/* * Copyright (c) 2001-2020 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "logic.h" # include "compile.h" # include "bufif.h" # include "npmos.h" # include "schedule.h" # include "delay.h" # include "statistics.h" # include # include # include # include vvp_fun_boolean_::vvp_fun_boolean_(unsigned wid) { net_ = 0; for (unsigned idx = 0 ; idx < 4 ; idx += 1) input_[idx] = vvp_vector4_t(wid, BIT4_Z); } vvp_fun_boolean_::~vvp_fun_boolean_() { } void vvp_fun_boolean_::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, vvp_context_t) { unsigned port = ptr.port(); if (input_[port] .eeq( bit )) return; input_[port] = bit; if (net_ == 0) { net_ = ptr.ptr(); schedule_functor(this); } } void vvp_fun_boolean_::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, unsigned base, unsigned vwid, vvp_context_t) { unsigned port = ptr.port(); assert(base + bit.size() <= vwid); // Set the part for the input. If nothing changes, then break. bool flag = input_[port] .set_vec(base, bit); if (flag == false) return; if (net_ == 0) { net_ = ptr.ptr(); schedule_functor(this); } } void vvp_fun_boolean_::recv_real(vvp_net_ptr_t ptr, double real, vvp_context_t ctx) { recv_vec4(ptr, double_to_vector4_LSB(real), ctx); } vvp_fun_and::vvp_fun_and(unsigned wid, bool invert) : vvp_fun_boolean_(wid), invert_(invert) { count_functors_logic += 1; } vvp_fun_and::~vvp_fun_and() { } void vvp_fun_and::run_run() { vvp_net_t*ptr = net_; net_ = 0; vvp_vector4_t result (input_[0]); for (unsigned idx = 0 ; idx < result.size() ; idx += 1) { vvp_bit4_t bitbit = result.value(idx); for (unsigned pdx = 1 ; pdx < 4 ; pdx += 1) { if (input_[pdx].size() < idx) { bitbit = BIT4_X; break; } bitbit = bitbit & input_[pdx].value(idx); } if (invert_) bitbit = ~bitbit; result.set_bit(idx, bitbit); } ptr->send_vec4(result, 0); } vvp_fun_equiv::vvp_fun_equiv() : vvp_fun_boolean_(1) { count_functors_logic += 1; } vvp_fun_equiv::~vvp_fun_equiv() { } void vvp_fun_equiv::run_run() { vvp_net_t*ptr = net_; net_ = 0; assert(input_[0].size() == 1); assert(input_[1].size() == 1); vvp_bit4_t bit = ~(input_[0].value(0) ^ input_[1].value(0)); vvp_vector4_t result (1, bit); ptr->send_vec4(result, 0); } vvp_fun_impl::vvp_fun_impl() : vvp_fun_boolean_(1) { count_functors_logic += 1; } vvp_fun_impl::~vvp_fun_impl() { } void vvp_fun_impl::run_run() { vvp_net_t*ptr = net_; net_ = 0; assert(input_[0].size() == 1); assert(input_[1].size() == 1); vvp_bit4_t bit = ~input_[0].value(0) | input_[1].value(0); vvp_vector4_t result (1, bit); ptr->send_vec4(result, 0); } vvp_fun_buf_not_::vvp_fun_buf_not_(unsigned wid) : input_(wid, BIT4_Z) { net_ = 0; } vvp_fun_buf_not_::~vvp_fun_buf_not_() { } void vvp_fun_buf_not_::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, vvp_context_t) { if (ptr.port() != 0) return; if (input_ .eeq( bit )) return; input_ = bit; if (net_ == 0) { net_ = ptr.ptr(); schedule_functor(this); } } void vvp_fun_buf_not_::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, unsigned base, unsigned vwid, vvp_context_t) { if (ptr.port() != 0) return; assert(base + bit.size() <= vwid); // Set the input part. If nothing changes, then break. bool flag = input_.set_vec(base, bit); if (flag == false) return; if (net_ == 0) { net_ = ptr.ptr(); schedule_functor(this); } } void vvp_fun_buf_not_::recv_real(vvp_net_ptr_t ptr, double real, vvp_context_t ctx) { if (ptr.port() != 0) return; recv_vec4(ptr, double_to_vector4_LSB(real), ctx); } vvp_fun_buf::vvp_fun_buf(unsigned wid) : vvp_fun_buf_not_(wid) { count_functors_logic += 1; } vvp_fun_buf::~vvp_fun_buf() { } /* * The buf functor is very simple--change the z bits to x bits in the * vector it passes, and propagate the result. */ void vvp_fun_buf::run_run() { vvp_net_t*ptr = net_; net_ = 0; vvp_vector4_t tmp (input_); tmp.change_z2x(); ptr->send_vec4(tmp, 0); } vvp_fun_bufz::vvp_fun_bufz() { count_functors_logic += 1; } vvp_fun_bufz::~vvp_fun_bufz() { } /* * The bufz is similar to the buf device, except that it does not * bother translating z bits to x. */ void vvp_fun_bufz::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, vvp_context_t) { if (ptr.port() != 0) return; ptr.ptr()->send_vec4(bit, 0); } void vvp_fun_bufz::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, unsigned base, unsigned vwid, vvp_context_t) { if (ptr.port() != 0) return; ptr.ptr()->send_vec4_pv(bit, base, vwid, 0); } void vvp_fun_bufz::recv_real(vvp_net_ptr_t ptr, double bit, vvp_context_t) { if (ptr.port() != 0) return; ptr.ptr()->send_real(bit, 0); } void vvp_fun_buft::recv_vec8(vvp_net_ptr_t ptr, const vvp_vector8_t&bit) { if (ptr.port() != 0) return; ptr.ptr()->send_vec8(bit); } vvp_fun_muxr::vvp_fun_muxr() : a_(0.0), b_(0.0) { net_ = 0; count_functors_logic += 1; select_ = SEL_BOTH; } vvp_fun_muxr::~vvp_fun_muxr() { } void vvp_fun_muxr::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, vvp_context_t) { /* The real valued mux can only take in the select as a vector4_t. The muxed data is real. */ if (ptr.port() != 2) return; assert(bit.size() == 1); switch (bit.value(0)) { case BIT4_0: if (select_ == SEL_PORT0) return; select_ = SEL_PORT0; break; case BIT4_1: if (select_ == SEL_PORT1) return; select_ = SEL_PORT1; break; default: if (select_ == SEL_BOTH) return; select_ = SEL_BOTH; } if (net_ == 0) { net_ = ptr.ptr(); schedule_functor(this); } } void vvp_fun_muxr::recv_real(vvp_net_ptr_t ptr, double bit, vvp_context_t) { switch (ptr.port()) { case 0: if (a_ == bit) return; a_ = bit; if (select_ == SEL_PORT1) return; // The other port is selected. break; case 1: if (b_ == bit) return; b_ = bit; if (select_ == SEL_PORT0) return; // The other port is selected. break; default: fprintf(stderr, "Unsupported port type %u.\n", ptr.port()); assert(0); } if (net_ == 0) { net_ = ptr.ptr(); schedule_functor(this); } } void vvp_fun_muxr::run_run() { vvp_net_t*ptr = net_; net_ = 0; switch (select_) { case SEL_PORT0: ptr->send_real(a_, 0); break; case SEL_PORT1: ptr->send_real(b_, 0); break; default: if (a_ == b_) { ptr->send_real(a_, 0); } else { ptr->send_real(0.0, 0); // Should this be NaN? } break; } } vvp_fun_muxz::vvp_fun_muxz(unsigned wid) : a_(wid, BIT4_Z), b_(wid, BIT4_Z) { net_ = 0; count_functors_logic += 1; select_ = SEL_BOTH; has_run_ = false; } vvp_fun_muxz::~vvp_fun_muxz() { } void vvp_fun_muxz::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, vvp_context_t) { switch (ptr.port()) { case 0: if (a_ .eeq(bit) && has_run_) return; a_ = bit; if (select_ == SEL_PORT1) return; // The other port is selected. break; case 1: if (b_ .eeq(bit) && has_run_) return; b_ = bit; if (select_ == SEL_PORT0) return; // The other port is selected. break; case 2: assert(bit.size() == 1); switch (bit.value(0)) { case BIT4_0: if (select_ == SEL_PORT0) return; select_ = SEL_PORT0; break; case BIT4_1: if (select_ == SEL_PORT1) return; select_ = SEL_PORT1; break; default: if (select_ == SEL_BOTH && has_run_) return; select_ = SEL_BOTH; } break; default: return; } if (net_ == 0) { net_ = ptr.ptr(); schedule_functor(this); } } void vvp_fun_muxz::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, unsigned base, unsigned vwid, vvp_context_t) { assert(base + bit.size() <= vwid); bool flag; switch (ptr.port()) { case 0: flag = a_.set_vec(base, bit); if (flag == false && has_run_) return; if (select_ == SEL_PORT1) return; // The other port is selected. break; case 1: flag = b_.set_vec(base, bit); if (flag == false && has_run_) return; if (select_ == SEL_PORT0) return; // The other port is selected. break; case 2: assert((base == 0) && (bit.size() == 1)); recv_vec4(ptr, bit, 0); default: return; } if (net_ == 0) { net_ = ptr.ptr(); schedule_functor(this); } } void vvp_fun_muxz::run_run() { has_run_ = true; vvp_net_t*ptr = net_; net_ = 0; switch (select_) { case SEL_PORT0: ptr->send_vec4(a_, 0); break; case SEL_PORT1: ptr->send_vec4(b_, 0); break; default: { unsigned min_size = a_.size(); unsigned max_size = min_size; if (b_.size() < min_size) min_size = b_.size(); if (b_.size() > max_size) max_size = b_.size(); vvp_vector4_t res (max_size); for (unsigned idx = 0 ; idx < min_size ; idx += 1) { if (a_.value(idx) == b_.value(idx)) res.set_bit(idx, a_.value(idx)); else res.set_bit(idx, BIT4_X); } for (unsigned idx = min_size ; idx < max_size ; idx += 1) res.set_bit(idx, BIT4_X); ptr->send_vec4(res, 0); } break; } } vvp_fun_not::vvp_fun_not(unsigned wid) : vvp_fun_buf_not_(wid) { count_functors_logic += 1; } vvp_fun_not::~vvp_fun_not() { } /* * The not functor is very simple--change the z bits to x bits in the * vector it passes, and propagate the inverted result. */ void vvp_fun_not::run_run() { vvp_net_t*ptr = net_; net_ = 0; vvp_vector4_t result (input_, true /* invert */); ptr->send_vec4(result, 0); } vvp_fun_or::vvp_fun_or(unsigned wid, bool invert) : vvp_fun_boolean_(wid), invert_(invert) { count_functors_logic += 1; } vvp_fun_or::~vvp_fun_or() { } void vvp_fun_or::run_run() { vvp_net_t*ptr = net_; net_ = 0; vvp_vector4_t result (input_[0]); for (unsigned idx = 0 ; idx < result.size() ; idx += 1) { vvp_bit4_t bitbit = result.value(idx); for (unsigned pdx = 1 ; pdx < 4 ; pdx += 1) { if (input_[pdx].size() < idx) { bitbit = BIT4_X; break; } bitbit = bitbit | input_[pdx].value(idx); } if (invert_) bitbit = ~bitbit; result.set_bit(idx, bitbit); } ptr->send_vec4(result, 0); } vvp_fun_xor::vvp_fun_xor(unsigned wid, bool invert) : vvp_fun_boolean_(wid), invert_(invert) { count_functors_logic += 1; } vvp_fun_xor::~vvp_fun_xor() { } void vvp_fun_xor::run_run() { vvp_net_t*ptr = net_; net_ = 0; vvp_vector4_t result (input_[0]); for (unsigned idx = 0 ; idx < result.size() ; idx += 1) { vvp_bit4_t bitbit = result.value(idx); for (unsigned pdx = 1 ; pdx < 4 ; pdx += 1) { if (input_[pdx].size() < idx) { bitbit = BIT4_X; break; } bitbit = bitbit ^ input_[pdx].value(idx); } if (invert_) bitbit = ~bitbit; result.set_bit(idx, bitbit); } ptr->send_vec4(result, 0); } /* * The parser calls this function to create a logic functor. I allocate a * functor, and map the name to the vvp_ipoint_t address for the * functor. Also resolve the inputs to the functor. */ void compile_functor(char*label, char*type, unsigned width, unsigned ostr0, unsigned ostr1, unsigned argc, struct symb_s*argv) { vvp_net_fun_t* obj = 0; bool strength_aware = false; if (strcmp(type, "OR") == 0) { obj = new vvp_fun_or(width, false); } else if (strcmp(type, "AND") == 0) { obj = new vvp_fun_and(width, false); } else if (strcmp(type, "BUF") == 0) { obj = new vvp_fun_buf(width); } else if (strcmp(type, "BUFIF0") == 0) { obj = new vvp_fun_bufif(true,false, ostr0, ostr1); strength_aware = true; } else if (strcmp(type, "BUFIF1") == 0) { obj = new vvp_fun_bufif(false,false, ostr0, ostr1); strength_aware = true; } else if (strcmp(type, "EQUIV") == 0) { obj = new vvp_fun_equiv(); } else if (strcmp(type, "IMPL") == 0) { obj = new vvp_fun_impl(); } else if (strcmp(type, "NAND") == 0) { obj = new vvp_fun_and(width, true); } else if (strcmp(type, "NOR") == 0) { obj = new vvp_fun_or(width, true); } else if (strcmp(type, "NOTIF0") == 0) { obj = new vvp_fun_bufif(true,true, ostr0, ostr1); strength_aware = true; } else if (strcmp(type, "NOTIF1") == 0) { obj = new vvp_fun_bufif(false,true, ostr0, ostr1); strength_aware = true; } else if (strcmp(type, "BUFT") == 0) { obj = new vvp_fun_buft(); } else if (strcmp(type, "BUFZ") == 0) { obj = new vvp_fun_bufz(); } else if (strcmp(type, "MUXR") == 0) { obj = new vvp_fun_muxr; } else if (strcmp(type, "MUXZ") == 0) { obj = new vvp_fun_muxz(width); } else if (strcmp(type, "CMOS") == 0) { obj = new vvp_fun_cmos(); } else if (strcmp(type, "NMOS") == 0) { obj = new vvp_fun_pmos(true); } else if (strcmp(type, "PMOS") == 0) { obj = new vvp_fun_pmos(false); } else if (strcmp(type, "RCMOS") == 0) { obj = new vvp_fun_rcmos(); } else if (strcmp(type, "RNMOS") == 0) { obj = new vvp_fun_rpmos(true); } else if (strcmp(type, "RPMOS") == 0) { obj = new vvp_fun_rpmos(false); } else if (strcmp(type, "NOT") == 0) { obj = new vvp_fun_not(width); } else if (strcmp(type, "XNOR") == 0) { obj = new vvp_fun_xor(width, true); } else if (strcmp(type, "XOR") == 0) { obj = new vvp_fun_xor(width, false); } else { yyerror("invalid functor type."); free(type); free(argv); free(label); return; } free(type); assert(argc <= 4); vvp_net_t*net = new vvp_net_t; net->fun = obj; inputs_connect(net, argc, argv); free(argv); /* If both the strengths are the default strong drive, then there is no need for a specialized driver. Attach the label to this node and we are finished. */ if (strength_aware || (ostr0 == 6 && ostr1 == 6)) { define_functor_symbol(label, net); free(label); return; } vvp_net_t*net_drv = new vvp_net_t; vvp_net_fun_t*obj_drv = new vvp_fun_drive(ostr0, ostr1); net_drv->fun = obj_drv; /* Point the gate to the drive node. */ net->link(vvp_net_ptr_t(net_drv, 0)); define_functor_symbol(label, net_drv); free(label); }