/* * Copyright (c) 1999-2005 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifdef HAVE_CVS_IDENT #ident "$Id: expr_synth.cc,v 1.87 2007/06/02 03:42:12 steve Exp $" #endif # include "config.h" # include # include "netlist.h" # include "netmisc.h" # include "ivl_assert.h" NetNet* NetExpr::synthesize(Design*des) { cerr << get_line() << ": internal error: cannot synthesize expression: " << *this << endl; des->errors += 1; return 0; } /* * Make an LPM_ADD_SUB device from addition operators. */ NetNet* NetEBAdd::synthesize(Design*des) { assert((op()=='+') || (op()=='-')); NetNet*lsig = left_->synthesize(des); NetNet*rsig = right_->synthesize(des); assert(expr_width() >= lsig->vector_width()); assert(expr_width() >= rsig->vector_width()); lsig = pad_to_width(des, lsig, expr_width()); rsig = pad_to_width(des, rsig, expr_width()); assert(lsig->vector_width() == rsig->vector_width()); unsigned width=lsig->vector_width(); perm_string path = lsig->scope()->local_symbol(); NetNet*osig = new NetNet(lsig->scope(), path, NetNet::IMPLICIT, width); osig->local_flag(true); osig->data_type(expr_type()); perm_string oname = osig->scope()->local_symbol(); NetAddSub *adder = new NetAddSub(lsig->scope(), oname, width); connect(lsig->pin(0), adder->pin_DataA()); connect(rsig->pin(0), adder->pin_DataB()); connect(osig->pin(0), adder->pin_Result()); des->add_node(adder); switch (op()) { case '+': adder->attribute(perm_string::literal("LPM_Direction"), verinum("ADD")); break; case '-': adder->attribute(perm_string::literal("LPM_Direction"), verinum("SUB")); break; } return osig; } /* * The bitwise logic operators are turned into discrete gates pretty * easily. Synthesize the left and right sub-expressions to get * signals, then just connect a single gate to each bit of the vector * of the expression. */ NetNet* NetEBBits::synthesize(Design*des) { NetNet*lsig = left_->synthesize(des); NetNet*rsig = right_->synthesize(des); NetScope*scope = lsig->scope(); assert(scope); if (lsig->vector_width() != rsig->vector_width()) { cerr << get_line() << ": internal error: bitwise (" << op_ << ") widths do not match: " << lsig->vector_width() << " != " << rsig->vector_width() << endl; cerr << get_line() << ": : width=" << lsig->vector_width() << ": " << *left_ << endl; cerr << get_line() << ": : width=" << rsig->vector_width() << ": " << *right_ << endl; return 0; } assert(lsig->vector_width() == rsig->vector_width()); NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, lsig->vector_width()); osig->local_flag(true); osig->data_type(expr_type()); perm_string oname = scope->local_symbol(); unsigned wid = lsig->vector_width(); NetLogic*gate; switch (op()) { case '&': gate = new NetLogic(scope, oname, 3, NetLogic::AND, wid); break; case '|': gate = new NetLogic(scope, oname, 3, NetLogic::OR, wid); break; case '^': gate = new NetLogic(scope, oname, 3, NetLogic::XOR, wid); break; case 'O': gate = new NetLogic(scope, oname, 3, NetLogic::NOR, wid); break; case 'X': gate = new NetLogic(scope, oname, 3, NetLogic::XNOR, wid); break; default: assert(0); } connect(osig->pin(0), gate->pin(0)); connect(lsig->pin(0), gate->pin(1)); connect(rsig->pin(0), gate->pin(2)); gate->set_line(*this); des->add_node(gate); return osig; } NetNet* NetEBComp::synthesize(Design*des) { NetNet*lsig = left_->synthesize(des); NetNet*rsig = right_->synthesize(des); NetScope*scope = lsig->scope(); assert(scope); unsigned width = lsig->vector_width(); if (rsig->vector_width() > width) width = rsig->vector_width(); lsig = pad_to_width(des, lsig, width); rsig = pad_to_width(des, rsig, width); NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, 1); osig->set_line(*this); osig->local_flag(true); osig->data_type(IVL_VT_LOGIC); /* Handle the special case of a single bit equality operation. Make an XNOR gate instead of a comparator. */ if ((width == 1) && ((op_ == 'e') || (op_ == 'E'))) { NetLogic*gate = new NetLogic(scope, scope->local_symbol(), 3, NetLogic::XNOR, 1); gate->set_line(*this); connect(gate->pin(0), osig->pin(0)); connect(gate->pin(1), lsig->pin(0)); connect(gate->pin(2), rsig->pin(0)); des->add_node(gate); return osig; } /* Handle the special case of a single bit inequality operation. This is similar to single bit equality, but uses an XOR instead of an XNOR gate. */ if ((width == 1) && ((op_ == 'n') || (op_ == 'N'))) { NetLogic*gate = new NetLogic(scope, scope->local_symbol(), 3, NetLogic::XOR, 1); gate->set_line(*this); connect(gate->pin(0), osig->pin(0)); connect(gate->pin(1), lsig->pin(0)); connect(gate->pin(2), rsig->pin(0)); des->add_node(gate); return osig; } NetCompare*dev = new NetCompare(scope, scope->local_symbol(), width); dev->set_line(*this); des->add_node(dev); connect(dev->pin_DataA(), lsig->pin(0)); connect(dev->pin_DataB(), rsig->pin(0)); switch (op_) { case '<': connect(dev->pin_ALB(), osig->pin(0)); break; case '>': connect(dev->pin_AGB(), osig->pin(0)); break; case 'e': // == case 'E': // === ? connect(dev->pin_AEB(), osig->pin(0)); break; case 'G': // >= connect(dev->pin_AGEB(), osig->pin(0)); break; case 'L': // <= connect(dev->pin_ALEB(), osig->pin(0)); break; case 'n': // != case 'N': // !== connect(dev->pin_ANEB(), osig->pin(0)); break; default: cerr << get_line() << ": internal error: cannot synthesize " "comparison: " << *this << endl; des->errors += 1; return 0; } return osig; } NetNet* NetEBPow::synthesize(Design*des) { cerr << get_line() << ": internal error: Do not yet know how to handle" << " power operator in this context." << endl; des->errors += 1; return 0; } NetNet* NetEBMult::synthesize(Design*des) { NetNet*lsig = left_->synthesize(des); NetNet*rsig = right_->synthesize(des); if (lsig == 0) return 0; if (rsig == 0) return 0; NetScope*scope = lsig->scope(); assert(scope); NetMult*mult = new NetMult(scope, scope->local_symbol(), expr_width(), lsig->vector_width(), rsig->vector_width()); des->add_node(mult); mult->set_signed( has_sign() ); mult->set_line(*this); connect(mult->pin_DataA(), lsig->pin(0)); connect(mult->pin_DataB(), rsig->pin(0)); NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, expr_width()); osig->data_type(lsig->data_type()); osig->set_line(*this); osig->data_type(expr_type()); osig->local_flag(true); connect(mult->pin_Result(), osig->pin(0)); return osig; } NetNet* NetEBDiv::synthesize(Design*des) { NetNet*lsig = left_->synthesize(des); NetNet*rsig = right_->synthesize(des); NetScope*scope = lsig->scope(); NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, expr_width()); osig->set_line(*this); osig->data_type(lsig->data_type()); osig->local_flag(true); switch (op()) { case '/': { NetDivide*div = new NetDivide(scope, scope->local_symbol(), expr_width(), lsig->vector_width(), rsig->vector_width()); div->set_line(*this); des->add_node(div); connect(div->pin_DataA(), lsig->pin(0)); connect(div->pin_DataB(), rsig->pin(0)); connect(div->pin_Result(),osig->pin(0)); break; } case '%': { NetModulo*div = new NetModulo(scope, scope->local_symbol(), expr_width(), lsig->vector_width(), rsig->vector_width()); div->set_line(*this); des->add_node(div); connect(div->pin_DataA(), lsig->pin(0)); connect(div->pin_DataB(), rsig->pin(0)); connect(div->pin_Result(),osig->pin(0)); break; } default: { cerr << get_line() << ": internal error: " << "NetEBDiv has unexpeced op() code: " << op() << endl; des->errors += 1; delete osig; return 0; } } return osig; } NetNet* NetEBLogic::synthesize(Design*des) { NetNet*lsig = left_->synthesize(des); NetNet*rsig = right_->synthesize(des); if (lsig == 0) return 0; if (rsig == 0) return 0; NetScope*scope = lsig->scope(); assert(scope); NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, 1); osig->data_type(expr_type()); osig->local_flag(true); if (op() == 'o') { /* Logic OR can handle the reduction *and* the logical comparison with a single wide OR gate. So handle this magically. */ perm_string oname = scope->local_symbol(); NetLogic*olog = new NetLogic(scope, oname, lsig->pin_count()+rsig->pin_count()+1, NetLogic::OR, 1); connect(osig->pin(0), olog->pin(0)); unsigned pin = 1; for (unsigned idx = 0 ; idx < lsig->pin_count() ; idx = 1) connect(olog->pin(pin+idx), lsig->pin(idx)); pin += lsig->pin_count(); for (unsigned idx = 0 ; idx < rsig->pin_count() ; idx = 1) connect(olog->pin(pin+idx), rsig->pin(idx)); des->add_node(olog); } else { assert(op() == 'a'); /* Create the logic AND gate. This is a single bit output, with inputs for each of the operands. */ NetLogic*olog; perm_string oname = scope->local_symbol(); olog = new NetLogic(scope, oname, 3, NetLogic::AND, 1); connect(osig->pin(0), olog->pin(0)); des->add_node(olog); /* XXXX Here, I need to reduce the parameters with reduction or. */ /* By this point, the left and right parameters have been reduced to single bit values. Now we just connect them to the logic gate. */ assert(lsig->pin_count() == 1); connect(lsig->pin(0), olog->pin(1)); assert(rsig->pin_count() == 1); connect(rsig->pin(0), olog->pin(2)); } return osig; } NetNet* NetEBShift::synthesize(Design*des) { if (! dynamic_cast(right_)) { NetExpr*tmp = right_->eval_tree(); if (tmp) { delete right_; right_ = tmp; } } NetNet*lsig = left_->synthesize(des); if (lsig == 0) return 0; bool right_flag = op_ == 'r' || op_ == 'R'; bool signed_flag = op_ == 'R'; NetScope*scope = lsig->scope(); /* Detect the special case where the shift amount is constant. Evaluate the shift amount, and simply reconnect the left operand to the output, but shifted. */ if (NetEConst*rcon = dynamic_cast(right_)) { verinum shift_v = rcon->value(); long shift = shift_v.as_long(); if (op() == 'r') shift = 0-shift; if (shift == 0) return lsig; NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, expr_width()); osig->data_type(expr_type()); osig->local_flag(true); // ushift is the amount of pad created by the shift. unsigned long ushift = shift>=0? shift : -shift; if (ushift > osig->vector_width()) ushift = osig->vector_width(); // part_width is the bits of the vector that survive the shift. unsigned long part_width = osig->vector_width() - ushift; verinum znum (verinum::V0, ushift, true); NetConst*zcon = new NetConst(scope, scope->local_symbol(), znum); des->add_node(zcon); /* Detect the special case that the shift is the size of the whole expression. Simply connect the pad to the osig and escape. */ if (ushift >= osig->vector_width()) { connect(zcon->pin(0), osig->pin(0)); return osig; } NetNet*zsig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, znum.len()); zsig->data_type(osig->data_type()); zsig->local_flag(true); zsig->set_line(*this); connect(zcon->pin(0), zsig->pin(0)); /* Create a part select to reduce the width of the lsig to the amount left by the shift. */ NetPartSelect*psel = new NetPartSelect(lsig, shift<0? ushift : 0, part_width, NetPartSelect::VP); des->add_node(psel); NetNet*psig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, part_width); psig->data_type(expr_type()); psig->local_flag(true); psig->set_line(*this); connect(psig->pin(0), psel->pin(0)); NetConcat*ccat = new NetConcat(scope, scope->local_symbol(), osig->vector_width(), 2); ccat->set_line(*this); des->add_node(ccat); connect(ccat->pin(0), osig->pin(0)); if (shift > 0) { // Left shift. connect(ccat->pin(1), zsig->pin(0)); connect(ccat->pin(2), psig->pin(0)); } else { // Right shift connect(ccat->pin(1), psig->pin(0)); connect(ccat->pin(2), zsig->pin(0)); } return osig; } NetNet*rsig = right_->synthesize(des); if (rsig == 0) return 0; NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, expr_width()); osig->data_type(expr_type()); osig->local_flag(true); NetCLShift*dev = new NetCLShift(scope, scope->local_symbol(), osig->vector_width(), rsig->vector_width(), right_flag, signed_flag); dev->set_line(*this); des->add_node(dev); connect(dev->pin_Result(), osig->pin(0)); assert(lsig->vector_width() == dev->width()); connect(dev->pin_Data(), lsig->pin(0)); connect(dev->pin_Distance(), rsig->pin(0)); return osig; } NetNet* NetEConcat::synthesize(Design*des) { /* First, synthesize the operands. */ NetNet**tmp = new NetNet*[parms_.count()]; bool flag = true; for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1) { tmp[idx] = parms_[idx]->synthesize(des); if (tmp[idx] == 0) flag = false; } if (flag == false) return 0; assert(tmp[0]); NetScope*scope = tmp[0]->scope(); assert(scope); /* Make a NetNet object to carry the output vector. */ perm_string path = scope->local_symbol(); NetNet*osig = new NetNet(scope, path, NetNet::IMPLICIT, expr_width()); osig->local_flag(true); osig->data_type(tmp[0]->data_type()); NetConcat*concat = new NetConcat(scope, scope->local_symbol(), osig->vector_width(), parms_.count()); concat->set_line(*this); des->add_node(concat); connect(concat->pin(0), osig->pin(0)); for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1) { connect(concat->pin(idx+1), tmp[parms_.count()-idx-1]->pin(0)); } delete[]tmp; return osig; } NetNet* NetEConst::synthesize(Design*des) { NetScope*scope = des->find_root_scope(); assert(scope); perm_string path = scope->local_symbol(); unsigned width=expr_width(); NetNet*osig = new NetNet(scope, path, NetNet::IMPLICIT, width-1,0); osig->local_flag(true); osig->data_type(IVL_VT_LOGIC); osig->set_signed(has_sign()); NetConst*con = new NetConst(scope, scope->local_symbol(), value()); connect(osig->pin(0), con->pin(0)); des->add_node(con); return osig; } /* * Create a NetLiteral object to represent real valued constants. */ NetNet* NetECReal::synthesize(Design*des) { NetScope*scope = des->find_root_scope(); assert(scope); perm_string path = scope->local_symbol(); NetNet*osig = new NetNet(scope, path, NetNet::WIRE, 1); osig->local_flag(true); osig->data_type(IVL_VT_REAL); osig->set_signed(has_sign()); osig->set_line(*this); NetLiteral*con = new NetLiteral(scope, scope->local_symbol(), value_); des->add_node(con); con->set_line(*this); connect(osig->pin(0), con->pin(0)); return osig; } /* * The bitwise unary logic operator (there is only one) is turned * into discrete gates just as easily as the binary ones above. */ NetNet* NetEUBits::synthesize(Design*des) { NetNet*isig = expr_->synthesize(des); NetScope*scope = isig->scope(); assert(scope); unsigned width = isig->vector_width(); NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, width); osig->data_type(expr_type()); osig->local_flag(true); perm_string oname = scope->local_symbol(); NetLogic*gate; switch (op()) { case '~': gate = new NetLogic(scope, oname, 2, NetLogic::NOT, width); break; default: assert(0); } connect(osig->pin(0), gate->pin(0)); connect(isig->pin(0), gate->pin(1)); des->add_node(gate); return osig; } NetNet* NetEUReduce::synthesize(Design*des) { NetNet*isig = expr_->synthesize(des); NetScope*scope = isig->scope(); assert(scope); NetNet*osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, 1); osig->data_type(expr_type()); osig->local_flag(true); NetUReduce::TYPE rtype = NetUReduce::NONE; switch (op()) { case 'N': case '!': rtype = NetUReduce::NOR; break; case '&': rtype = NetUReduce::AND; break; case '|': rtype = NetUReduce::OR; break; case '^': rtype = NetUReduce::XOR; break; case 'A': rtype = NetUReduce::XNOR; break; case 'X': rtype = NetUReduce::XNOR; break; default: cerr << get_line() << ": internal error: " << "Unable to synthesize " << *this << "." << endl; return 0; } NetUReduce*gate = new NetUReduce(scope, scope->local_symbol(), rtype, isig->vector_width()); des->add_node(gate); connect(gate->pin(0), osig->pin(0)); for (unsigned idx = 0 ; idx < isig->pin_count() ; idx += 1) connect(gate->pin(1+idx), isig->pin(idx)); return osig; } NetNet* NetESelect::synthesize(Design *des) { NetNet*sub = expr_->synthesize(des); if (sub == 0) return 0; NetScope*scope = sub->scope(); NetNet*off = 0; // This handles the case that the NetESelect exists to do an // actual part/bit select. Generate a NetPartSelect object to // do the work, and replace "sub" with the selected output. if (base_ != 0) { off = base_->synthesize(des); NetPartSelect*sel = new NetPartSelect(sub, off, expr_width()); sel->set_line(*this); des->add_node(sel); NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, expr_width()); tmp->data_type(sub->data_type()); tmp->local_flag(true); tmp->set_line(*this); sub = tmp; connect(sub->pin(0), sel->pin(0)); } // Now look for the case that the NetESelect actually exists // to change the width of the expression. (i.e. to do // padding.) If this was for an actual part select that at // this point the output vector_width is exactly right, and we // are done. if (sub->vector_width() == expr_width()) return sub; // The vector_width is not exactly right, so the source is // probably asking for padding. Create nodes to do sign // extension or 0 extension, depending on the has_sign() mode // of the expression. NetNet*net = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, expr_width()); net->data_type(expr_type()); net->local_flag(true); net->set_line(*this); if (has_sign()) { NetSignExtend*pad = new NetSignExtend(scope, scope->local_symbol(), expr_width()); pad->set_line(*this); des->add_node(pad); connect(pad->pin(1), sub->pin(0)); connect(pad->pin(0), net->pin(0)); } else { NetConcat*cat = new NetConcat(scope, scope->local_symbol(), expr_width(), 2); cat->set_line(*this); des->add_node(cat); assert(expr_width() > sub->vector_width()); unsigned pad_width = expr_width() - sub->vector_width(); verinum pad((uint64_t)0, pad_width); NetConst*con = new NetConst(scope, scope->local_symbol(), pad); con->set_line(*this); des->add_node(con); NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, pad_width); tmp->data_type(expr_type()); tmp->local_flag(true); tmp->set_line(*this); connect(tmp->pin(0), con->pin(0)); connect(cat->pin(0), net->pin(0)); connect(cat->pin(1), sub->pin(0)); connect(cat->pin(2), con->pin(0)); } return net; } /* * Synthesize a ?: operator as a NetMux device. Connect the condition * expression to the select input, then connect the true and false * expressions to the B and A inputs. This way, when the select input * is one, the B input, which is the true expression, is selected. */ NetNet* NetETernary::synthesize(Design *des) { NetNet*csig = cond_->synthesize(des); NetNet*tsig = true_val_->synthesize(des); NetNet*fsig = false_val_->synthesize(des); perm_string path = csig->scope()->local_symbol(); assert(csig->vector_width() == 1); unsigned width=expr_width(); NetNet*osig = new NetNet(csig->scope(), path, NetNet::IMPLICIT, width); osig->data_type(expr_type()); osig->local_flag(true); /* Make sure both value operands are the right width. */ tsig = crop_to_width(des, pad_to_width(des, tsig, width), width); fsig = crop_to_width(des, pad_to_width(des, fsig, width), width); assert(width == tsig->vector_width()); assert(width == fsig->vector_width()); perm_string oname = csig->scope()->local_symbol(); NetMux *mux = new NetMux(csig->scope(), oname, width, 2, csig->vector_width()); connect(tsig->pin(0), mux->pin_Data(1)); connect(fsig->pin(0), mux->pin_Data(0)); connect(osig->pin(0), mux->pin_Result()); connect(csig->pin(0), mux->pin_Sel()); des->add_node(mux); return osig; } /* * When synthesizing a signal expression, it is usually fine to simply * return the NetNet that it refers to. If this is a part select, * though, a bit more work needs to be done. Return a temporary that * represents the connections to the selected bits. * * For example, if there is a reg foo, like so: * reg [5:0] foo; * and this expression node represents a part select foo[3:2], then * create a temporary like so: * * foo * +---+ * | 5 | * +---+ * tmp | 4 | * +---+ +---+ * | 1 | <---> | 3 | * +---+ +---+ * | 0 | <---> | 2 | * +---+ +---+ * | 1 | * +---+ * | 0 | * +---+ * The temporary is marked as a temporary and returned to the * caller. This causes the caller to get only the selected part of the * signal, and when it hooks up to tmp, it hooks up to the right parts * of foo. */ NetNet* NetESignal::synthesize(Design*des) { return net_; } /* * $Log: expr_synth.cc,v $ * Revision 1.87 2007/06/02 03:42:12 steve * Properly evaluate scope path expressions. * * Revision 1.86 2007/04/15 01:37:29 steve * Allow bit/part select of vectors in continuous assignments. * * Revision 1.85 2007/04/12 05:21:54 steve * fix handling of unary reduction logic in certain nets. * * Revision 1.84 2007/04/04 02:31:57 steve * Remove useless assert * * Revision 1.83 2007/02/05 01:42:31 steve * Set some missing local flags. * * Revision 1.82 2007/01/20 02:10:45 steve * Get argument widths right for shift results. * * Revision 1.81 2007/01/16 05:44:15 steve * Major rework of array handling. Memories are replaced with the * more general concept of arrays. The NetMemory and NetEMemory * classes are removed from the ivl core program, and the IVL_LPM_RAM * lpm type is removed from the ivl_target API. * * Revision 1.80 2006/08/08 05:11:37 steve * Handle 64bit delay constants. * * Revision 1.79 2006/07/31 03:50:17 steve * Add support for power in constant expressions. * * Revision 1.78 2006/07/08 21:48:46 steve * Handle real valued literals in net contexts. * * Revision 1.77 2006/05/01 20:47:59 steve * More explicit datatype setup. * * Revision 1.76 2006/05/01 05:40:21 steve * fix net type of multiply output. * * Revision 1.75 2006/04/30 05:17:48 steve * Get the data type of part select results right. * * Revision 1.74 2006/01/03 05:15:33 steve * Fix the return type of a synthesized divide. * * Revision 1.73 2005/09/15 23:04:09 steve * Make sure div, mod and mult nodes have line number info. * * Revision 1.72 2005/08/31 05:07:31 steve * Handle memory references is continuous assignments. * * Revision 1.71 2005/06/13 23:22:14 steve * use NetPartSelect to shrink part from high bits. * * Revision 1.70 2005/06/13 22:26:03 steve * Make synthesized padding vector-aware. * * Revision 1.69 2005/05/15 04:47:00 steve * synthesis of Logic and shifts using vector gates. * * Revision 1.68 2005/05/06 00:25:13 steve * Handle synthesis of concatenation expressions. * * Revision 1.67 2005/04/25 01:30:31 steve * synthesis of add and unary get vector widths right. * * Revision 1.66 2005/04/24 23:44:02 steve * Update DFF support to new data flow. * * Revision 1.65 2005/03/12 06:43:35 steve * Update support for LPM_MOD. * * Revision 1.64 2005/02/19 02:43:38 steve * Support shifts and divide. * * Revision 1.63 2005/02/12 06:25:40 steve * Restructure NetMux devices to pass vectors. * Generate NetMux devices from ternary expressions, * Reduce NetMux devices to bufif when appropriate. * * Revision 1.62 2005/01/28 05:39:33 steve * Simplified NetMult and IVL_LPM_MULT. * * Revision 1.61 2005/01/16 04:20:32 steve * Implement LPM_COMPARE nodes as two-input vector functors. * * Revision 1.60 2004/12/11 02:31:26 steve * Rework of internals to carry vectors through nexus instead * of single bits. Make the ivl, tgt-vvp and vvp initial changes * down this path. * * Revision 1.59 2004/06/30 02:16:26 steve * Implement signed divide and signed right shift in nets. * * Revision 1.58 2004/06/16 16:21:34 steve * Connect rsif of multiply to DataB. * * Revision 1.57 2004/06/12 15:00:02 steve * Support / and % in synthesized contexts. * * Revision 1.56 2004/06/01 01:04:57 steve * Fix synthesis method for logical and/or * * Revision 1.55 2004/02/20 18:53:35 steve * Addtrbute keys are perm_strings. * * Revision 1.54 2004/02/18 17:11:56 steve * Use perm_strings for named langiage items. * * Revision 1.53 2004/02/15 04:23:48 steve * Fix evaluation of compare to constant expression. * * Revision 1.52 2003/11/10 19:39:20 steve * Remove redundant scope tokens. * * Revision 1.51 2003/10/27 06:04:21 steve * More flexible width handling for synthesized add. * * Revision 1.50 2003/09/26 02:44:27 steve * Assure ternary arguments are wide enough. * * Revision 1.49 2003/09/03 23:31:36 steve * Support synthesis of constant downshifts. * * Revision 1.48 2003/08/28 04:11:18 steve * Spelling patch. * * Revision 1.47 2003/08/09 03:23:40 steve * Add support for IVL_LPM_MULT device. * * Revision 1.46 2003/07/26 03:34:42 steve * Start handling pad of expressions in code generators. * * Revision 1.45 2003/06/24 01:38:02 steve * Various warnings fixed. * * Revision 1.44 2003/04/19 04:52:56 steve * Less picky about expression widths while synthesizing ternary. * * Revision 1.43 2003/04/08 05:07:15 steve * Detect constant shift distances in synthesis. * * Revision 1.42 2003/04/08 04:33:55 steve * Synthesize shift expressions. * * Revision 1.41 2003/03/06 00:28:41 steve * All NetObj objects have lex_string base names. * * Revision 1.40 2003/02/26 01:29:24 steve * LPM objects store only their base names. * * Revision 1.39 2003/01/30 16:23:07 steve * Spelling fixes. * * Revision 1.38 2003/01/26 21:15:58 steve * Rework expression parsing and elaboration to * accommodate real/realtime values and expressions. * * Revision 1.37 2002/11/17 23:37:55 steve * Magnitude compare to 0. * * Revision 1.36 2002/08/12 01:34:59 steve * conditional ident string using autoconfig. * * Revision 1.35 2002/07/07 22:31:39 steve * Smart synthesis of binary AND expressions. * * Revision 1.34 2002/07/05 21:26:17 steve * Avoid emitting to vvp local net symbols. * * Revision 1.33 2002/05/26 01:39:02 steve * Carry Verilog 2001 attributes with processes, * all the way through to the ivl_target API. * * Divide signal reference counts between rval * and lval references. */