/* * Copyright (c) 2001 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #if !defined(WINNT) #ident "$Id: compile.cc,v 1.53 2001/05/02 23:16:50 steve Exp $" #endif # include "compile.h" # include "functor.h" # include "udp.h" # include "memory.h" # include "symbols.h" # include "codes.h" # include "schedule.h" # include "vpi_priv.h" # include "vthread.h" # include "parse_misc.h" # include # include # include # include unsigned compile_errors = 0; /* * The opcode table lists all the code mnemonics, along with their * opcode and operand types. The table is written sorted by mnemonic * so that it can be searched by binary search. The opcode_compare * function is a helper function for that lookup. */ enum operand_e { /* Place holder for unused operand */ OA_NONE, /* The operand is a number, an immediate unsigned integer */ OA_NUMBER, /* The operand is a thread bit index */ OA_BIT1, OA_BIT2, /* The operand is a pointer to code space */ OA_CODE_PTR, /* The operand is a variable or net pointer */ OA_FUNC_PTR, /* The operand is a pointer to a memory */ OA_MEM_PTR, }; struct opcode_table_s { const char*mnemonic; vvp_code_fun opcode; unsigned argc; enum operand_e argt[OPERAND_MAX]; }; const static struct opcode_table_s opcode_table[] = { { "%add", of_ADD, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%and", of_AND, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%assign", of_ASSIGN, 3, {OA_FUNC_PTR, OA_BIT1, OA_BIT2} }, { "%assign/m",of_ASSIGN_MEM,3,{OA_MEM_PTR,OA_BIT1, OA_BIT2} }, { "%cmp/s", of_CMPS, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%cmp/u", of_CMPU, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%cmp/x", of_CMPX, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%cmp/z", of_CMPZ, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%delay", of_DELAY, 1, {OA_NUMBER, OA_NONE, OA_NONE} }, { "%end", of_END, 0, {OA_NONE, OA_NONE, OA_NONE} }, { "%inv", of_INV, 2, {OA_BIT1, OA_BIT2, OA_NONE} }, { "%ix/add", of_IX_ADD, 2, {OA_BIT1, OA_NUMBER, OA_NONE} }, { "%ix/load",of_IX_LOAD,2, {OA_BIT1, OA_NUMBER, OA_NONE} }, { "%ix/mul", of_IX_MUL, 2, {OA_BIT1, OA_NUMBER, OA_NONE} }, { "%ix/sub", of_IX_SUB, 2, {OA_BIT1, OA_NUMBER, OA_NONE} }, { "%jmp", of_JMP, 1, {OA_CODE_PTR, OA_NONE, OA_NONE} }, { "%jmp/0", of_JMP0, 2, {OA_CODE_PTR, OA_BIT1, OA_NONE} }, { "%jmp/0xz",of_JMP0XZ, 2, {OA_CODE_PTR, OA_BIT1, OA_NONE} }, { "%jmp/1", of_JMP1, 2, {OA_CODE_PTR, OA_BIT1, OA_NONE} }, { "%join", of_JOIN, 0, {OA_NONE, OA_NONE, OA_NONE} }, { "%load", of_LOAD, 2, {OA_BIT1, OA_FUNC_PTR, OA_NONE} }, { "%load/m", of_LOAD_MEM,2, {OA_BIT1, OA_MEM_PTR, OA_NONE} }, { "%mov", of_MOV, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%noop", of_NOOP, 0, {OA_NONE, OA_NONE, OA_NONE} }, { "%nor/r", of_NORR, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%or", of_OR, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%set", of_SET, 2, {OA_FUNC_PTR, OA_BIT1, OA_NONE} }, { "%set/m", of_SET_MEM,2, {OA_MEM_PTR, OA_BIT1, OA_NONE} }, { "%sub", of_SUB, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%wait", of_WAIT, 1, {OA_FUNC_PTR, OA_NONE, OA_NONE} }, { "%xnor", of_XNOR, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { "%xor", of_XOR, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} }, { 0, of_NOOP, 0, {OA_NONE, OA_NONE, OA_NONE} } }; static unsigned opcode_count = 0; //static const unsigned opcode_count // = sizeof(opcode_table)/sizeof(*opcode_table) - 1; // No? static int opcode_compare(const void*k, const void*r) { const char*kp = (const char*)k; const struct opcode_table_s*rp = (const struct opcode_table_s*)r; return strcmp(kp, rp->mnemonic); } /* * Keep a symbol table of addresses within code space. Labels on * executable opcodes are mapped to their address here. */ static symbol_table_t sym_codespace = 0; /* * Keep a symbol table of functors mentioned in the source. This table * is used to resolve references as they come. */ static symbol_table_t sym_functors = 0; /* * VPI objects are indexed during compile time so that they can be * linked together as they are created. This symbol table matches * labels to vpiHandles. */ static symbol_table_t sym_vpi = 0; /* * If a functor parameter makes a forward reference to a functor, then * I need to save that reference and resolve it after the functors are * created. Use this structure to keep the unresolved references in an * unsorted singly linked list. * * The postpone_functor_input arranges for a functor input to be * resolved and connected at cleanup. This is used if the symbol is * defined after its use in a functor. The ptr parameter is the * complete vvp_input_t for the input port. */ struct resolv_list_s { struct resolv_list_s*next; vvp_ipoint_t port; char*source; unsigned idx; }; static struct resolv_list_s*resolv_list = 0; static void postpone_functor_input(vvp_ipoint_t ptr, char*lab, unsigned idx) { struct resolv_list_s*res = (struct resolv_list_s*) calloc(1, sizeof(struct resolv_list_s)); res->port = ptr; res->source = lab; res->idx = idx; res->next = resolv_list; resolv_list = res; } /* * Instructions may make forward references to labels. In this case, * the compile makes one of these to remember to retry the * resolution. */ struct cresolv_list_s { struct cresolv_list_s*next; struct vvp_code_s*cp; char*lab; }; static struct cresolv_list_s*cresolv_list = 0; void compile_vpi_symbol(const char*label, vpiHandle obj) { symbol_value_t val; val.ptr = obj; sym_set_value(sym_vpi, label, val); } /* * Initialize the compiler by allocation empty symbol tables and * initializing the various address spaces. */ void compile_init(void) { sym_vpi = new_symbol_table(); compile_vpi_symbol("$time", vpip_sim_time()); sym_functors = new_symbol_table(); functor_init(); sym_codespace = new_symbol_table(); codespace_init(); opcode_count = 0; while (opcode_table[opcode_count].mnemonic) opcode_count += 1; } void compile_load_vpi_module(char*name) { vpip_load_module(name, module_path); free(name); } /* * Add a functor to the symbol table */ static void define_functor_symbol(char*label, vvp_ipoint_t fdx) { symbol_value_t val; val.num = fdx; sym_set_value(sym_functors, label, val); } /* * Run through the arguments looking for the functors that are * connected to my input ports. For each source functor that I * find, connect the output of that functor to the indexed * input by inserting myself (complete with the port number in * the vvp_ipoint_t) into the list that the source heads. * * If the source functor is not declared yet, then don't do * the link yet. Save the reference to be resolved later. * * If the source is a constant value, then set the ival of the functor * and skip the symbol lookup. */ static void inputs_connect(vvp_ipoint_t fdx, unsigned argc, struct symb_s*argv) { for (unsigned idx = 0; idx < argc; idx += 1) { /* Find the functor for this input. This assumes that wide (more then 4 inputs) gates are consecutive functors. */ vvp_ipoint_t ifdx = ipoint_input_index(fdx, idx); functor_t iobj = functor_index(ifdx); if (strcmp(argv[idx].text, "C<0>") == 0) { free(argv[idx].text); iobj->ival &= ~(3 << idx*2); continue; } if (strcmp(argv[idx].text, "C<1>") == 0) { free(argv[idx].text); iobj->ival &= ~(3 << idx*2); iobj->ival |= 1 << idx*2; continue; } symbol_value_t val = sym_get_value(sym_functors, argv[idx].text); vvp_ipoint_t tmp = val.num; if (tmp) { tmp = ipoint_index(tmp, argv[idx].idx); functor_t fport = functor_index(tmp); iobj->port[ipoint_port(ifdx)] = fport->out; fport->out = ifdx; free(argv[idx].text); } else { postpone_functor_input(ifdx, argv[idx].text, argv[idx].idx); } } free(argv); } /* * The parser calls this function to create a functor. I allocate a * functor, and map the name to the vvp_ipoint_t address for the * functor. Also resolve the inputs to the functor. */ void compile_functor(char*label, char*type, unsigned argc, struct symb_s*argv) { vvp_ipoint_t fdx = functor_allocate(1); functor_t obj = functor_index(fdx); define_functor_symbol(label, fdx); assert(argc <= 4); obj->ival = 0x33; obj->oval = 2; obj->mode = 0; if (strcmp(type, "OR") == 0) { obj->table = ft_OR; } else if (strcmp(type, "AND") == 0) { obj->table = ft_AND; } else if (strcmp(type, "BUF") == 0) { obj->table = ft_BUF; } else if (strcmp(type, "BUFIF0") == 0) { obj->table = ft_BUFIF0; } else if (strcmp(type, "BUFIF1") == 0) { obj->table = ft_BUFIF1; } else if (strcmp(type, "MUXZ") == 0) { obj->table = ft_MUXZ; } else if (strcmp(type, "NAND") == 0) { obj->table = ft_NAND; } else if (strcmp(type, "NOR") == 0) { obj->table = ft_NOR; } else if (strcmp(type, "NOT") == 0) { obj->table = ft_NOT; } else if (strcmp(type, "XNOR") == 0) { obj->table = ft_XNOR; } else if (strcmp(type, "XOR") == 0) { obj->table = ft_XOR; } else { yyerror("invalid functor type."); } /* Connect the inputs of this functor to the given symbols. If there are C inputs, set the ival appropriately. */ inputs_connect(fdx, argc, argv); /* Recalculate the output based on the given ival. if the oval turns out to *not* be x, then schedule the functor so that the value gets propagated. */ unsigned char out = obj->table[obj->ival >> 2]; obj->oval = 3 & (out >> 2 * (obj->ival&3)); if (obj->oval != 2) schedule_functor(fdx, 0); free(label); free(type); } void compile_udp_def(int sequ, char *label, char *name, unsigned nin, unsigned init, char **table) { struct vvp_udp_s *u = udp_create(label); u->name = name; u->sequ = sequ; u->nin = nin; u->init = init; u->table = table; free(label); } char **compile_udp_table(char **table, char *row) { if (table) assert(strlen(*table)==strlen(row)); char **tt; for (tt = table; tt && *tt; tt++); int n = (tt-table) + 2; table = (char**)realloc(table, n*sizeof(char*)); table[n-2] = row; table[n-1] = 0x0; return table; } void compile_udp_functor(char*label, char*type, unsigned argc, struct symb_s*argv) { struct vvp_udp_s *u = udp_find(type); assert (argc == u->nin); int nfun = (argc+3)/4; vvp_ipoint_t fdx = functor_allocate(nfun); functor_t obj = functor_index(fdx); define_functor_symbol(label, fdx); free(label); for (unsigned idx = 0; idx < argc; idx += 4) { vvp_ipoint_t ifdx = ipoint_input_index(fdx, idx); functor_t iobj = functor_index(ifdx); iobj->ival = 0xaa; iobj->old_ival = obj->ival; iobj->oval = u->init; iobj->mode = M42; if (idx) { iobj->out = fdx; iobj->udp = 0; } else { iobj->udp = u; } } inputs_connect(fdx, argc, argv); } void compile_memory(char *label, char *name, int msb, int lsb, unsigned idxs, long *idx) { vvp_memory_t mem = memory_create(label); free(label); memory_new(mem, name, lsb, msb, idxs, idx); } void compile_memory_port(char *label, char *memid, unsigned msb, unsigned lsb, unsigned argc, struct symb_s *argv) { vvp_memory_t mem = memory_find(memid); free(memid); assert(mem); // These is not a Verilog bit range. // These is a data port bit range. assert (lsb >= 0 && lsb<=msb); assert (msb < memory_data_width(mem)); unsigned nbits = msb-lsb+1; unsigned awidth = memory_addr_width(mem); unsigned nfun = (awidth + 3)/4; if (nfun < nbits) nfun = nbits; vvp_ipoint_t ix = functor_allocate(nfun); assert(argc == awidth); define_functor_symbol(label, ix); free(label); inputs_connect(ix, argc, argv); memory_port_new(mem, ix, nbits, lsb); } void compile_memory_init(char *memid, unsigned i, unsigned char val) { static vvp_memory_t mem = 0x0; static unsigned idx; if (memid) { mem = memory_find(memid); free(memid); idx = i/4; } assert(mem); memory_init_nibble(mem, idx, val); idx++; } void compile_event(char*label, char*type, unsigned argc, struct symb_s*argv) { vvp_ipoint_t fdx = functor_allocate(1); functor_t obj = functor_index(fdx); define_functor_symbol(label, fdx); assert(argc <= 4); /* Run through the arguments looking for the functors that are connected to my input ports. For each source functor that I find, connect the output of that functor to the indexed input by inserting myself (complete with the port number in the vvp_ipoint_t) into the list that the source heads. If the source functor is not declared yet, then don't do the link yet. Save the reference to be resolved later. */ inputs_connect(fdx, argc, argv); obj->ival = 0xaa; obj->oval = 2; obj->mode = 1; obj->out = 0; obj->event = (struct vvp_event_s*) malloc(sizeof (struct vvp_event_s)); obj->event->threads = 0; obj->event->ival = obj->ival; if (strcmp(type,"posedge") == 0) obj->event->vvp_edge_tab = vvp_edge_posedge; else if (strcmp(type,"negedge") == 0) obj->event->vvp_edge_tab = vvp_edge_negedge; else if (strcmp(type,"edge") == 0) obj->event->vvp_edge_tab = vvp_edge_anyedge; else obj->event->vvp_edge_tab = 0; free(type); free(label); } void compile_named_event(char*label, char*name) { vvp_ipoint_t fdx = functor_allocate(1); functor_t obj = functor_index(fdx); define_functor_symbol(label, fdx); obj->ival = 0xaa; obj->oval = 2; obj->mode = 2; obj->out = 0; obj->event = (struct vvp_event_s*) malloc(sizeof (struct vvp_event_s)); obj->event->threads = 0; obj->event->ival = obj->ival; free(label); free(name); } void compile_event_or(char*label, unsigned argc, struct symb_s*argv) { vvp_ipoint_t fdx = functor_allocate(1); functor_t obj = functor_index(fdx); define_functor_symbol(label, fdx); obj->ival = 0xaa; obj->oval = 2; obj->mode = 2; obj->out = 0; obj->event = new struct vvp_event_s; obj->event->threads = 0; obj->event->ival = obj->ival; /* Link the outputs of the named events to me. */ for (unsigned idx = 0 ; idx < argc ; idx += 1) { symbol_value_t val = sym_get_value(sym_functors, argv[idx].text); vvp_ipoint_t tmp = val.num; assert(tmp); tmp = ipoint_index(tmp, argv[idx].idx); functor_t fport = functor_index(tmp); assert(fport->out == 0); fport->out = fdx; free(argv[idx].text); } free(argv); free(label); } /* * The parser uses this function to compile an link an executable * opcode. I do this by looking up the opcode in the opcode_table. The * table gives the operand structure that is acceptible, so I can * process the operands here as well. */ void compile_code(char*label, char*mnem, comp_operands_t opa) { vvp_cpoint_t ptr = codespace_allocate(); /* First, I can give the label a value that is the current codespace pointer. Don't need the text of the label after this is done. */ if (label) { symbol_value_t val; val.num = ptr; sym_set_value(sym_codespace, label, val); free(label); } /* Lookup the opcode in the opcode table. */ struct opcode_table_s*op = (struct opcode_table_s*) bsearch(mnem, opcode_table, opcode_count, sizeof(struct opcode_table_s), &opcode_compare); if (op == 0) { yyerror("Invalid opcode"); return; } assert(op); /* Build up the code from the information about the opcode and the information from the comiler. */ vvp_code_t code = codespace_index(ptr); code->opcode = op->opcode; if (op->argc != (opa? opa->argc : 0)) { yyerror("operand count"); return; } /* Pull the operands that the instruction expects from the list that the parser supplied. */ for (unsigned idx = 0 ; idx < op->argc ; idx += 1) { symbol_value_t tmp; switch (op->argt[idx]) { case OA_NONE: break; case OA_BIT1: if (opa->argv[idx].ltype != L_NUMB) { yyerror("operand format"); break; } code->bit_idx1 = opa->argv[idx].numb; break; case OA_BIT2: if (opa->argv[idx].ltype != L_NUMB) { yyerror("operand format"); break; } code->bit_idx2 = opa->argv[idx].numb; break; case OA_CODE_PTR: if (opa->argv[idx].ltype != L_SYMB) { yyerror("operand format"); break; } assert(opa->argv[idx].symb.idx == 0); tmp = sym_get_value(sym_codespace, opa->argv[idx].symb.text); code->cptr = tmp.num; if (code->cptr == 0) { struct cresolv_list_s*res = (struct cresolv_list_s*) calloc(1, sizeof(struct cresolv_list_s)); res->cp = code; res->lab = opa->argv[idx].symb.text; res->next = cresolv_list; cresolv_list = res; } else { free(opa->argv[idx].symb.text); } break; case OA_FUNC_PTR: if (opa->argv[idx].ltype != L_SYMB) { yyerror("operand format"); break; } tmp = sym_get_value(sym_functors, opa->argv[idx].symb.text); if (tmp.num == 0) { yyerror("functor undefined"); break; } code->iptr = ipoint_index(tmp.num, opa->argv[idx].symb.idx); free(opa->argv[idx].symb.text); break; case OA_NUMBER: if (opa->argv[idx].ltype != L_NUMB) { yyerror("operand format"); break; } code->number = opa->argv[idx].numb; break; case OA_MEM_PTR: if (opa->argv[idx].ltype != L_SYMB) { yyerror("operand format"); break; } code->mem = memory_find(opa->argv[idx].symb.text); if (code->mem == 0) { yyerror("memory undefined"); } free(opa->argv[idx].symb.text); break; } } if (opa) free(opa); free(mnem); } void compile_codelabel(char*label) { symbol_value_t val; vvp_cpoint_t ptr = codespace_next(); val.num = ptr; sym_set_value(sym_codespace, label, val); free(label); } void compile_disable(char*label, struct symb_s symb) { vvp_cpoint_t ptr = codespace_allocate(); /* First, I can give the label a value that is the current codespace pointer. Don't need the text of the label after this is done. */ if (label) { symbol_value_t val; val.num = ptr; sym_set_value(sym_codespace, label, val); } /* Fill in the basics of the %disable in the instruction. */ vvp_code_t code = codespace_index(ptr); code->opcode = of_DISABLE; /* Figure out the target SCOPE. */ code->handle = compile_vpi_lookup(symb.text); assert(code->handle); free(label); free(symb.text); } /* * The %fork instruction is a little different from other instructions * in that it has an extended field that holds the information needed * to create the new thread. This includes the target PC and scope. * I get these from the parser in the form of symbols. */ void compile_fork(char*label, struct symb_s dest, struct symb_s scope) { symbol_value_t tmp; vvp_cpoint_t ptr = codespace_allocate(); /* First, I can give the label a value that is the current codespace pointer. Don't need the text of the label after this is done. */ if (label) { symbol_value_t val; val.num = ptr; sym_set_value(sym_codespace, label, val); } /* Fill in the basics of the %fork in the instruction. */ vvp_code_t code = codespace_index(ptr); code->opcode = of_FORK; code->fork = new struct fork_extend; /* Figure out the target PC. */ tmp = sym_get_value(sym_codespace, dest.text); code->fork->cptr = tmp.num; if (code->fork->cptr == 0) { struct cresolv_list_s*res = new cresolv_list_s; res->cp = code; res->lab = dest.text; res->next = cresolv_list; cresolv_list = res; dest.text = 0; } /* Figure out the target SCOPE. */ vpiHandle sh = compile_vpi_lookup(scope.text); assert(sh); code->fork->scope = (struct __vpiScope*)sh; free(label); free(dest.text); free(scope.text); } void compile_vpi_call(char*label, char*name, unsigned argc, vpiHandle*argv) { vvp_cpoint_t ptr = codespace_allocate(); /* First, I can give the label a value that is the current codespace pointer. Don't need the text of the label after this is done. */ if (label) { symbol_value_t val; val.num = ptr; sym_set_value(sym_codespace, label, val); free(label); } /* Create an instruction in the code space. */ vvp_code_t code = codespace_index(ptr); code->opcode = &of_VPI_CALL; /* Create a vpiHandle that bundles the call information, and store that handle in the instruction. */ code->handle = vpip_build_vpi_call(name, argc, argv); if (code->handle == 0) compile_errors += 1; /* Done with the lexor-allocated name string. */ free(name); } /* * When the parser finds a thread statement, I create a new thread * with the start address referenced by the program symbol passed to * me. */ void compile_thread(char*start_sym) { symbol_value_t tmp = sym_get_value(sym_codespace, start_sym); vvp_cpoint_t pc = tmp.num; if (pc == 0) { yyerror("unresolved address"); return; } vthread_t thr = vthread_new(pc, vpip_peek_current_scope()); schedule_vthread(thr, 0); free(start_sym); } vpiHandle compile_vpi_lookup(const char*label) { symbol_value_t val; val = sym_get_value(sym_vpi, label); return (vpiHandle) val.ptr; } /* * A variable is a special functor, so we allocate that functor and * write the label into the symbol table. */ void compile_variable(char*label, char*name, int msb, int lsb, bool signed_flag) { unsigned wid = ((msb > lsb)? msb-lsb : lsb-msb) + 1; vvp_ipoint_t fdx = functor_allocate(wid); define_functor_symbol(label, fdx); for (unsigned idx = 0 ; idx < wid ; idx += 1) { functor_t obj = functor_index(ipoint_index(fdx,idx)); obj->table = ft_var; obj->ival = 0x22; obj->oval = 0x02; obj->mode = 0; } /* Make the vpiHandle for the reg. */ vpiHandle obj = vpip_make_reg(name, msb, lsb, signed_flag, fdx); compile_vpi_symbol(label, obj); free(label); } void compile_net(char*label, char*name, int msb, int lsb, bool signed_flag, unsigned argc, struct symb_s*argv) { unsigned wid = ((msb > lsb)? msb-lsb : lsb-msb) + 1; vvp_ipoint_t fdx = functor_allocate(wid); define_functor_symbol(label, fdx); /* Allocate all the functors for the net itself. */ for (unsigned idx = 0 ; idx < wid ; idx += 1) { functor_t obj = functor_index(ipoint_index(fdx,idx)); obj->table = ft_var; obj->ival = 0x22; obj->oval = 0x02; obj->mode = 0; } assert(argc == wid); /* Connect port[0] of each of the net functors to the output of the addressed object. */ for (unsigned idx = 0 ; idx < wid ; idx += 1) { vvp_ipoint_t ptr = ipoint_index(fdx,idx); functor_t obj = functor_index(ptr); /* Skip unconnected nets. */ if (argv[idx].text == 0) { obj->oval = 3; continue; } if (strcmp(argv[idx].text, "C<0>") == 0) { obj->oval = 0; continue; } if (strcmp(argv[idx].text, "C<1>") == 0) { obj->oval = 1; continue; } if (strcmp(argv[idx].text, "C") == 0) { obj->oval = 2; continue; } if (strcmp(argv[idx].text, "C") == 0) { obj->oval = 3; continue; } symbol_value_t val = sym_get_value(sym_functors, argv[idx].text); if (val.num) { functor_t src = functor_index(ipoint_index(val.num, argv[idx].idx)); obj->port[0] = src->out; src->out = ptr; } else { postpone_functor_input(ipoint_make(ptr, 0), argv[idx].text, argv[idx].idx); } } /* Make the vpiHandle for the reg. */ vpiHandle obj = vpip_make_net(name, msb, lsb, signed_flag, fdx); compile_vpi_symbol(label, obj); free(label); free(argv); } /* * When parsing is otherwise complete, this function is called to do * the final stuff. Clean up deferred linking here. */ void compile_cleanup(void) { struct resolv_list_s*tmp_list = resolv_list; resolv_list = 0; while (tmp_list) { struct resolv_list_s*res = tmp_list; tmp_list = res->next; /* Get the addressed functor object and select the input port that needs resolution. */ functor_t obj = functor_index(res->port); unsigned idx = ipoint_port(res->port); /* Try again to look up the symbol that was not defined the first time around. */ symbol_value_t val = sym_get_value(sym_functors, res->source); vvp_ipoint_t tmp = val.num; if (tmp != 0) { /* The symbol is defined, link the functor input to the resolved output. */ tmp = ipoint_index(tmp, res->idx); functor_t fport = functor_index(tmp); obj->port[idx] = fport->out; fport->out = res->port; free(res->source); free(res); } else { /* Still not resolved. put back into the list. */ fprintf(stderr, "unresolved functor reference: %s\n", res->source); res->next = resolv_list; resolv_list = res; } } struct cresolv_list_s*tmp_clist = cresolv_list; cresolv_list = 0; while (tmp_clist) { struct cresolv_list_s*res = tmp_clist; tmp_clist = res->next; symbol_value_t val = sym_get_value(sym_codespace, res->lab); vvp_cpoint_t tmp = val.num; if (tmp != 0) { /* Resolved the reference. If this is a %fork, then handle it slightly differently. */ if (res->cp->opcode == of_FORK) res->cp->fork->cptr = tmp; else res->cp->cptr = tmp; free(res->lab); } else { fprintf(stderr, "unresolved code label: %s\n", res->lab); res->next = cresolv_list; cresolv_list = res; } } } void compile_dump(FILE*fd) { fprintf(fd, "FUNCTOR SYMBOL TABLE:\n"); sym_dump(sym_functors, fd); fprintf(fd, "FUNCTORS:\n"); functor_dump(fd); fprintf(fd, "UNRESOLVED PORT INPUTS:\n"); for (struct resolv_list_s*cur = resolv_list ; cur ; cur = cur->next) fprintf(fd, " %08x: %s\n", cur->port, cur->source); fprintf(fd, "CODE SPACE SYMBOL TABLE:\n"); sym_dump(sym_codespace, fd); fprintf(fd, "CODE SPACE DISASSEMBLY:\n"); codespace_dump(fd); } /* * $Log: compile.cc,v $ * Revision 1.53 2001/05/02 23:16:50 steve * Document memory related opcodes, * parser uses numbv_s structures instead of the * symbv_s and a mess of unions, * Add the %is/sub instruction. * (Stephan Boettcher) * * Revision 1.52 2001/05/02 04:05:17 steve * Remove the init parameter of functors, and instead use * the special C symbols to initialize inputs. This is * clearer and more regular. * * Revision 1.51 2001/05/02 01:57:25 steve * Support behavioral subtraction. * * Revision 1.50 2001/05/01 05:00:02 steve * Implement %ix/load. * * Revision 1.49 2001/05/01 02:18:15 steve * Account for ipoint_input_index behavior in inputs_connect. * * Revision 1.48 2001/05/01 01:09:39 steve * Add support for memory objects. (Stephan Boettcher) * * Revision 1.47 2001/04/30 03:53:19 steve * Fix up functor inputs to support C values. * * Revision 1.46 2001/04/29 23:13:33 steve * Add bufif0 and bufif1 functors. * * Revision 1.45 2001/04/29 22:59:46 steve * Support .net constant inputs. * * Revision 1.44 2001/04/28 20:24:03 steve * input connect cleanup. (Stephan Boettcher) * * Revision 1.43 2001/04/26 15:52:22 steve * Add the mode-42 functor concept to UDPs. * * Revision 1.42 2001/04/26 05:12:02 steve * Implement simple MUXZ for ?: operators. * * Revision 1.41 2001/04/26 03:10:55 steve * Redo and simplify UDP behavior. * * Revision 1.40 2001/04/24 03:48:53 steve * Fix underflow when UDP has 1 input. * * Revision 1.39 2001/04/24 02:23:59 steve * Support for UDP devices in VVP (Stephen Boettcher) * * Revision 1.38 2001/04/23 00:37:58 steve * Support unconnected .net objects. * * Revision 1.37 2001/04/21 02:04:01 steve * Add NAND and XNOR functors. * * Revision 1.36 2001/04/18 05:03:49 steve * Resolve forward references for %fork. * * Revision 1.35 2001/04/18 04:21:23 steve * Put threads into scopes. * * Revision 1.34 2001/04/15 16:37:48 steve * add XOR support. * * Revision 1.33 2001/04/15 04:07:56 steve * Add support for behavioral xnor. * * Revision 1.32 2001/04/14 05:10:56 steve * support the .event/or statement. * * Revision 1.31 2001/04/13 03:55:18 steve * More complete reap of all threads. * * Revision 1.30 2001/04/05 01:34:26 steve * Add the .var/s and .net/s statements for VPI support. * * Revision 1.29 2001/04/05 01:12:28 steve * Get signed compares working correctly in vvp. * * Revision 1.28 2001/04/01 22:25:33 steve * Add the reduction nor instruction. * * Revision 1.27 2001/04/01 21:31:46 steve * Add the buf functor type. * * Revision 1.26 2001/04/01 07:22:08 steve * Implement the less-then and %or instructions. * * Revision 1.25 2001/04/01 06:40:45 steve * Support empty statements for hanging labels. * * Revision 1.24 2001/04/01 06:12:13 steve * Add the bitwise %and instruction. * * Revision 1.23 2001/04/01 04:34:28 steve * Implement %cmp/x and %cmp/z instructions. * * Revision 1.22 2001/03/31 19:00:43 steve * Add VPI support for the simulation time. * * Revision 1.21 2001/03/31 17:36:02 steve * Add the jmp/1 instruction. * * Revision 1.20 2001/03/31 01:59:59 steve * Add the ADD instrunction. * * Revision 1.19 2001/03/30 04:55:22 steve * Add fork and join instructions. * * Revision 1.18 2001/03/29 03:46:36 steve * Support named events as mode 2 functors. * * Revision 1.17 2001/03/28 17:24:32 steve * include string.h for strcmp et al. * * Revision 1.16 2001/03/26 04:00:39 steve * Add the .event statement and the %wait instruction. * * Revision 1.15 2001/03/25 19:38:23 steve * Support NOR and NOT gates. * * Revision 1.14 2001/03/25 03:54:26 steve * Add JMP0XZ and postpone net inputs when needed. * * Revision 1.13 2001/03/25 00:35:35 steve * Add the .net statement. */