/* * Copyright (c) 2003-2020 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This file includes functions for evaluating REAL expressions. */ # include "vvp_priv.h" # include # include # include # include # include static unsigned long word_alloc_mask = 0x0f; int allocate_word() { int res = 4; while (res < WORD_COUNT && (1U << res) & word_alloc_mask) res += 1; if (res >= WORD_COUNT) { fprintf(stderr, "vvp.tgt error: Thread words (%d) exhausted " "during VVP code generation.\n", WORD_COUNT); exit(1); } word_alloc_mask |= 1U << res; return res; } void clr_word(int res) { assert(res < WORD_COUNT); word_alloc_mask &= ~ (1U << res); } static void draw_binary_real(ivl_expr_t expr) { switch (ivl_expr_opcode(expr)) { case 'E': case 'N': case 'w': case 'W': case 'l': case 'r': case 'R': case '&': case '|': case '^': case 'A': case 'O': case 'X': /* These should be caught in draw_eval_real(). */ assert(0); } draw_eval_real(ivl_expr_oper1(expr)); draw_eval_real(ivl_expr_oper2(expr)); switch (ivl_expr_opcode(expr)) { case '+': fprintf(vvp_out, " %%add/wr;\n"); break; case '-': fprintf(vvp_out, " %%sub/wr;\n"); break; case '*': fprintf(vvp_out, " %%mul/wr;\n"); break; case '/': fprintf(vvp_out, " %%div/wr;\n"); break; case '%': fprintf(vvp_out, " %%mod/wr;\n"); break; case 'p': fprintf(vvp_out, " %%pow/wr;\n"); break; case 'm': fprintf(vvp_out, " %%min/wr;\n"); break; case 'M': fprintf(vvp_out, " %%max/wr;\n"); break; default: fprintf(stderr, "vvp.tgt error: draw_binary_real(%c)\n", ivl_expr_opcode(expr)); assert(0); } } static void draw_number_real(ivl_expr_t expr) { unsigned int idx; const char*bits = ivl_expr_bits(expr); unsigned wid = ivl_expr_width(expr); unsigned long mant = 0; int vexp = 0x1000; /* If this is a negative number, then arrange for the 2's complement to be calculated as we scan through the value. Real values are sign-magnitude, and this negation gets us a magnitude. */ int negate = 0; int carry = 0; if (ivl_expr_signed(expr) && (bits[wid-1] == '1')) { negate = 1; carry = 1; } for (idx = 0 ; idx < wid && idx < IMM_WID ; idx += 1) { int cur_bit = bits[idx] == '1'? 1 : 0; if (negate) { cur_bit ^= 1; cur_bit += carry; carry = (cur_bit >> 1) & 1; cur_bit &= 1; } if (cur_bit) mant |= 1 << idx; } for ( ; idx < wid ; idx += 1) { if (ivl_expr_signed(expr) && (bits[idx] == bits[IMM_WID-1])) continue; if (bits[idx] == '0') continue; fprintf(stderr, "vvp.tgt error: mantissa doesn't fit!\n"); assert(0); } /* If required, add in a sign bit. */ if (negate) vexp |= 0x4000; fprintf(vvp_out, " %%pushi/real %lu, %d; load(num)= %c%lu (wid=%u)\n", mant, vexp, (vexp&0x4000)? '-' : '+', mant, wid); } static void draw_property_real(ivl_expr_t expr) { ivl_signal_t sig = ivl_expr_signal(expr); unsigned pidx = ivl_expr_property_idx(expr); fprintf(vvp_out, " %%load/obj v%p_0;\n", sig); fprintf(vvp_out, " %%prop/r %u;\n", pidx); fprintf(vvp_out, " %%pop/obj 1, 0;\n"); } static void draw_realnum_real(ivl_expr_t expr) { double value = ivl_expr_dvalue(expr); double fract; int expo, vexp; unsigned long mant; int sign = 0; /* Handle the special case that the value is +-inf. */ if (isinf(value)) { if (value > 0) fprintf(vvp_out, " %%pushi/real 0, %d; load=+inf\n", 0x3fff); else fprintf(vvp_out, " %%pushi/real 0, %d; load=-inf\n", 0x7fff); return; } /* Handle the special case that the value is NaN. */ if (value != value) { fprintf(vvp_out, " %%pushi/real 1, %d; load=NaN\n", 0x3fff); return; } if (value < 0) { sign = 0x4000; value *= -1; } fract = frexp(value, &expo); fract = ldexp(fract, 31); mant = fract; expo -= 31; vexp = expo + 0x1000; assert(vexp >= 0); assert(vexp < 0x2000); vexp += sign; fprintf(vvp_out, " %%pushi/real %lu, %d; load=%#g\n", mant, vexp, ivl_expr_dvalue(expr)); /* Capture the residual bits, if there are any. Note that an IEEE754 mantissa has 52 bits, 31 of which were accounted for already. */ fract -= floor(fract); fract = ldexp(fract, 22); mant = fract; expo -= 22; vexp = expo + 0x1000; assert(vexp >= 0); assert(vexp < 0x2000); vexp += sign; if (mant != 0) { fprintf(vvp_out, " %%pushi/real %lu, %d; load=%#g\n", mant, vexp, ivl_expr_dvalue(expr)); fprintf(vvp_out, " %%add/wr;\n"); } } /* * The real value of a logic expression is the integer value of the * expression converted to real. */ static void draw_real_logic_expr(ivl_expr_t expr) { draw_eval_vec4(expr); const char*sign_flag = ivl_expr_signed(expr)? "/s" : ""; fprintf(vvp_out, " %%cvt/rv%s;\n", sign_flag); } static void draw_select_real(ivl_expr_t expr) { /* The sube references the expression to be selected from. */ ivl_expr_t sube = ivl_expr_oper1(expr); /* This is the select expression */ ivl_expr_t shift= ivl_expr_oper2(expr); /* Assume the sub-expression is a signal */ ivl_signal_t sig = ivl_expr_signal(sube); assert(ivl_signal_data_type(sig) == IVL_VT_DARRAY || ivl_signal_data_type(sig) == IVL_VT_QUEUE); draw_eval_expr_into_integer(shift, 3); fprintf(vvp_out, " %%load/dar/r v%p_0;\n", sig); } static void real_ex_pop(ivl_expr_t expr) { const char*fb; ivl_expr_t arg; if (strcmp(ivl_expr_name(expr), "$ivl_queue_method$pop_back")==0) fb = "b"; else fb = "f"; arg = ivl_expr_parm(expr, 0); assert(ivl_expr_type(arg) == IVL_EX_SIGNAL); fprintf(vvp_out, " %%qpop/%s/real v%p_0;\n", fb, ivl_expr_signal(arg)); } static void draw_sfunc_real(ivl_expr_t expr) { switch (ivl_expr_value(expr)) { case IVL_VT_REAL: if (ivl_expr_parms(expr) == 0) { fprintf(vvp_out, " %%vpi_func/r %u %u \"%s\" {0 0 0};\n", ivl_file_table_index(ivl_expr_file(expr)), ivl_expr_lineno(expr), ivl_expr_name(expr)); } else { draw_vpi_rfunc_call(expr); } break; case IVL_VT_VECTOR: /* If the value of the sfunc is a vector, then evaluate it as a vector, then convert the result to a real (via an index register) for the result. */ draw_real_logic_expr(expr); break; default: assert(0); } } static void draw_signal_real_real(ivl_expr_t expr) { ivl_signal_t sig = ivl_expr_signal(expr); /* Special Case: If the signal is the return value of the function, then use a different opcode to get the value. */ if (signal_is_return_value(sig)) { assert(ivl_signal_dimensions(sig) == 0); fprintf(vvp_out, " %%retload/real 0; Load %s (draw_signal_real_real)\n", ivl_signal_basename(sig)); return; } if (ivl_signal_dimensions(sig) == 0) { fprintf(vvp_out, " %%load/real v%p_0;\n", sig); return; } ivl_expr_t word_ex = ivl_expr_oper1(expr); int word_ix = allocate_word(); draw_eval_expr_into_integer(word_ex, word_ix); fprintf(vvp_out, " %%load/ar v%p, %d;\n", sig, word_ix); clr_word(word_ix); } static void draw_signal_real(ivl_expr_t expr) { ivl_signal_t sig = ivl_expr_signal(expr); switch (ivl_signal_data_type(sig)) { case IVL_VT_LOGIC: draw_real_logic_expr(expr); return; case IVL_VT_REAL: draw_signal_real_real(expr); return; default: fprintf(stderr, "vvp.tgt error: signal_data_type=%d\n", ivl_signal_data_type(sig)); assert(0); return; } } /* If we have nested ternary operators they are likely tail recursive. * This code is structured to allow this recursion without overflowing * the available thread words. */ static void draw_ternary_real(ivl_expr_t expr) { ivl_expr_t cond = ivl_expr_oper1(expr); ivl_expr_t true_ex = ivl_expr_oper2(expr); ivl_expr_t false_ex = ivl_expr_oper3(expr); unsigned lab_true = local_count++; unsigned lab_out = local_count++; int cond_flag = allocate_flag(); /* Evaluate the ternary condition. */ draw_eval_vec4(cond); if (ivl_expr_width(cond) > 1) fprintf(vvp_out, " %%or/r;\n"); fprintf(vvp_out, " %%flag_set/vec4 %d;\n", cond_flag); /* Evaluate the true expression second. */ fprintf(vvp_out, " %%jmp/1 T_%u.%u, %d;\n", thread_count, lab_true, cond_flag); /* Evaluate the false expression. */ draw_eval_real(false_ex); fprintf(vvp_out, " %%jmp/0 T_%u.%u, %d; End of false expr.\n", thread_count, lab_out, cond_flag); /* If the conditional is undefined then blend the real words. */ draw_eval_real(true_ex); fprintf(vvp_out, " %%blend/wr;\n"); fprintf(vvp_out, " %%jmp T_%u.%u; End of blend\n", thread_count, lab_out); /* Evaluate the true expression. */ fprintf(vvp_out, "T_%u.%u ;\n", thread_count, lab_true); draw_eval_real(true_ex); /* This is the out label. */ fprintf(vvp_out, "T_%u.%u ;\n", thread_count, lab_out); clr_flag(cond_flag); } static void increment(ivl_expr_t e, bool pre) { ivl_signal_t sig = ivl_expr_signal(e); fprintf(vvp_out, " %%load/real v%p_0;\n", sig); if (!pre) fprintf(vvp_out, " %%dup/real;\n"); fprintf(vvp_out, " %%pushi/real 1, 0x1000;\n"); fprintf(vvp_out, " %%add/wr;\n"); if ( pre) fprintf(vvp_out, " %%dup/real;\n"); fprintf(vvp_out, " %%store/real v%p_0;\n", sig); } static void decrement(ivl_expr_t e, bool pre) { ivl_signal_t sig = ivl_expr_signal(e); fprintf(vvp_out, " %%load/real v%p_0;\n", sig); if (!pre) fprintf(vvp_out, " %%dup/real;\n"); fprintf(vvp_out, " %%pushi/real 1, 0x1000;\n"); fprintf(vvp_out, " %%sub/wr;\n"); if ( pre) fprintf(vvp_out, " %%dup/real;\n"); fprintf(vvp_out, " %%store/real v%p_0;\n", sig); } static void draw_unary_real(ivl_expr_t expr) { ivl_expr_t sube; /* If the opcode is a ~ or a ! then the sub expression must not be * a real expression, so use vector evaluation and then convert * that result to a real value. */ if ((ivl_expr_opcode(expr) == '~') || (ivl_expr_opcode(expr) == '!')) { draw_real_logic_expr(expr); return; } sube = ivl_expr_oper1(expr); if (ivl_expr_opcode(expr) == 'r') { /* Cast an integer value to a real. */ const char *suffix = ""; assert(ivl_expr_value(sube) != IVL_VT_REAL); draw_eval_vec4(sube); if (ivl_expr_signed(sube)) suffix = "/s"; fprintf(vvp_out, " %%cvt/rv%s;\n", suffix); return; } if (ivl_expr_opcode(expr) == '+') { draw_eval_real(sube); return; } if (ivl_expr_opcode(expr) == '-') { fprintf(vvp_out, " %%pushi/real 0, 0; load 0.0\n"); draw_eval_real(sube); fprintf(vvp_out, " %%sub/wr;\n"); return; } if (ivl_expr_opcode(expr) == 'm') { /* abs() */ draw_eval_real(sube); fprintf(vvp_out, " %%abs/wr;\n"); return; } if (ivl_expr_opcode(expr) == 'v') { /* Handled in eval_expr.c. */ fprintf(stderr, "vvp.tgt error: real -> integer cast in real " "context.\n"); assert(0); } switch (ivl_expr_opcode(expr)) { case 'I': increment(sube, true); return; case 'i': increment(sube, false); return; case 'D': decrement(sube, true); return; case 'd': decrement(sube, false); return; } fprintf(stderr, "vvp.tgt error: unhandled real unary operator: %c.\n", ivl_expr_opcode(expr)); assert(0); } void draw_eval_real(ivl_expr_t expr) { /* If this expression/sub-expression is not real then we need * to evaluate it as a bit value and then convert the bit based * result to a real value. This is required to get integer * division to work correctly. */ if (ivl_expr_value(expr) != IVL_VT_REAL) { draw_real_logic_expr(expr); return; } switch (ivl_expr_type(expr)) { case IVL_EX_BINARY: draw_binary_real(expr); break; case IVL_EX_NUMBER: draw_number_real(expr); break; case IVL_EX_PROPERTY: draw_property_real(expr); break; case IVL_EX_REALNUM: draw_realnum_real(expr); break; case IVL_EX_SELECT: draw_select_real(expr); break; case IVL_EX_SFUNC: if (strcmp(ivl_expr_name(expr), "$ivl_queue_method$pop_back")==0) real_ex_pop(expr); else if (strcmp(ivl_expr_name(expr), "$ivl_queue_method$pop_front")==0) real_ex_pop(expr); else draw_sfunc_real(expr); break; case IVL_EX_SIGNAL: draw_signal_real(expr); break; case IVL_EX_TERNARY: draw_ternary_real(expr); break; case IVL_EX_UFUNC: draw_ufunc_real(expr); break; case IVL_EX_UNARY: draw_unary_real(expr); break; default: if (ivl_expr_value(expr) == IVL_VT_VECTOR) { draw_eval_vec4(expr); const char*sign_flag = ivl_expr_signed(expr)? "/s" : ""; fprintf(vvp_out, " %%cvt/rv%s;\n", sign_flag); } else { fprintf(stderr, "vvp.tgt error: XXXX Evaluate real expression (%d)\n", ivl_expr_type(expr)); fprintf(vvp_out, " ; XXXX Evaluate real expression (%d)\n", ivl_expr_type(expr)); return; } break; } }