/* * Copyright (c) 2005 Stephen Williams (steve@icarus.com) * Copyright (c) 2000 Stephen Williams (steve@icarus.com) * Copyright (c) 2001 Stephan Boettcher * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifdef HAVE_CVS_IDENT #ident "$Id: memory.cc,v 1.23 2005/03/03 04:33:10 steve Exp $" #endif #include "memory.h" #include "symbols.h" #include "schedule.h" #include #ifdef HAVE_MALLOC_H #include #endif #include #include typedef struct vvp_memory_port_s *vvp_memory_port_t; struct vvp_memory_s { // Address ranges (1 or more) unsigned nrange; struct memory_address_range*ranges; // Data port properties: unsigned width; // number of data bits int msb, lsb; // Most/Least Significant data bit (VPI) // Array of words. unsigned word_count; vvp_vector4_t*words; // List of ports into this memory. vvp_memory_port_t port_list; }; #define VVP_MEMORY_NO_ADDR ((int)0x80000000) #if 0 struct vvp_memory_port_s : public functor_s { void set(vvp_ipoint_t i, bool push, unsigned val, unsigned str); vvp_memory_t mem; vvp_ipoint_t ix; unsigned naddr; vvp_memory_port_t next; int cur_addr; vvp_memory_bits_t cur_bits; unsigned bitoff; unsigned nbits; bool writable; }; #endif // Compilation static symbol_table_t memory_table = 0; vvp_memory_t memory_find(char *label) { if (memory_table == 0) return 0; symbol_value_t v = sym_get_value(memory_table, label); return (vvp_memory_t)v.ptr; } vvp_memory_t memory_create(char *label) { if (!memory_table) memory_table = new_symbol_table(); assert(!memory_find(label)); vvp_memory_t mem = new struct vvp_memory_s; symbol_value_t v; v.ptr = mem; sym_set_value(memory_table, label, v); return mem; } void memory_configure(vvp_memory_t mem, int msb, int lsb, unsigned nrange, const struct memory_address_range*ranges) { /* Get the word width details. */ mem->width = msb > lsb ? msb-lsb+1 : lsb-msb+1; mem->msb = msb; mem->lsb = lsb; /* Make a private copy of the memory address ranges. */ assert(nrange > 0); mem->nrange = nrange; mem->ranges = new struct memory_address_range[nrange]; for (unsigned idx = 0 ; idx < nrange ; idx += 1) mem->ranges[idx] = ranges[idx]; /* Scan the indices (multiplying each range) to add up the total number of words in this memory. */ mem->word_count = 1; for (unsigned idx = 0 ; idx < mem->nrange ; idx += 1) { struct memory_address_range*rp = mem->ranges+idx; unsigned count = rp->msb > rp->lsb ? rp->msb - rp->lsb + 1 : rp->lsb - rp->msb + 1; mem->word_count *= count; } mem->words = new vvp_vector4_t [mem->word_count]; assert(mem->words); mem->port_list = 0; } unsigned memory_word_width(vvp_memory_t mem) { return mem->width; } unsigned memory_word_count(vvp_memory_t mem) { return mem->word_count; } long memory_word_left_range(vvp_memory_t mem) { return mem->msb; } long memory_word_right_range(vvp_memory_t mem) { return mem->lsb; } long memory_left_range(vvp_memory_t mem, unsigned ix) { assert(ix < mem->nrange); return mem->ranges[ix].msb; } long memory_right_range(vvp_memory_t mem, unsigned ix) { assert(ix < mem->nrange); return mem->ranges[ix].lsb; } vvp_vector4_t memory_get_word(vvp_memory_t mem, unsigned addr) { // XXXX For now, assume this can't happen assert(addr <= mem->word_count); return mem->words[addr]; } void memory_init_word(vvp_memory_t mem, unsigned addr, vvp_vector4_t val) { if (addr >= mem->word_count) return; mem->words[addr] = val; } void memory_set_word(vvp_memory_t mem, unsigned addr, vvp_vector4_t val) { memory_init_word(mem, addr, val); if (mem->port_list) fprintf(stderr, "XXXX memory_set_word(%u, ...)" " not fully implemented\n", addr); } #if 0 vvp_ipoint_t memory_port_new(vvp_memory_t mem, unsigned nbits, unsigned bitoff, unsigned naddr, bool writable) { unsigned nfun = naddr; if (writable) nfun += 2 + nbits; nfun = (nfun+3)/4; if (nfun < nbits) nfun = nbits; vvp_memory_port_t a = new struct vvp_memory_port_s; a->mem = mem; a->naddr = naddr; a->writable = writable; a->nbits = nbits; a->bitoff = bitoff; a->next = mem->addr_root; mem->addr_root = a; a->ix = functor_allocate(nfun); functor_define(a->ix, a); if (nfun > 1) { extra_ports_functor_s *fu = new extra_ports_functor_s[nfun-1]; for (unsigned i = 0; i< nfun - 1; i++) { fu[i].base_ = a->ix; functor_define(ipoint_index(a->ix, i+1), fu+i); } } a->cur_addr = VVP_MEMORY_NO_ADDR; a->cur_bits = 0x0; return a->ix; } #endif void schedule_memory(vvp_memory_t mem, unsigned addr, vvp_vector4_t val, unsigned long delay) { fprintf(stderr, "XXXX Forgot how to schedule memory write.\n"); } // Utilities #if 0 inline static vvp_memory_bits_t get_word_ix(vvp_memory_t mem, unsigned idx) { return mem->bits + idx*mem->fwidth; } #endif #if 0 inline static vvp_memory_bits_t get_word(vvp_memory_t mem, int addr) { assert(mem->a_idxs==1); unsigned waddr = addr - mem->a_idx[0].first; if (waddr >= mem->size) return 0x0; return get_word_ix(mem, waddr); } #endif #if 0 inline static bool set_bit(vvp_memory_bits_t bits, int bit, unsigned char val) { int ix = bit/4; int ip = 2*(bit%4); bool r = ((bits[ix] >> ip) & 3) != val; bits[ix] = (bits[ix] &~ (3<> (2*(bit&3))) & 3; } #endif #if 0 inline static unsigned char functor_get_inputs(vvp_ipoint_t ip) { functor_t fp = functor_index(ip); assert(fp); return fp->ival; } #endif #if 0 inline static unsigned char functor_get_input(vvp_ipoint_t ip) { unsigned char bits = functor_get_inputs(ip); return (bits >> (2*ipoint_port(ip))) & 3; } #endif #if 0 static bool update_addr_bit(vvp_memory_port_t addr, vvp_ipoint_t ip) { unsigned abit = ip - addr->ix; assert(abit >= 0 && abit < addr->naddr); int old = addr->cur_addr; int abval = functor_get_input(ip); if (abval>1) addr->cur_addr = VVP_MEMORY_NO_ADDR; else if (addr->cur_addr == VVP_MEMORY_NO_ADDR) update_addr(addr); else if (abval) addr->cur_addr |= (1<cur_addr &=~ (1<cur_bits = get_word(addr->mem, addr->cur_addr); return addr->cur_addr != old; } #endif #if 0 static void update_addr(vvp_memory_port_t addr) { addr->cur_addr = 0; for (unsigned i=0; i < addr->naddr; i++) { update_addr_bit(addr, addr->ix+i); if (addr->cur_addr == VVP_MEMORY_NO_ADDR) break; } } #endif #if 0 inline static void update_data(vvp_memory_port_t data) { assert(data); for (unsigned i=0; i < data->nbits; i++) { vvp_ipoint_t dx = ipoint_index(data->ix, i); functor_t df = functor_index(dx); unsigned char out = get_bit(data->cur_bits, i + data->bitoff); df->put_oval(out, true); } } #endif #if 0 static void update_data_ports(vvp_memory_t mem, vvp_memory_bits_t bits, int bit, unsigned char val) { if (!bits) return; vvp_memory_port_t a = mem->addr_root; while (a) { if (bits == a->cur_bits) { unsigned i = bit - a->bitoff; if (i < a->nbits) { vvp_ipoint_t ix = ipoint_index(a->ix, i); functor_t df = functor_index(ix); df->put_oval(val, true); } } a = a->next; } } #endif #if 0 static inline void write_event(vvp_memory_port_t p) { if (!p->cur_bits) return; unsigned we = functor_get_input(p->ix + p->naddr + 1); if (!we) return; for (unsigned i=0; i < p->nbits; i++) { unsigned val = functor_get_input(p->ix + p->naddr + 2 + i); if (set_bit(p->cur_bits, i + p->bitoff, val)) { // if a write would change the memory bit, but is // undefined (x or z), set the bit to x. if (we > 1) { set_bit(p->cur_bits, i + p->bitoff, 2); val = 2; } update_data_ports(p->mem, p->cur_bits, i + p->bitoff, val); } } } #endif #if 0 void vvp_memory_port_s::set(vvp_ipoint_t i, bool, unsigned val, unsigned) { // !attention! "i" may not correspond to "this" functor_t ifu = functor_index(i); ifu->put(i, val); if (i < ix+naddr) { if (update_addr_bit(this, i)) update_data(this); } // port ix+naddr is the write clock. If its input value is // undefined, we do asynchronous write. Else any event on ix+naddr // is a valid write clock edge. Connect an appropriate edge event // functor. if (i == ix+naddr || (writable && functor_get_input(ix+naddr) == 3)) { assert(writable); write_event(this); } } #endif // %set/mem #if 0 void memory_set(vvp_memory_t mem, unsigned idx, unsigned char val) { if (idx/4 >= (mem->size * mem->fwidth)) return; if (!set_bit(mem->bits, idx, val)) return; unsigned widx = idx/(4*mem->fwidth); unsigned bidx = idx%(4*mem->fwidth); update_data_ports(mem, get_word_ix(mem, widx), bidx, val); } #endif // %load/mem #if 0 unsigned memory_get(vvp_memory_t mem, unsigned idx) { if (idx/4 >= (mem->size * mem->fwidth)) return 2; return get_bit(mem->bits, idx); } #endif // %assign/mem event scheduling struct mem_assign_s: public vvp_gen_event_s { union { vvp_memory_t mem; struct mem_assign_s *next; }; unsigned long idx; }; static struct mem_assign_s* ma_free_list = 0; inline static struct mem_assign_s* ma_alloc() { struct mem_assign_s* cur = ma_free_list; if (!cur) cur = (struct mem_assign_s*) malloc(sizeof(struct mem_assign_s)); else ma_free_list = cur->next; return cur; } inline static void ma_free(struct mem_assign_s* cur) { cur->next = ma_free_list; ma_free_list = cur; } #if 0 static void run_mem_assign(vvp_gen_event_t obj, unsigned char val) { struct mem_assign_s *e = (struct mem_assign_s *) obj; memory_set(e->mem, e->idx, val); ma_free(e); } #endif /* * $Log: memory.cc,v $ * Revision 1.23 2005/03/03 04:33:10 steve * Rearrange how memories are supported as vvp_vector4 arrays. * */