#ifndef __expression_H #define __expression_H /* * Copyright (c) 2011 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "StringHeap.h" # include "LineInfo.h" # include "entity.h" # include # include # include # include class prange_t; class Entity; class Architecture; class ScopeBase; class VType; class VTypeArray; class VTypePrimitive; class ExpName; /* * The Expression class represents parsed expressions from the parsed * VHDL input. The Expression class is a virtual class that holds more * specific derived expression types. */ class Expression : public LineInfo { public: Expression(); virtual ~Expression() =0; // This virtual method handles the special case of elaborating // an expression that is the l-value of a sequential variable // assignment. This generates an error for most cases, but // expressions that are valid l-values return 0 and set any // flags needed to indicate their status as writable variables. virtual int elaborate_lval(Entity*ent, Architecture*arc, bool is_sequ); // This virtual method probes the expression to get the most // constrained type for the expression. For a given instance, // this may be called before the elaborate_expr method. virtual const VType*probe_type(Entity*ent, Architecture*arc) const; // This virtual method elaborates an expression. The ltype is // the type of the lvalue expression, if known, and can be // used to calculate the type for the expression being // elaborated. virtual int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); // Return the type that this expression would be if it were an // l-value. This should only be called after elaborate_lval is // called and only if elaborate_lval succeeded. inline const VType*peek_type(void) const { return type_; } // This virtual method writes a VHDL-accurate representation // of this expression to the designated stream. This is used // for writing parsed types to library files. virtual void write_to_stream(std::ostream&fd) =0; // The emit virtual method is called by architecture emit to // output the generated code for the expression. The derived // class fills in the details of what exactly happened. virtual int emit(ostream&out, Entity*ent, Architecture*arc) =0; // The evaluate virtual method tries to evaluate expressions // to constant literal values. Return true and set the val // argument if the evaluation works, or return false if it // cannot be done. virtual bool evaluate(ScopeBase*scope, int64_t&val) const; virtual bool evaluate(Entity*ent, Architecture*arc, int64_t&val) const; // The symbolic compare returns true if the two expressions // are equal without actually calculating the value. virtual bool symbolic_compare(const Expression*that) const; // This method returns true if the drawn Verilog for this // expression is a primary. A containing expression can use // this method to know if it needs to wrap parentheses. This // is somewhat optional, so it is better to return false if // not certain. The default implementation does return false. virtual bool is_primary(void) const; // Debug dump of the expression. virtual void dump(ostream&out, int indent = 0) const =0; protected: // This function is called by the derived class during // elaboration to set the type of the current expression that // elaboration assigns to this expression. void set_type(const VType*); private: const VType*type_; private: // Not implemented Expression(const Expression&); Expression& operator = (const Expression&); }; static inline void FILE_NAME(Expression*tgt, const LineInfo*src) { tgt->set_line(*src); } class ExpUnary : public Expression { public: ExpUnary(Expression*op1); virtual ~ExpUnary() =0; protected: inline void write_to_stream_operand1(std::ostream&fd) { operand1_->write_to_stream(fd); } int emit_operand1(ostream&out, Entity*ent, Architecture*arc); void dump_operand1(ostream&out, int indent = 0) const; private: Expression*operand1_; }; /* * This is an abstract class that collects some of the common features * of binary operators. */ class ExpBinary : public Expression { public: ExpBinary(Expression*op1, Expression*op2); virtual ~ExpBinary() =0; const Expression* peek_operand1(void) const { return operand1_; } const Expression* peek_operand2(void) const { return operand2_; } const VType*probe_type(Entity*ent, Architecture*arc) const; protected: int elaborate_exprs(Entity*, Architecture*, const VType*); int emit_operand1(ostream&out, Entity*ent, Architecture*arc); int emit_operand2(ostream&out, Entity*ent, Architecture*arc); bool eval_operand1(ScopeBase*scope, int64_t&val) const; bool eval_operand2(ScopeBase*scope, int64_t&val) const; inline void write_to_stream_operand1(std::ostream&out) { operand1_->write_to_stream(out); } inline void write_to_stream_operand2(std::ostream&out) { operand2_->write_to_stream(out); } void dump_operands(ostream&out, int indent = 0) const; private: Expression*operand1_; Expression*operand2_; }; class ExpAggregate : public Expression { public: class choice_t { public: // Create an "others" choice choice_t(); // Create a simple_expression choice explicit choice_t(Expression*exp); // Create a named choice explicit choice_t(perm_string name); // discreate_range choice explicit choice_t(prange_t*ran); ~choice_t(); // true if this represents an "others" choice bool others() const; // Return expression if this represents a simple_expression. Expression*simple_expression(bool detach_flag =true); void dump(ostream&out, int indent) const; private: std::auto_ptrexpr_; std::auto_ptr range_; private: // not implemented choice_t(const choice_t&); choice_t& operator= (const choice_t&); }; struct choice_element { choice_t*choice; Expression*expr; bool alias_flag; }; class element_t { public: explicit element_t(std::list*fields, Expression*val); ~element_t(); size_t count_choices() const { return fields_.size(); } void map_choices(choice_element*dst); inline Expression* extract_expression() { return val_; } void dump(ostream&out, int indent) const; private: std::vectorfields_; Expression*val_; private: // not implemented element_t(const element_t&); element_t& operator = (const element_t&); }; public: ExpAggregate(std::list*el); ~ExpAggregate(); int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: int elaborate_expr_array_(Entity*ent, Architecture*arc, const VTypeArray*ltype); int emit_array_(ostream&out, Entity*ent, Architecture*arc, const VTypeArray*ltype); private: // This is the elements as directly parsed. std::vector elements_; // These are the elements after elaboration. This form is // easier to check and emit. std::vector aggregate_; }; class ExpArithmetic : public ExpBinary { public: enum fun_t { PLUS, MINUS, MULT, DIV, MOD, REM, POW, CONCAT }; public: ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2); ~ExpArithmetic(); int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); virtual bool evaluate(ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; private: int emit_concat_(ostream&out, Entity*ent, Architecture*arc); private: fun_t fun_; }; class ExpAttribute : public Expression { public: ExpAttribute(ExpName*base, perm_string name); ~ExpAttribute(); inline perm_string peek_attribute() const { return name_; } inline const ExpName* peek_base() const { return base_; } const VType*probe_type(Entity*ent, Architecture*arc) const; int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); // Some attributes can be evaluated at compile time bool evaluate(ScopeBase*scope, int64_t&val) const; bool evaluate(Entity*ent, Architecture*arc, int64_t&val) const; void dump(ostream&out, int indent = 0) const; private: ExpName*base_; perm_string name_; }; class ExpBitstring : public Expression { public: explicit ExpBitstring(const char*); ~ExpBitstring(); int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: std::vectorvalue_; }; class ExpCharacter : public Expression { public: ExpCharacter(char val); ~ExpCharacter(); int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); bool is_primary(void) const; void dump(ostream&out, int indent = 0) const; char value() const { return value_; } private: int emit_primitive_bit_(ostream&out, Entity*ent, Architecture*arc, const VTypePrimitive*etype); private: char value_; }; /* * The conditional expression represents the VHDL when-else * expressions. Note that by the VHDL syntax rules, these cannot show * up other then at the root of an expression. */ class ExpConditional : public Expression { public: class else_t : public LineInfo { public: else_t(Expression*cond, std::list*tru); ~else_t(); int elaborate_expr(Entity*ent, Architecture*arc, const VType*lt); int emit_when_else(ostream&out, Entity*ent, Architecture*arc); int emit_else(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: Expression*cond_; std::list true_clause_; }; public: ExpConditional(Expression*cond, std::list*tru, std::list*fal); ~ExpConditional(); const VType*probe_type(Entity*ent, Architecture*arc) const; int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: Expression*cond_; std::list true_clause_; std::list else_clause_; }; /* * This is a special expression type that represents posedge/negedge * expressions in sensitivity lists. */ class ExpEdge : public ExpUnary { public: enum fun_t { NEGEDGE, ANYEDGE, POSEDGE }; public: explicit ExpEdge(ExpEdge::fun_t ty, Expression*op); ~ExpEdge(); inline fun_t edge_fun() const { return fun_; } void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; class ExpFunc : public Expression { public: explicit ExpFunc(perm_string nn); ExpFunc(perm_string nn, std::list*args); ~ExpFunc(); public: // Base methods int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: perm_string name_; std::vector argv_; }; class ExpInteger : public Expression { public: ExpInteger(int64_t val); ~ExpInteger(); const VType*probe_type(Entity*ent, Architecture*arc) const; int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); bool is_primary(void) const; bool evaluate(ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; private: int64_t value_; }; class ExpLogical : public ExpBinary { public: enum fun_t { AND, OR, NAND, NOR, XOR, XNOR }; public: ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2); ~ExpLogical(); inline fun_t logic_fun() const { return fun_; } int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; /* * The ExpName class represents an expression that is an identifier or * other sort of name. The ExpNameALL is a special case of ExpName * that represents the "all" keyword is contexts that can handle it. */ class ExpName : public Expression { public: explicit ExpName(perm_string nn); ExpName(perm_string nn, std::list*indices); ExpName(perm_string nn, Expression*msb, Expression*lsb); ExpName(ExpName*prefix, perm_string nn); ExpName(ExpName*prefix, perm_string nn, Expression*msb, Expression*lsb); ~ExpName(); public: // Base methods int elaborate_lval(Entity*ent, Architecture*arc, bool); int elaborate_rval(Entity*ent, Architecture*arc, const InterfacePort*); const VType* probe_type(Entity*ent, Architecture*arc) const; int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); bool is_primary(void) const; bool evaluate(ScopeBase*scope, int64_t&val) const; bool evaluate(Entity*ent, Architecture*arc, int64_t&val) const; bool symbolic_compare(const Expression*that) const; void dump(ostream&out, int indent = 0) const; const char* name() const; private: std::auto_ptr prefix_; perm_string name_; Expression*index_; Expression*lsb_; }; class ExpNameALL : public ExpName { public: ExpNameALL() : ExpName(perm_string()) { } public: int elaborate_lval(Entity*ent, Architecture*arc, bool); const VType* probe_type(Entity*ent, Architecture*arc) const; void dump(ostream&out, int indent =0) const; }; class ExpRelation : public ExpBinary { public: enum fun_t { EQ, LT, GT, NEQ, LE, GE }; inline fun_t relation_fun(void) const { return fun_; } public: ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2); ~ExpRelation(); const VType* probe_type(Entity*ent, Architecture*arc) const; int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; class ExpString : public Expression { public: explicit ExpString(const char*); ~ExpString(); int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); bool is_primary(void) const; void dump(ostream&out, int indent = 0) const; private: int emit_as_array_(ostream&out, Entity*ent, Architecture*arc, const VTypeArray*arr); private: std::vector value_; }; class ExpUAbs : public ExpUnary { public: ExpUAbs(Expression*op1); ~ExpUAbs(); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; }; class ExpUNot : public ExpUnary { public: ExpUNot(Expression*op1); ~ExpUNot(); int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); void write_to_stream(std::ostream&fd); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; }; #endif