/* * Copyright (c) 2000 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #if !defined(WINNT) && !defined(macintosh) #ident "$Id: t-dll.cc,v 1.69 2001/10/30 02:52:07 steve Exp $" #endif # include "config.h" # include # include "compiler.h" # include "t-dll.h" # include "netmisc.h" #ifdef HAVE_MALLOC_H # include #endif # include #if defined(__WIN32__) inline ivl_dll_t ivl_dlopen(const char *name) { return (ivl_dll_t) LoadLibrary(name); } inline void * ivl_dlsym(ivl_dll_t dll, const char *nm) { FARPROC sym; return GetProcAddress((HMODULE)dll, nm); } inline void ivl_dlclose(ivl_dll_t dll) { FreeLibrary((HMODULE)dll); } const char *dlerror(void) { static char msg[255]; FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language (LPTSTR) &msg, 0, NULL ); return msg; } #elif defined(HAVE_DLFCN_H) inline ivl_dll_t ivl_dlopen(const char*name) { return dlopen(name,RTLD_NOW); } inline void* ivl_dlsym(ivl_dll_t dll, const char*nm) { return dlsym(dll, nm); } inline void ivl_dlclose(ivl_dll_t dll) { dlclose(dll); } #elif defined(HAVE_DL_H) inline ivl_dll_t ivl_dlopen(const char*name) { return shl_load(name, BIND_IMMEDIATE, 0); } inline void* ivl_dlsym(ivl_dll_t dll, const char*nm) { void*sym; int rc = shl_findsym(&dll, nm, TYPE_PROCEDURE, &sym); return (rc == 0) ? sym : 0; } inline void ivl_dlclose(ivl_dll_t dll) { shl_unload(dll); } inline const char*dlerror(void) { return strerror( errno ); } #endif static struct dll_target dll_target_obj; /* * This function locates an ivl_scope_t object that matches the * NetScope object. The search works by looking for the parent scope, * then scanning the parent scope for the NetScope object. */ static ivl_scope_t find_scope_from_root(ivl_scope_t root, const NetScope*cur) { ivl_scope_t parent, tmp; if (const NetScope*par = cur->parent()) { parent = find_scope_from_root(root, par); if (parent == 0) return 0; for (tmp = parent->child_ ; tmp ; tmp = tmp->sibling_) if (strcmp(tmp->name_, cur->name().c_str()) == 0) return tmp; } else { if (strcmp(root->name_, cur->name().c_str()) == 0) return root; } return 0; } ivl_scope_t dll_target::find_scope(ivl_design_s &des, const NetScope*cur) { unsigned i; ivl_scope_t scope = NULL; for (i = 0; i < des.nroots_ && scope == NULL; i++) scope = find_scope_from_root(des.roots_[i], cur); return scope; } ivl_scope_t dll_target::lookup_scope_(const NetScope*cur) { return find_scope(des_, cur); } /* * This is a convenience function to locate an ivl_signal_t object * given the NetESignal that has the signal name. */ ivl_signal_t dll_target::find_signal(ivl_design_s &des, const NetNet*net) { ivl_scope_t scope = find_scope(des, net->scope()); assert(scope); const char*nname = net->name(); for (unsigned idx = 0 ; idx < scope->nsigs_ ; idx += 1) { if (strcmp(scope->sigs_[idx]->name_, nname) == 0) return scope->sigs_[idx]; } assert(0); return 0; } /* * This function locates an ivl_memory_t object that matches the * NetMemory object. The search works by looking for the parent scope, * then scanning the parent scope for the NetMemory object. */ static ivl_memory_t find_memory(ivl_scope_t root, const NetMemory*cur) { ivl_scope_t tmp; ivl_memory_t mem ; if (!root) return 0; for (unsigned i = 0; i < ivl_scope_mems(root); i++) { mem = ivl_scope_mem(root, i); if (!strcmp(ivl_memory_name(mem), cur->name().c_str())) return mem; } mem = find_memory(root->child_, cur); if (mem) return mem; mem = find_memory(root->sibling_, cur); if (mem) return mem; return 0; } ivl_memory_t dll_target::lookup_memory_(const NetMemory*cur) { unsigned i; ivl_memory_t mem = NULL; for (i = 0; i < des_.nroots_ && mem == NULL; i++) mem = find_memory(des_.roots_[i], cur); return mem; } static ivl_nexus_t nexus_sig_make(ivl_signal_t net, unsigned pin) { ivl_nexus_t tmp = new struct ivl_nexus_s; tmp->private_data = 0; tmp->nptr_ = 1; tmp->ptrs_ = (struct ivl_nexus_ptr_s*) malloc(sizeof(struct ivl_nexus_ptr_s)); tmp->ptrs_[0].pin_ = pin; tmp->ptrs_[0].type_ = __NEXUS_PTR_SIG; tmp->ptrs_[0].l.sig = net; ivl_drive_t drive = IVL_DR_HiZ; switch (ivl_signal_type(net)) { case IVL_SIT_REG: drive = IVL_DR_STRONG; break; case IVL_SIT_SUPPLY0: case IVL_SIT_SUPPLY1: drive = IVL_DR_SUPPLY; break; } tmp->ptrs_[0].drive0 = drive; tmp->ptrs_[0].drive1 = drive; return tmp; } static void nexus_sig_add(ivl_nexus_t nex, ivl_signal_t net, unsigned pin) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; ivl_drive_t drive = IVL_DR_HiZ; switch (ivl_signal_type(net)) { case IVL_SIT_REG: drive = IVL_DR_STRONG; break; case IVL_SIT_SUPPLY0: case IVL_SIT_SUPPLY1: drive = IVL_DR_SUPPLY; break; } nex->ptrs_[top-1].type_= __NEXUS_PTR_SIG; nex->ptrs_[top-1].drive0 = drive; nex->ptrs_[top-1].drive1 = drive; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.sig= net; } static void nexus_log_add(ivl_nexus_t nex, ivl_net_logic_t net, unsigned pin) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_LOG; nex->ptrs_[top-1].drive0 = (pin == 0)? IVL_DR_STRONG : IVL_DR_HiZ; nex->ptrs_[top-1].drive1 = (pin == 0)? IVL_DR_STRONG : IVL_DR_HiZ; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.log= net; } static void nexus_con_add(ivl_nexus_t nex, ivl_net_const_t net, unsigned pin) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_CON; nex->ptrs_[top-1].drive0 = IVL_DR_STRONG; nex->ptrs_[top-1].drive1 = IVL_DR_STRONG; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.con= net; } static void nexus_lpm_add(ivl_nexus_t nex, ivl_lpm_t net, unsigned pin, ivl_drive_t drive0, ivl_drive_t drive1) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_LPM; nex->ptrs_[top-1].drive0 = drive0; nex->ptrs_[top-1].drive1 = drive0; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.lpm= net; } void scope_add_logic(ivl_scope_t scope, ivl_net_logic_t net) { if (scope->nlog_ == 0) { scope->nlog_ = 1; scope->log_ = (ivl_net_logic_t*)malloc(sizeof(ivl_net_logic_t)); scope->log_[0] = net; } else { scope->nlog_ += 1; scope->log_ = (ivl_net_logic_t*) realloc(scope->log_, scope->nlog_*sizeof(ivl_net_logic_t)); scope->log_[scope->nlog_-1] = net; } } void scope_add_event(ivl_scope_t scope, ivl_event_t net) { if (scope->nevent_ == 0) { scope->nevent_ = 1; scope->event_ = (ivl_event_t*)malloc(sizeof(ivl_event_t)); scope->event_[0] = net; } else { scope->nevent_ += 1; scope->event_ = (ivl_event_t*) realloc(scope->event_, scope->nevent_*sizeof(ivl_event_t)); scope->event_[scope->nevent_-1] = net; } } static void scope_add_lpm(ivl_scope_t scope, ivl_lpm_t net) { if (scope->nlpm_ == 0) { assert(scope->lpm_ == 0); scope->nlpm_ = 1; scope->lpm_ = (ivl_lpm_t*)malloc(sizeof(ivl_lpm_t)); scope->lpm_[0] = net; } else { assert(scope->lpm_); scope->nlpm_ += 1; scope->lpm_ = (ivl_lpm_t*) realloc(scope->lpm_, scope->nlpm_*sizeof(ivl_lpm_t)); scope->lpm_[scope->nlpm_-1] = net; } } static void scope_add_mem(ivl_scope_t scope, ivl_memory_t net) { scope->nmem_ += 1; scope->mem_ = (ivl_memory_t*) realloc(scope->mem_, scope->nmem_*sizeof(ivl_memory_t)); scope->mem_[scope->nmem_-1] = net; } void dll_target::add_root(ivl_design_s &des_, const NetScope *s) { ivl_scope_t root_ = new struct ivl_scope_s; const char *name = s->name().c_str(); root_->name_ = strdup(name); root_->child_ = 0; root_->sibling_ = 0; root_->parent = 0; root_->nsigs_ = 0; root_->sigs_ = 0; root_->nlog_ = 0; root_->log_ = 0; root_->nevent_ = 0; root_->event_ = 0; root_->nlpm_ = 0; root_->lpm_ = 0; root_->nmem_ = 0; root_->mem_ = 0; root_->type_ = IVL_SCT_MODULE; root_->tname_ = root_->name_; des_.nroots_++; if (des_.roots_) des_.roots_ = (ivl_scope_t *)realloc(des_.roots_, des_.nroots_ * sizeof(ivl_scope_t)); else des_.roots_ = (ivl_scope_t *)malloc(des_.nroots_ * sizeof(ivl_scope_t)); des_.roots_[des_.nroots_ - 1] = root_; } bool dll_target::start_design(const Design*des) { list root_scopes; dll_path_ = des->get_flag("DLL"); dll_ = ivl_dlopen(dll_path_.c_str()); if (dll_ == 0) { cerr << dll_path_ << ": " << dlerror() << endl; return false; } stmt_cur_ = 0; // Initialize the design object. des_.self = des; des_.time_precision = des->get_precision(); des_.nroots_ = 0; des_.roots_ = NULL; root_scopes = des->find_root_scopes(); for (list::const_iterator scope = root_scopes.begin(); scope != root_scopes.end(); scope++) add_root(des_, *scope); des_.consts = (ivl_net_const_t*) malloc(sizeof(ivl_net_const_t)); des_.nconsts = 0; target_ = (target_design_f)ivl_dlsym(dll_, LU "target_design" TU); if (target_ == 0) { cerr << dll_path_ << ": error: target_design entry " "point is missing." << endl; return false; } return true; } /* * Here ivl is telling us that the design is scanned completely, and * here is where we call the API to process the constructed design. */ int dll_target::end_design(const Design*) { int rc = (target_)(&des_); ivl_dlclose(dll_); return rc; } static void logic_attributes(struct ivl_net_logic_s *obj, const NetNode*net) { obj->nattr_ = net->nattr(); if (obj->nattr_ > 0) { obj->akey_ = (char**)calloc(obj->nattr_, sizeof(char*)); obj->aval_ = (char**)calloc(obj->nattr_, sizeof(char*)); for (unsigned idx = 0 ; idx < obj->nattr_ ; idx += 1) { obj->akey_[idx] = strdup(net->attr_key(idx)); obj->aval_[idx] = strdup(net->attr_value(idx)); } } else { obj->akey_ = 0; obj->aval_ = 0; } } /* * Add a bufz object to the scope that contains it. * * Note that in the ivl_target API a BUFZ device is a special kind of * ivl_net_logic_t device, so create an ivl_net_logic_t cookie to * handle it. */ bool dll_target::bufz(const NetBUFZ*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; assert(net->pin_count() == 2); obj->type_ = IVL_LO_BUFZ; obj->npins_ = 2; obj->pins_ = new ivl_nexus_t[2]; /* Get the ivl_nexus_t objects connected to the two pins. (We know a priori that the ivl_nexus_t objects have been allocated, because the signals have been scanned before me. This saves me the trouble of allocating them.) */ assert(net->pin(0).nexus()->t_cookie()); obj->pins_[0] = (ivl_nexus_t) net->pin(0).nexus()->t_cookie(); nexus_log_add(obj->pins_[0], obj, 0); assert(net->pin(1).nexus()->t_cookie()); obj->pins_[1] = (ivl_nexus_t) net->pin(1).nexus()->t_cookie(); nexus_log_add(obj->pins_[1], obj, 1); /* Attach the logic device to the scope that contains it. */ assert(net->scope()); ivl_scope_t scope = find_scope(des_, net->scope()); assert(scope); obj->scope_ = scope; obj->name_ = strdup(net->name()); logic_attributes(obj, net); scope_add_logic(scope, obj); return true; } void dll_target::event(const NetEvent*net) { struct ivl_event_s *obj = new struct ivl_event_s; ivl_scope_t scope = find_scope(des_, net->scope()); obj->name = strdup(net->full_name().c_str()); obj->scope = scope; scope_add_event(scope, obj); obj->nany = 0; obj->nneg = 0; obj->npos = 0; if (net->nprobe() >= 1) { for (unsigned idx = 0 ; idx < net->nprobe() ; idx += 1) { const NetEvProbe*pr = net->probe(idx); switch (pr->edge()) { case NetEvProbe::ANYEDGE: obj->nany += pr->pin_count(); break; case NetEvProbe::NEGEDGE: obj->nneg += pr->pin_count(); break; case NetEvProbe::POSEDGE: obj->npos += pr->pin_count(); break; } } unsigned npins = obj->nany + obj->nneg + obj->npos; obj->pins = (ivl_nexus_t*)calloc(npins, sizeof(ivl_nexus_t)); } else { obj->pins = 0; } } void dll_target::logic(const NetLogic*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; switch (net->type()) { case NetLogic::AND: obj->type_ = IVL_LO_AND; break; case NetLogic::BUF: obj->type_ = IVL_LO_BUF; break; case NetLogic::BUFIF0: obj->type_ = IVL_LO_BUFIF0; break; case NetLogic::BUFIF1: obj->type_ = IVL_LO_BUFIF1; break; case NetLogic::NAND: obj->type_ = IVL_LO_NAND; break; case NetLogic::NMOS: obj->type_ = IVL_LO_NMOS; break; case NetLogic::NOR: obj->type_ = IVL_LO_NOR; break; case NetLogic::NOT: obj->type_ = IVL_LO_NOT; break; case NetLogic::NOTIF0: obj->type_ = IVL_LO_NOTIF0; break; case NetLogic::NOTIF1: obj->type_ = IVL_LO_NOTIF1; break; case NetLogic::OR: obj->type_ = IVL_LO_OR; break; case NetLogic::PULLDOWN: obj->type_ = IVL_LO_PULLDOWN; break; case NetLogic::PULLUP: obj->type_ = IVL_LO_PULLUP; break; case NetLogic::RNMOS: obj->type_ = IVL_LO_RNMOS; break; case NetLogic::RPMOS: obj->type_ = IVL_LO_RPMOS; break; case NetLogic::PMOS: obj->type_ = IVL_LO_PMOS; break; case NetLogic::XNOR: obj->type_ = IVL_LO_XNOR; break; case NetLogic::XOR: obj->type_ = IVL_LO_XOR; break; default: assert(0); obj->type_ = IVL_LO_NONE; break; } /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = net->pin_count(); obj->pins_ = new ivl_nexus_t[obj->npins_]; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->pins_[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_log_add(obj->pins_[idx], obj, idx); } assert(net->scope()); ivl_scope_t scope = find_scope(des_, net->scope()); assert(scope); obj->scope_= scope; obj->name_ = strdup(net->name()); logic_attributes(obj, net); scope_add_logic(scope, obj); } void dll_target::net_case_cmp(const NetCaseCmp*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; obj->type_ = IVL_LO_EEQ; /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = 3; obj->pins_ = new ivl_nexus_t[obj->npins_]; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->pins_[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_log_add(obj->pins_[idx], obj, idx); } //assert(net->scope()); //ivl_scope_t scope = find_scope(des_, net->scope()); //assert(scope); ivl_scope_t scope = des_.roots_[0]; obj->scope_= scope; obj->name_ = strdup(net->name()); scope_add_logic(scope, obj); } bool dll_target::net_cassign(const NetCAssign*) { return false; } void dll_target::udp(const NetUDP*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; obj->type_ = IVL_LO_UDP; static map udps; ivl_udp_t u; if (udps.find(net->udp_name()) != udps.end()) { u = udps[net->udp_name()]; } else { u = new struct ivl_udp_s; u->nrows = net->rows(); u->table = (char**)malloc((u->nrows+1)*sizeof(char*)); assert(u->table); u->table[u->nrows] = 0x0; u->nin = net->nin(); u->sequ = net->is_sequential(); if (u->sequ) u->init = net->get_initial(); u->name = strdup(net->udp_name().c_str()); string inp; char out; int i = 0; if (net->first(inp, out)) do { string tt = inp+out; u->table[i++] = strdup(tt.c_str()); } while (net->next(inp, out)); assert(i==u->nrows); udps[net->udp_name()] = u; } obj->udp = u; // Some duplication of code here, see: dll_target::logic() /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = net->pin_count(); obj->pins_ = new ivl_nexus_t[obj->npins_]; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->pins_[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_log_add(obj->pins_[idx], obj, idx); } assert(net->scope()); ivl_scope_t scope = find_scope(des_, net->scope()); assert(scope); obj->scope_= scope; obj->name_ = strdup(net->name()); scope_add_logic(scope, obj); } void dll_target::memory(const NetMemory*net) { ivl_memory_t obj = new struct ivl_memory_s; obj->name_ = strdup(net->name().c_str()); obj->scope_ = find_scope(des_, net->scope()); obj->width_ = net->width(); obj->signed_ = 0; obj->size_ = net->count(); obj->root_ = -net->index_to_address(0); scope_add_mem(obj->scope_, obj); } void dll_target::lpm_add_sub(const NetAddSub*net) { ivl_lpm_t obj = new struct ivl_lpm_s; if (net->attribute("LPM_Direction") == "SUB") obj->type = IVL_LPM_SUB; else obj->type = IVL_LPM_ADD; obj->name = strdup(net->name()); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); /* Choose the width of the adder. If the carry bit is connected, then widen the adder by one and plan on leaving the fake inputs unconnected. */ obj->u_.arith.width = net->width(); if (net->pin_Cout().is_linked()) { obj->u_.arith.width += 1; } obj->u_.arith.q = new ivl_nexus_t[3 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + obj->u_.arith.width; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; for (unsigned idx = 0 ; idx < net->width() ; idx += 1) { const Nexus*nex; nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } /* If the carry output is connected, then connect the extra Q pin to the carry nexus and zero the a and b inputs. */ if (net->pin_Cout().is_linked()) { unsigned carry = obj->u_.arith.width - 1; const Nexus*nex = net->pin_Cout().nexus(); assert(nex->t_cookie()); obj->u_.arith.q[carry] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[carry], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); obj->u_.arith.a[carry] = 0; obj->u_.arith.b[carry] = 0; } scope_add_lpm(obj->scope, obj); } /* * The lpm_clshift device represents both left and right shifts, * depending on what is connected to the Direction pin. We convert * this device into SHIFTL or SHIFTR devices. */ void dll_target::lpm_clshift(const NetCLShift*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SHIFTL; obj->name = strdup(net->name()); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); /* Look at the direction input of the device, and select the shift direction accordingly. */ if (net->pin_Direction().is_linked()) { assert( link_drivers_constant(net->pin_Direction()) ); verinum::V dir = driven_value(net->pin_Direction()); switch (dir) { case verinum::V0: break; case verinum::V1: obj->type = IVL_LPM_SHIFTR; break; default: assert(0); } } obj->u_.shift.width = net->width(); obj->u_.shift.select = net->width_dist(); unsigned nex_count = obj->u_.shift.width * 2 + obj->u_.shift.select; obj->u_.shift.q = new ivl_nexus_t[nex_count]; obj->u_.shift.d = obj->u_.shift.q + obj->u_.shift.width; obj->u_.shift.s = obj->u_.shift.d + obj->u_.shift.width; for (unsigned idx = 0 ; idx < nex_count ; idx += 1) obj->u_.shift.q[idx] = 0; for (unsigned idx = 0 ; idx < net->width() ; idx += 1) { const Nexus*nex; nex = net->pin_Result(idx).nexus(); assert(nex && nex->t_cookie()); obj->u_.shift.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.shift.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } for (unsigned idx = 0 ; idx < net->width() ; idx += 1) { const Nexus*nex; nex = net->pin_Data(idx).nexus(); assert(nex && nex->t_cookie()); obj->u_.shift.d[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.shift.q[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } for (unsigned idx = 0 ; idx < net->width_dist() ; idx += 1) { const Nexus*nex; nex = net->pin_Distance(idx).nexus(); assert(nex && nex->t_cookie()); obj->u_.shift.s[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.shift.s[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } scope_add_lpm(obj->scope, obj); } /* * Make out of the NetCompare object an ivl_lpm_s object. The * comparators in ivl_target do not support < or <=, but they can be * trivially converted to > and >= by swapping the operands. */ void dll_target::lpm_compare(const NetCompare*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->name = strdup(net->name()); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); bool swap_operands = false; obj->u_.arith.width = net->width(); obj->u_.arith.q = new ivl_nexus_t[1 + 2 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + 1; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; if (net->pin_AGEB().is_linked()) { const Nexus*nex = net->pin_AGEB().nexus(); obj->type = IVL_LPM_CMP_GE; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_AGB().is_linked()) { const Nexus*nex = net->pin_AGB().nexus(); obj->type = IVL_LPM_CMP_GT; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_ALEB().is_linked()) { const Nexus*nex = net->pin_ALEB().nexus(); obj->type = IVL_LPM_CMP_GE; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); swap_operands = true; } else if (net->pin_ALB().is_linked()) { const Nexus*nex = net->pin_ALB().nexus(); obj->type = IVL_LPM_CMP_GT; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); swap_operands = true; } else if (net->pin_AEB().is_linked()) { const Nexus*nex = net->pin_AEB().nexus(); obj->type = IVL_LPM_CMP_EQ; assert(nex->t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_ANEB().is_linked()) { const Nexus*nex = net->pin_ANEB().nexus(); obj->type = IVL_LPM_CMP_NE; if (! nex->t_cookie()) { cerr << "internal error: COMPARE_NE device " << net->name()<<" ANEB pin nexus has no cookie."<t_cookie()); obj->u_.arith.q[0] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else { assert(0); } for (unsigned idx = 0 ; idx < net->width() ; idx += 1) { const Nexus*nex; nex = swap_operands ? net->pin_DataB(idx).nexus() : net->pin_DataA(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = swap_operands ? net->pin_DataA(idx).nexus() : net->pin_DataB(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } scope_add_lpm(obj->scope, obj); } void dll_target::lpm_divide(const NetDivide*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_DIVIDE; obj->name = strdup(net->name()); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); obj->u_.arith.width = wid; obj->u_.arith.q = new ivl_nexus_t[3 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + obj->u_.arith.width; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; for (unsigned idx = 0 ; idx < wid ; idx += 1) { const Nexus*nex; nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); if (idx < net->width_a()) { nex = net->pin_DataA(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.a[idx] = 0; } if (idx < net->width_b()) { nex = net->pin_DataB(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.b[idx] = 0; } } scope_add_lpm(obj->scope, obj); } void dll_target::lpm_ff(const NetFF*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_FF; obj->name = strdup(net->name()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->u_.ff.width = net->width(); scope_add_lpm(obj->scope, obj); const Nexus*nex; /* Set the clk signal to point to the nexus, and the nexus to point back to this device. */ nex = net->pin_Clock().nexus(); assert(nex->t_cookie()); obj->u_.ff.clk = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.clk); nexus_lpm_add(obj->u_.ff.clk, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); /* If there is a clock enable, then connect it up to the FF device. */ if (net->pin_Enable().is_linked()) { nex = net->pin_Enable().nexus(); assert(nex->t_cookie()); obj->u_.ff.we = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.we); nexus_lpm_add(obj->u_.ff.we, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.we = 0; } if (obj->u_.ff.width == 1) { nex = net->pin_Q(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pin, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.q.pins = new ivl_nexus_t [obj->u_.ff.width * 2]; obj->u_.ff.d.pins = obj->u_.ff.q.pins + obj->u_.ff.width; for (unsigned idx = 0 ; idx < obj->u_.ff.width ; idx += 1) { nex = net->pin_Q(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pins[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } } void dll_target::lpm_ram_dq(const NetRamDq*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_RAM; obj->name = strdup(net->name()); obj->u_.ff.mem = lookup_memory_(net->mem()); assert(obj->u_.ff.mem); obj->scope = find_scope(des_, net->mem()->scope()); assert(obj->scope); obj->u_.ff.width = net->width(); obj->u_.ff.swid = net->awidth(); scope_add_lpm(obj->scope, obj); const Nexus*nex; // A write port is present only if something is connected to // the clock input. bool has_write_port = net->pin_InClock().is_linked(); // Connect the write clock and write enable if (has_write_port) { nex = net->pin_InClock().nexus(); assert(nex->t_cookie()); obj->u_.ff.clk = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.clk); nexus_lpm_add(obj->u_.ff.clk, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_WE().nexus(); if (nex && nex->t_cookie()) { obj->u_.ff.we = (ivl_nexus_t) nex->t_cookie(); assert(obj->u_.ff.we); nexus_lpm_add(obj->u_.ff.we, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else obj->u_.ff.we = 0x0; } else { obj->u_.ff.clk = 0x0; obj->u_.ff.we = 0x0; } // Connect the address bus if (obj->u_.ff.swid == 1) { nex = net->pin_Address(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.s.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.s.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.s.pins = new ivl_nexus_t [obj->u_.ff.swid]; for (unsigned idx = 0 ; idx < obj->u_.ff.swid ; idx += 1) { nex = net->pin_Address(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.s.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.s.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } // Connect the data busses if (obj->u_.ff.width == 1) { nex = net->pin_Q(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pin, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); if (has_write_port) { nex = net->pin_Data(0).nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } else if (has_write_port) { obj->u_.ff.q.pins = new ivl_nexus_t [obj->u_.ff.width * 2]; obj->u_.ff.d.pins = obj->u_.ff.q.pins + obj->u_.ff.width; for (unsigned idx = 0 ; idx < obj->u_.ff.width ; idx += 1) { nex = net->pin_Q(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pins[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } else { obj->u_.ff.q.pins = new ivl_nexus_t [obj->u_.ff.width]; for (unsigned idx = 0 ; idx < obj->u_.ff.width ; idx += 1) { nex = net->pin_Q(idx).nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pins[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } } } void dll_target::lpm_mult(const NetMult*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MULT; obj->name = strdup(net->name()); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); obj->u_.arith.width = wid; obj->u_.arith.q = new ivl_nexus_t[3 * obj->u_.arith.width]; obj->u_.arith.a = obj->u_.arith.q + obj->u_.arith.width; obj->u_.arith.b = obj->u_.arith.a + obj->u_.arith.width; for (unsigned idx = 0 ; idx < wid ; idx += 1) { const Nexus*nex; nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.arith.q[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); if (idx < net->width_a()) { nex = net->pin_DataA(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.a[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.a[idx] = 0; } if (idx < net->width_b()) { nex = net->pin_DataB(idx).nexus(); assert(nex); assert(nex->t_cookie()); obj->u_.arith.b[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.arith.b[idx] = 0; } } scope_add_lpm(obj->scope, obj); } void dll_target::lpm_mux(const NetMux*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MUX; obj->name = strdup(net->name()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->u_.mux.width = net->width(); obj->u_.mux.size = net->size(); obj->u_.mux.swid = net->sel_width(); scope_add_lpm(obj->scope, obj); const Nexus*nex; /* Connect the output bits. */ if (obj->u_.mux.width == 1) { nex = net->pin_Result(0).nexus(); assert(nex->t_cookie()); obj->u_.mux.q.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.mux.q.pin, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else { obj->u_.mux.q.pins = new ivl_nexus_t [obj->u_.mux.width]; for (unsigned idx = 0 ; idx < obj->u_.mux.width ; idx += 1) { nex = net->pin_Result(idx).nexus(); assert(nex->t_cookie()); obj->u_.mux.q.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.mux.q.pins[idx], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } } /* Connect the select bits. */ if (obj->u_.mux.swid == 1) { nex = net->pin_Sel(0).nexus(); assert(nex->t_cookie()); obj->u_.mux.s.pin = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.mux.s.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.mux.s.pins = new ivl_nexus_t [obj->u_.mux.swid]; for (unsigned idx = 0 ; idx < obj->u_.mux.swid ; idx += 1) { nex = net->pin_Sel(idx).nexus(); assert(nex->t_cookie()); obj->u_.mux.s.pins[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_lpm_add(obj->u_.mux.s.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } unsigned width = obj->u_.mux.width; unsigned selects = obj->u_.mux.size; obj->u_.mux.d = new ivl_nexus_t [width * selects]; for (unsigned sdx = 0 ; sdx < selects ; sdx += 1) for (unsigned ddx = 0 ; ddx < width ; ddx += 1) { nex = net->pin_Data(ddx, sdx).nexus(); ivl_nexus_t tmp = (ivl_nexus_t) nex->t_cookie(); obj->u_.mux.d[sdx*width + ddx] = tmp; nexus_lpm_add(tmp, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } /* * The assignment l-values are captured by the assignment statements * themselves in the process handling. */ void dll_target::net_assign(const NetAssign_*) { } bool dll_target::net_const(const NetConst*net) { unsigned idx; char*bits; struct ivl_net_const_s *obj = new struct ivl_net_const_s; obj->width_ = net->pin_count(); if (obj->width_ <= sizeof(char*)) { bits = obj->b.bit_; } else { obj->b.bits_ = (char*)malloc(obj->width_); bits = obj->b.bits_; } for (idx = 0 ; idx < obj->width_ ; idx += 1) switch (net->value(idx)) { case verinum::V0: bits[idx] = '0'; break; case verinum::V1: bits[idx] = '1'; break; case verinum::Vx: bits[idx] = 'x'; break; case verinum::Vz: bits[idx] = 'z'; break; } /* Connect to all the nexus objects. Note that the one-bit case can be handled more efficiently without allocating array space. */ if (obj->width_ == 1) { const Nexus*nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->n.pin_ = (ivl_nexus_t) nex->t_cookie(); nexus_con_add(obj->n.pin_, obj, 0); } else { obj->n.pins_ = new ivl_nexus_t[obj->width_]; for (unsigned idx = 0 ; idx < obj->width_ ; idx += 1) { if (! net->pin(idx).is_linked()) continue; const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->n.pins_[idx] = (ivl_nexus_t) nex->t_cookie(); nexus_con_add(obj->n.pins_[idx], obj, idx); } } des_.nconsts += 1; des_.consts = (ivl_net_const_t*) realloc(des_.consts, des_.nconsts * sizeof(ivl_net_const_t)); des_.consts[des_.nconsts-1] = obj; return true; } void dll_target::net_probe(const NetEvProbe*net) { } void dll_target::scope(const NetScope*net) { ivl_scope_t scope; if (net->parent() == 0) { unsigned i; scope = NULL; for (i = 0; i < des_.nroots_ && scope == NULL; i++) { if (strcmp(des_.roots_[i]->name_, net->name().c_str()) == 0) scope = des_.roots_[i]; } assert(scope); } else { scope = new struct ivl_scope_s; scope->name_ = strdup(net->name().c_str()); scope->child_ = 0; scope->sibling_ = 0; scope->parent = find_scope(des_, net->parent()); scope->nsigs_ = 0; scope->sigs_ = 0; scope->nlog_ = 0; scope->log_ = 0; scope->nevent_ = 0; scope->event_ = 0; scope->nlpm_ = 0; scope->lpm_ = 0; scope->nmem_ = 0; scope->mem_ = 0; switch (net->type()) { case NetScope::MODULE: scope->type_ = IVL_SCT_MODULE; scope->tname_ = net->module_name(); break; case NetScope::TASK: scope->type_ = IVL_SCT_TASK; scope->tname_ = strdup(net->task_def()->name().c_str()); break; case NetScope::FUNC: scope->type_ = IVL_SCT_FUNCTION; scope->tname_ = strdup(net->func_def()->name().c_str()); break; case NetScope::BEGIN_END: scope->type_ = IVL_SCT_BEGIN; scope->tname_ = scope->name_; break; case NetScope::FORK_JOIN: scope->type_ = IVL_SCT_FORK; scope->tname_ = scope->name_; break; } assert(scope->parent != 0); scope->sibling_= scope->parent->child_; scope->parent->child_ = scope; } } void dll_target::signal(const NetNet*net) { ivl_signal_t obj = new struct ivl_signal_s; obj->name_ = strdup(net->name()); /* Attach the signal to the ivl_scope_t object that contains it. This involves growing the sigs_ array in the scope object, or creating the sigs_ array if this is the first signal. */ obj->scope_ = find_scope(des_, net->scope()); assert(obj->scope_); if (obj->scope_->nsigs_ == 0) { assert(obj->scope_->sigs_ == 0); obj->scope_->nsigs_ = 1; obj->scope_->sigs_ = (ivl_signal_t*)malloc(sizeof(ivl_signal_t)); } else { assert(obj->scope_->sigs_); obj->scope_->nsigs_ += 1; obj->scope_->sigs_ = (ivl_signal_t*) realloc(obj->scope_->sigs_, obj->scope_->nsigs_*sizeof(ivl_signal_t)); } obj->scope_->sigs_[obj->scope_->nsigs_-1] = obj; #ifndef NDEBUG { size_t name_len = strlen(obj->scope_->name_); assert(0 == strncmp(obj->scope_->name_, obj->name_, name_len)); } #endif /* Save the privitive properties of the signal in the ivl_signal_t object. */ obj->width_ = net->pin_count(); obj->signed_= net->get_signed()? 1 : 0; switch (net->port_type()) { case NetNet::PINPUT: obj->port_ = IVL_SIP_INPUT; break; case NetNet::POUTPUT: obj->port_ = IVL_SIP_OUTPUT; break; case NetNet::PINOUT: obj->port_ = IVL_SIP_INOUT; break; default: obj->port_ = IVL_SIP_NONE; break; } switch (net->type()) { case NetNet::REG: obj->type_ = IVL_SIT_REG; break; case NetNet::SUPPLY0: obj->type_ = IVL_SIT_SUPPLY0; break; case NetNet::SUPPLY1: obj->type_ = IVL_SIT_SUPPLY1; break; case NetNet::TRI: obj->type_ = IVL_SIT_TRI; break; case NetNet::TRI0: obj->type_ = IVL_SIT_TRI0; break; case NetNet::TRI1: obj->type_ = IVL_SIT_TRI1; break; case NetNet::TRIAND: obj->type_ = IVL_SIT_TRIAND; break; case NetNet::TRIOR: obj->type_ = IVL_SIT_TRIOR; break; case NetNet::WAND: obj->type_ = IVL_SIT_WAND; break; case NetNet::WIRE: case NetNet::IMPLICIT: obj->type_ = IVL_SIT_WIRE; break; case NetNet::WOR: obj->type_ = IVL_SIT_WOR; break; default: obj->type_ = IVL_SIT_NONE; break; } obj->nattr_ = net->nattr(); obj->akey_ = new char*[obj->nattr_]; obj->aval_ = new char*[obj->nattr_]; for (unsigned idx = 0 ; idx < obj->nattr_ ; idx += 1) { obj->akey_[idx] = strdup(net->attr_key(idx)); obj->aval_[idx] = strdup(net->attr_value(idx)); } /* Get the nexus objects for all the pins of the signal. If the signal has only one pin, then write the single ivl_nexus_t object into n.pin_. Otherwise, make an array of ivl_nexus_t cookies. When I create an ivl_nexus_t object, store it in the t_cookie of the Nexus object so that I find it again when I next encounter the nexus. */ if (obj->width_ == 1) { const Nexus*nex = net->pin(0).nexus(); if (nex->t_cookie()) { obj->n.pin_ = (ivl_nexus_t)nex->t_cookie(); nexus_sig_add(obj->n.pin_, obj, 0); } else { ivl_nexus_t tmp = nexus_sig_make(obj, 0); tmp->name_ = strdup(nex->name()); nex->t_cookie(tmp); obj->n.pin_ = tmp; } } else { unsigned idx; obj->n.pins_ = (ivl_nexus_t*) calloc(obj->width_, sizeof(ivl_nexus_t)); for (idx = 0 ; idx < obj->width_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); if (nex->t_cookie()) { obj->n.pins_[idx] = (ivl_nexus_t)nex->t_cookie(); nexus_sig_add(obj->n.pins_[idx], obj, idx); } else { ivl_nexus_t tmp = nexus_sig_make(obj, idx); tmp->name_ = strdup(nex->name()); nex->t_cookie(tmp); obj->n.pins_[idx] = tmp; } } } } extern const struct target tgt_dll = { "dll", &dll_target_obj }; /* * $Log: t-dll.cc,v $ * Revision 1.69 2001/10/30 02:52:07 steve * Stubs for assign/deassign for t-dll. * * Revision 1.68 2001/10/22 02:05:21 steve * Handle activating tasks in another root. * * Revision 1.67 2001/10/19 21:53:24 steve * Support multiple root modules (Philip Blundell) * * Revision 1.66 2001/10/16 02:19:27 steve * Support IVL_LPM_DIVIDE for structural divide. * * Revision 1.65 2001/10/11 00:13:19 steve * Initialize attributes for bufz devices. * * Revision 1.64 2001/09/16 22:19:42 steve * Support attributes to logic gates. * * Revision 1.63 2001/09/15 18:27:04 steve * Make configure detect malloc.h * * Revision 1.62 2001/09/09 16:49:04 steve * Connect right ANEB pin when doing NE comparator. * * Revision 1.61 2001/09/08 01:23:21 steve * No code for unlinked constants. * * Revision 1.60 2001/09/01 01:57:31 steve * Make constants available through the design root * * Revision 1.59 2001/08/31 22:58:39 steve * Support DFF CE inputs. * * Revision 1.58 2001/08/28 04:07:41 steve * Add some ivl_target convenience functions. * * Revision 1.57 2001/08/10 00:40:45 steve * tgt-vvp generates code that skips nets as inputs. * * Revision 1.56 2001/07/25 03:10:50 steve * Create a config.h.in file to hold all the config * junk, and support gcc 3.0. (Stephan Boettcher) * * Revision 1.55 2001/07/22 00:17:49 steve * Support the NetESubSignal expressions in vvp.tgt. * * Revision 1.54 2001/07/07 03:01:37 steve * Detect and make available to t-dll the right shift. * * Revision 1.53 2001/07/04 22:59:25 steve * handle left shifter in dll output. * * Revision 1.52 2001/06/30 23:03:16 steve * support fast programming by only writing the bits * that are listed in the input file. * * Revision 1.51 2001/06/19 03:01:10 steve * Add structural EEQ gates (Stephan Boettcher) * * Revision 1.50 2001/06/18 03:25:20 steve * RAM_DQ pins are inputs, so connect HiZ to the nexus. * * Revision 1.49 2001/06/16 23:45:05 steve * Add support for structural multiply in t-dll. * Add code generators and vvp support for both * structural and behavioral multiply. * * Revision 1.48 2001/06/16 02:41:42 steve * Generate code to support memory access in continuous * assignment statements. (Stephan Boettcher) * * Revision 1.47 2001/06/15 05:01:09 steve * support LE and LT comparators. * * Revision 1.46 2001/06/15 04:14:19 steve * Generate vvp code for GT and GE comparisons. * * Revision 1.45 2001/06/07 04:20:10 steve * Account for carry out on add devices. * * Revision 1.44 2001/06/07 03:09:37 steve * support subtraction in tgt-vvp. * * Revision 1.43 2001/06/07 02:12:43 steve * Support structural addition. * * Revision 1.42 2001/05/20 15:09:39 steve * Mingw32 support (Venkat Iyer) * * Revision 1.41 2001/05/12 03:18:45 steve * Make sure LPM devices have drives on outputs. * * Revision 1.40 2001/05/08 23:59:33 steve * Add ivl and vvp.tgt support for memories in * expressions and l-values. (Stephan Boettcher) * * Revision 1.39 2001/05/03 01:52:45 steve * dll build of many probes forgot to index the probe. * * Revision 1.38 2001/04/29 23:17:38 steve * Carry drive strengths in the ivl_nexus_ptr_t, and * handle constant devices in targets.' * * Revision 1.37 2001/04/29 20:19:10 steve * Add pullup and pulldown devices. * * Revision 1.36 2001/04/26 05:12:02 steve * Implement simple MUXZ for ?: operators. */