/* * Copyright (c) 2012-2016 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "PExpr.h" # include "pform_types.h" # include "netlist.h" # include "netclass.h" # include "netdarray.h" # include "netenum.h" # include "netqueue.h" # include "netparray.h" # include "netscalar.h" # include "netstruct.h" # include "netvector.h" # include "netmisc.h" # include # include "ivl_assert.h" using namespace std; /* * Some types have a list of ranges that need to be elaborated. This * function elaborates the ranges referenced by "dims" into the vector * "ranges". */ static void elaborate_array_ranges(Design*des, NetScope*scope, vector&ranges, const list*dims) { if (dims == 0) return; for (list::const_iterator cur = dims->begin() ; cur != dims->end() ; ++ cur) { NetExpr*me = elab_and_eval(des, scope, cur->first, 0, true); NetExpr*le = elab_and_eval(des, scope, cur->second, 0, true); /* If elaboration failed for either expression, we should have already reported the error, so just skip the following evaluation to recover. */ long mnum = 0, lnum = 0; if ( me && ! eval_as_long(mnum, me) ) { assert(0); des->errors += 1; } if ( le && ! eval_as_long(lnum, le) ) { assert(0); des->errors += 1; } ranges.push_back(netrange_t(mnum, lnum)); } } /* * Elaborations of types may vary depending on the scope that it is * done in, so keep a per-scope cache of the results. */ ivl_type_s* data_type_t::elaborate_type(Design*des, NetScope*scope) { Definitions*use_definitions = scope; if (use_definitions == 0) use_definitions = des; map::iterator pos = cache_type_elaborate_.lower_bound(use_definitions); if (pos != cache_type_elaborate_.end() && pos->first == use_definitions) return pos->second; ivl_type_s*tmp = elaborate_type_raw(des, scope); cache_type_elaborate_.insert(pos, pair(scope, tmp)); return tmp; } ivl_type_s* data_type_t::elaborate_type_raw(Design*des, NetScope*) const { cerr << get_fileline() << ": internal error: " << "Elaborate method not implemented for " << typeid(*this).name() << "." << endl; des->errors += 1; return 0; } ivl_type_s* atom2_type_t::elaborate_type_raw(Design*des, NetScope*) const { switch (type_code) { case 64: if (signed_flag) return &netvector_t::atom2s64; else return &netvector_t::atom2u64; case 32: if (signed_flag) return &netvector_t::atom2s32; else return &netvector_t::atom2u32; case 16: if (signed_flag) return &netvector_t::atom2s16; else return &netvector_t::atom2u16; case 8: if (signed_flag) return &netvector_t::atom2s8; else return &netvector_t::atom2u8; default: cerr << get_fileline() << ": internal error: " << "atom2_type_t type_code=" << type_code << "." << endl; des->errors += 1; return 0; } } ivl_type_s* class_type_t::elaborate_type_raw(Design*, NetScope*) const { ivl_assert(*this, save_elaborated_type); return save_elaborated_type; } /* * elaborate_type_raw for enumerations is actually mostly performed * during scope elaboration so that the enumeration literals are * available at the right time. At that time, the netenum_t* object is * stashed in the scope so that I can retrieve it here. */ ivl_type_s* enum_type_t::elaborate_type_raw(Design*des, NetScope*scope) const { ivl_assert(*this, scope); ivl_type_s*tmp = scope->enumeration_for_key(this); if (tmp) return tmp; tmp = des->enumeration_for_key(this); return tmp; } ivl_type_s* vector_type_t::elaborate_type_raw(Design*des, NetScope*scope) const { vector packed; elaborate_array_ranges(des, scope, packed, pdims.get()); netvector_t*tmp = new netvector_t(packed, base_type); tmp->set_signed(signed_flag); tmp->set_isint(integer_flag); return tmp; } ivl_type_s* real_type_t::elaborate_type_raw(Design*, NetScope*) const { switch (type_code) { case REAL: return &netreal_t::type_real; case SHORTREAL: return &netreal_t::type_shortreal; } return 0; } ivl_type_s* string_type_t::elaborate_type_raw(Design*, NetScope*) const { return &netstring_t::type_string; } ivl_type_s* parray_type_t::elaborate_type_raw(Design*des, NetScope*scope) const { vectorpacked; elaborate_array_ranges(des, scope, packed, dims.get()); ivl_type_t etype = base_type->elaborate_type(des, scope); return new netparray_t(packed, etype); } netstruct_t* struct_type_t::elaborate_type_raw(Design*des, NetScope*scope) const { netstruct_t*res = new netstruct_t; res->packed(packed_flag); if (union_flag) res->union_flag(true); for (list::iterator cur = members->begin() ; cur != members->end() ; ++ cur) { // Elaborate the type of the member. struct_member_t*curp = *cur; ivl_type_t mem_vec = curp->type->elaborate_type(des, scope); if (mem_vec == 0) continue; // There may be several names that are the same type: // name1, name2, ...; // Process all the member, and give them a type. for (list::iterator name = curp->names->begin() ; name != curp->names->end() ; ++ name) { decl_assignment_t*namep = *name; netstruct_t::member_t memb; memb.name = namep->name; memb.net_type = mem_vec; res->append_member(des, memb); } } return res; } ivl_type_s* uarray_type_t::elaborate_type_raw(Design*des, NetScope*scope) const { ivl_type_t btype = base_type->elaborate_type(des, scope); assert(dims->size() >= 1); list::const_iterator cur = dims->begin(); // Special case: if the dimension is nil:nil, this is a // dynamic array. Note that we only know how to handle dynamic // arrays with 1 dimension at a time. if (cur->first==0 && cur->second==0) { assert(dims->size()==1); ivl_type_s*res = new netdarray_t(btype); return res; } // Special case: if the dimension is null:nil. this is a queue. if (cur->second==0 && dynamic_cast(cur->first)) { cerr << get_fileline() << ": sorry: " << "SV queues inside classes are not yet supported." << endl; des->errors += 1; ivl_type_s*res = new netqueue_t(btype); return res; } vector dimensions; bool bad_range = evaluate_ranges(des, scope, dimensions, *dims); if (bad_range) { cerr << get_fileline() << " : warning: " << "Bad dimensions for type here." << endl; } ivl_assert(*this, btype); ivl_type_s*res = new netuarray_t(dimensions, btype); return res; }