/* * Copyright (c) 2001 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #if !defined(WINNT) #ident "$Id: eval_expr.c,v 1.13 2001/04/05 01:12:28 steve Exp $" #endif # include "vvp_priv.h" # include struct vector_info draw_eval_expr_wid(ivl_expr_t exp, unsigned wid); static unsigned char allocation_map[0x10000/8]; static inline int peek_bit(unsigned addr) { unsigned bit = addr % 8; addr /= 8; return 1 & (allocation_map[addr] >> bit); } static inline void set_bit(unsigned addr) { unsigned bit = addr % 8; addr /= 8; allocation_map[addr] |= (1 << bit); } static inline void clr_bit(unsigned addr) { unsigned bit = addr % 8; addr /= 8; allocation_map[addr] &= ~(1 << bit); } void clr_vector(struct vector_info vec) { unsigned idx; for (idx = 0 ; idx < vec.wid ; idx += 1) clr_bit(vec.base + idx); } static unsigned short allocate_vector(unsigned short wid) { unsigned short base = 8; unsigned short idx = 0; while (idx < wid) { assert((base + idx) < 0x10000); if (peek_bit(base+idx)) { base = base + idx + 1; idx = 0; } else { idx += 1; } } for (idx = 0 ; idx < wid ; idx += 1) set_bit(base+idx); return base; } static struct vector_info draw_binary_expr_eq(ivl_expr_t exp) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; unsigned wid = ivl_expr_width(le); if (ivl_expr_width(re) > wid) wid = ivl_expr_width(re); lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); switch (ivl_expr_opcode(exp)) { case 'E': /* === */ assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n", lv.base, rv.base, lv.wid); clr_vector(lv); clr_vector(rv); lv.base = 6; lv.wid = 1; break; case 'e': /* == */ assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n", lv.base, rv.base, lv.wid); clr_vector(lv); clr_vector(rv); lv.base = 4; lv.wid = 1; break; case 'N': /* !== */ assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n", lv.base, rv.base, lv.wid); fprintf(vvp_out, " %%inv 6, 1;\n"); clr_vector(lv); clr_vector(rv); lv.base = 6; lv.wid = 1; break; case 'n': /* != */ assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n", lv.base, rv.base, lv.wid); fprintf(vvp_out, " %%inv 4, 1;\n"); clr_vector(lv); clr_vector(rv); lv.base = 4; lv.wid = 1; break; default: assert(0); } return lv; } static struct vector_info draw_binary_expr_land(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; /* XXXX For now, assume the operands are a single bit. */ assert(ivl_expr_width(le) == 1); assert(ivl_expr_width(re) == 1); lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); if (lv.base < 4) { if (rv.base < 4) { unsigned lb = lv.base; unsigned rb = rv.base; if ((lb == 0) || (rb == 0)) { lv.base = 0; } else if ((lb == 1) && (rb == 1)) { lv.base = 1; } else { lv.base = 2; } } else { fprintf(vvp_out, " %%and %u, %u, 1;\n", rv.base, lv.base); lv = rv; } } else { fprintf(vvp_out, " %%and %u, %u, 1;\n", lv.base, rv.base); clr_vector(rv); } assert(wid == 1); return lv; } static struct vector_info draw_binary_expr_le(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; char s_flag = (ivl_expr_signed(le) && ivl_expr_signed(re)) ? 's' : 'u'; unsigned owid = ivl_expr_width(le); if (ivl_expr_width(re) > owid) owid = ivl_expr_width(re); lv = draw_eval_expr_wid(le, owid); rv = draw_eval_expr_wid(re, owid); switch (ivl_expr_opcode(exp)) { case 'G': assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/%c %u, %u, %u;\n", s_flag, rv.base, lv.base, lv.wid); fprintf(vvp_out, " %%or 5, 4, 1;\n"); break; case 'L': assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/%c %u, %u, %u;\n", s_flag, lv.base, rv.base, lv.wid); fprintf(vvp_out, " %%or 5, 4, 1;\n"); break; case '<': assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/%c %u, %u, %u;\n", s_flag, lv.base, rv.base, lv.wid); break; case '>': assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/%c %u, %u, %u;\n", s_flag, rv.base, lv.base, lv.wid); break; default: assert(0); } clr_vector(lv); clr_vector(rv); lv.base = 5; lv.wid = 1; assert(wid == 1); return lv; } static struct vector_info draw_binary_expr_logic(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); switch (ivl_expr_opcode(exp)) { case '&': fprintf(vvp_out, " %%and %u, %u, %u;\n", lv.base, rv.base, wid); break; case '|': fprintf(vvp_out, " %%or %u, %u, %u;\n", lv.base, rv.base, wid); break; default: assert(0); } clr_vector(rv); return lv; } static struct vector_info draw_binary_expr_plus(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; assert(ivl_expr_width(le) == wid); assert(ivl_expr_width(re) == wid); lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); fprintf(vvp_out, " %%add %u, %u, %u;\n", lv.base, rv.base, wid); clr_vector(rv); return lv; } static struct vector_info draw_binary_expr(ivl_expr_t exp, unsigned wid) { struct vector_info rv; switch (ivl_expr_opcode(exp)) { case 'a': /* && (logical and) */ rv = draw_binary_expr_land(exp, wid); break; case 'E': /* === */ case 'e': /* == */ case 'N': /* !== */ case 'n': /* != */ assert(wid == 1); rv = draw_binary_expr_eq(exp); break; case '<': case '>': case 'L': /* <= */ case 'G': /* >= */ rv = draw_binary_expr_le(exp, wid); break; case '+': rv = draw_binary_expr_plus(exp, wid); break; case '&': case '|': rv = draw_binary_expr_logic(exp, wid); break; default: fprintf(stderr, "vvp.tgt error: unsupported binary (%c)\n", ivl_expr_opcode(exp)); assert(0); } return rv; } static struct vector_info draw_concat_expr(ivl_expr_t exp, unsigned wid) { unsigned idx, off; struct vector_info res; assert(wid >= ivl_expr_width(exp)); res.base = allocate_vector(wid); res.wid = wid; idx = ivl_expr_parms(exp); off = 0; while (idx > 0) { ivl_expr_t arg = ivl_expr_parm(exp, idx-1); unsigned awid = ivl_expr_width(arg); struct vector_info avec = draw_eval_expr_wid(arg, awid); fprintf(vvp_out, " %%mov %u, %u, %u;\n", res.base+off, avec.base, avec.wid); clr_vector(avec); idx -= 1; off += awid; } if (off < wid) { fprintf(vvp_out, " %%mov %u, 0, %u;\n", res.base+off, wid-off); } return res; } /* * A number in an expression is made up by copying constant bits into * the allocated vector. */ static struct vector_info draw_number_expr(ivl_expr_t exp, unsigned wid) { unsigned idx; unsigned nwid; struct vector_info res; const char*bits = ivl_expr_bits(exp); res.wid = wid; nwid = wid; if (ivl_expr_width(exp) < nwid) nwid = ivl_expr_width(exp); /* If all the bits of the number have the same value, then we can use a constant bit. There is no need to allocate wr bits, and there is no need to generate any code. */ for (idx = 1 ; idx < nwid ; idx += 1) { if (bits[idx] != bits[0]) break; } if (idx >= res.wid) { switch (bits[0]) { case '0': res.base = 0; break; case '1': res.base = 1; break; case 'x': res.base = 2; break; case 'z': res.base = 3; break; } return res; } /* The number value needs to be represented as an allocated vector. Allocate the vector and use %mov instructions to load the constant bit values. */ res.base = allocate_vector(wid); idx = 0; while (idx < nwid) { unsigned cnt; char src = '?'; switch (bits[idx]) { case '0': src = '0'; break; case '1': src = '1'; break; case 'x': src = '2'; break; case 'z': src = '3'; break; } for (cnt = 1 ; idx+cnt < wid ; cnt += 1) if (bits[idx+cnt] != bits[idx]) break; fprintf(vvp_out, " %%mov %u, %c, %u;\n", res.base+idx, src, cnt); idx += cnt; } /* Pad the number up to the expression width. */ if (idx < wid) fprintf(vvp_out, " %%mov %u, 0, %u;\n", res.base+idx, wid-idx); return res; } static struct vector_info draw_signal_expr(ivl_expr_t exp, unsigned wid) { unsigned idx; unsigned swid = ivl_expr_width(exp); const char*name = ivl_expr_name(exp); struct vector_info res; if (swid > wid) swid = wid; res.base = allocate_vector(wid); res.wid = wid; for (idx = 0 ; idx < swid ; idx += 1) fprintf(vvp_out, " %%load %u, V_%s[%u];\n", res.base+idx, name, idx); /* Pad the signal value with zeros. */ if (swid < wid) fprintf(vvp_out, " %%mov %u, 0, %u;\n", res.base+swid, wid-swid); return res; } static struct vector_info draw_unary_expr(ivl_expr_t exp, unsigned wid) { struct vector_info res; ivl_expr_t sub = ivl_expr_oper1(exp); switch (ivl_expr_opcode(exp)) { case '~': res = draw_eval_expr_wid(sub, wid); fprintf(vvp_out, " %%inv %u, %u;\n", res.base, res.wid); break; case '!': res = draw_eval_expr(sub); if (res.wid > 1) { /* a ! on a vector is implemented with a reduction nor. Generate the result into the first bit of the input vector and free the rest of the vector. */ struct vector_info tmp; assert(res.base >= 4); tmp.base = res.base+1; tmp.wid = res.wid - 1; fprintf(vvp_out, " %%nor/r %u, %u, %u;\n", res.base, res.base, res.wid); clr_vector(tmp); res.wid = 1; } else { fprintf(vvp_out, " %%inv %u, 1;\n", res.base); } break; default: fprintf(stderr, "vvp error: unhandled unary: %c\n", ivl_expr_opcode(exp)); assert(0); } return res; } struct vector_info draw_eval_expr_wid(ivl_expr_t exp, unsigned wid) { struct vector_info res; switch (ivl_expr_type(exp)) { default: fprintf(stderr, "vvp error: unhandled expr type: %u\n", ivl_expr_type(exp)); case IVL_EX_NONE: assert(0); res.base = 0; res.wid = 0; break; case IVL_EX_BINARY: res = draw_binary_expr(exp, wid); break; case IVL_EX_CONCAT: res = draw_concat_expr(exp, wid); break; case IVL_EX_NUMBER: res = draw_number_expr(exp, wid); break; case IVL_EX_SIGNAL: res = draw_signal_expr(exp, wid); break; case IVL_EX_UNARY: res = draw_unary_expr(exp, wid); break; } return res; } struct vector_info draw_eval_expr(ivl_expr_t exp) { return draw_eval_expr_wid(exp, ivl_expr_width(exp)); } /* * $Log: eval_expr.c,v $ * Revision 1.13 2001/04/05 01:12:28 steve * Get signed compares working correctly in vvp. * * Revision 1.12 2001/04/02 03:47:49 steve * Evaluate binary & and | operators. * * Revision 1.11 2001/04/01 22:26:21 steve * Unary ! is a reduction operator. * * Revision 1.10 2001/04/01 21:47:29 steve * Implement the unary ! operator. * * Revision 1.9 2001/04/01 07:22:42 steve * Generate code for < and <=. * * Revision 1.8 2001/04/01 06:49:32 steve * Evaluate the logical AND operator. * * Revision 1.7 2001/03/31 17:36:39 steve * Generate vvp code for case statements. * * Revision 1.6 2001/03/31 02:00:44 steve * Generate code for + and concat expressions. * * Revision 1.5 2001/03/29 05:16:25 steve * Handle truncation/padding of numbers. * * Revision 1.4 2001/03/29 02:52:39 steve * Add unary ~ operator to tgt-vvp. * * Revision 1.3 2001/03/27 06:43:27 steve * Evaluate === and !== * * Revision 1.2 2001/03/23 01:10:24 steve * Assure that operands are the correct width. * * Revision 1.1 2001/03/22 05:06:21 steve * Geneate code for conditional statements. * */