Expression*op1_raw = ce->peek_operand1(); const Expression*op2_raw = ce->peek_operand2(); if (dynamic_cast(op2_raw)) { const Expression*tmp = op1_raw; op1_raw = op2_raw; op2_raw = tmp; } // If operand1 is not an 'event attribute, I give up. const ExpObjAttribute*op1 = dynamic_cast(op1_raw); if (op1 == 0) return -1; if (op1->peek_attribute() != "event") return -1; const ExpRelation*op2 = dynamic_cast(op2_raw); if (op2 == 0) return -1; if (op2->relation_fun() != ExpRelation::EQ) return -1; const Expression*op2a_raw = op2->peek_operand1(); const Expression*op2b_raw = op2->peek_operand2(); if (dynamic_cast(op2a_raw)) { const Expression*tmp = op2b_raw; op2b_raw = op2a_raw; op2a_raw = tmp; } if (! se->symbolic_compare(op1->peek_base())) return -1; const ExpCharacter*op2b = dynamic_cast(op2b_raw); if (op2b->value() != '1' && op2b->value() != '0') return -1; // We've matched this pattern: // process () if ('event and = ) then ... // And we can convert it to: // always @(edge ) ... // Replace the sensitivity expression with an edge // expression. The ExpEdge expression signals that this is an // always-@(edge) statement. ExpEdge*edge = new ExpEdge(op2b->value()=='1'? ExpEdge::POSEDGE : ExpEdge::NEGEDGE, se); assert(sensitivity_list_.size() == 1); sensitivity_list_.pop_front(); sensitivity_list_.push_front(edge); // Replace the statement with the body of the always // statement, which is the true clause of the top "if" // statement. There should be no "else" clause. assert(stmt_list().size() == 1); stmt_list().pop_front(); stmt->extract_true(stmt_list()); delete stmt; return 0; } int StatementList::elaborate(Entity*ent, Architecture*arc) { int errors = 0; for (std::list::iterator it = statements_.begin(); it != statements_.end(); ++it) { errors += (*it)->elaborate(ent, arc); } return errors; } /* * Change the "process () " into "always @() ..." */ int ProcessStatement::extract_anyedge_(Entity*, Architecture*) { vector se; while (! sensitivity_list_.empty()) { se.push_back(sensitivity_list_.front()); sensitivity_list_.pop_front(); } for (size_t idx = 0 ; idx < se.size() ; idx += 1) { ExpEdge*edge = new ExpEdge(ExpEdge::ANYEDGE, se[idx]); FILE_NAME(edge, se[idx]); sensitivity_list_.push_back(edge); } return 0; } int ProcessStatement::elaborate(Entity*ent, Architecture*arc) { int errors = 0; if (rewrite_as_always_edge_(ent, arc) >= 0) { extract_anyedge_(ent, arc); } StatementList::elaborate(ent, arc); return errors; } int SignalAssignment::elaborate(Entity*ent, Architecture*arc) { int errors = 0; // Elaborate the l-value expression. errors += lval_->elaborate_lval(ent, arc, false); // The elaborate_lval should have resolved the type of the // l-value expression. We'll use that type to elaborate the // r-value. const VType*lval_type = lval_->peek_type(); if (lval_type == 0) { if (errors == 0) { errors += 1; cerr << get_fileline() << ": error: Unable to calculate type for l-value expression." << endl; } return errors; } for (list::iterator cur = rval_.begin() ; cur != rval_.end() ; ++cur) { errors += (*cur)->elaborate_expr(ent, arc, lval_type); } return errors; }